Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.286
Filtrar
1.
J Nanosci Nanotechnol ; 20(2): 909-917, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383086

RESUMO

Tailored broussonetia-like NiCo2O4 is grown on carbon cloth using tri-sodium citrate assisted hydrothermal method. The chelating effect of citric ions has been utilized to investigate the morphological and structural evolution of NiCo2O4 on carbon cloth, which have been illustrated by scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectra. The results demonstrate that the morphological alteration of NiCo2O4 from single nanowire to broussonetia-like structure has been detected after the addition of tri-sodium citrate. Citric ion plays a crucial role as an electrostatic stabilizer in determining this unique structure. When used as binder-free electrode in aqueous supercapacitors, the broussonetia-like NiCo2O4 electrode exhibits a specific capacitance of 527.9 F g-1 at a current density of 0.5 A g-1. Additionally, an asymmetric supercapacitor is further assembled using NiCo2O4 as the positive electrode and activated carbon as negative electrode. The device exhibits a maximum energy of 26.4 Wh kg-1 at power density of 800 W kg-1. A long-term cycling stability with 82% capacitance retention is maintained after 20,000 cycles at a current density of 5 A g-1, indicating the practical applicability of the tested device.

2.
Theriogenology ; 141: 82-90, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518732

RESUMO

Relative to alanine and serine amino acid levels, glutamine is highly abundant in follicular fluid, and is an important source of energy required for oocyte maturation and embryo development. Thus, glutamine is an essential component of in vitro embryo culture media. However, glutamine has poor stability and degrades spontaneously in solution to form ammonia and pyrrolidonecarboxylic acid. In the present study, we aimed to explore the effect of substituting l-glutamine with glycine-glutamine, a more stable glutamine, on development of early parthenogenetic embryos and in vitro fertilization (IVF) embryos in bovine. Results revealed that glycine-glutamine can significantly increase cleavage rate (parthenogenetic embryos:87.24% vs. 72.61%, IVF embryos:89.33% vs. 83.79%, P < 0.01), blastocyst number (parthenogenetic embryos:24.98% vs. 18.07%, IVF embryos:33.53% vs. 27.29%, P < 0.01), and blastocyst number (parthenogenetic embryos:96 vs. 76, IVF embryos:114 vs. 109, P < 0.01), reduce blastocyst apoptosis (parthenogenetic embryos:3.72% vs. 6.65%, IVF embryos:2.53% vs.6.23%, P < 0.01), alleviate embryo ammonia toxicity, and reduce the content of reactive oxygen species (ROS) compared with the l-glutamine. In addition, glycine-glutamine can alter epigenetic reprogramming by increasing the expression of HDAC1 (Histone Deacetylase 1) and decreasing the relative expression levels of H3K9 acetylation in early parthenogenetic embryos and IVF embryos. From our present study, we concluded that glycine-glutamine is an effective substitute of glutamine in modified synthetic oviduct fluid with amino acids (mSOFaa).

3.
Chemosphere ; 240: 124987, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31726603

RESUMO

The transport behavior of arsenic (As(V)) loaded by ferric humate (HA-Fe) colloid, denoted as HA-Fe/As(V), moving in a saturated quartz sand column, was tested in the laboratory under varying pH values, ionic strengths, and HA and Fe(III) content. The time-fractional advection-dispersion equation (fADE) model was then employed to analyze the observed migration of HA-Fe/As(V). Results showed that the stability of the HA-Fe colloid exhibited an upward trend with an increasing pH and HA content. An increasing HA content led to a decrease in the particle size of the HA-Fe colloid. However, the effect of Fe(III) concentration on colloidal particle size exhibited the opposite phenomenon. The ability of the HA-Fe colloid to load As(V) gradually increased with the increase of the Fe(III) concentration. During the co-transport of the HA-Fe/As(V) colloid, transport of As(V) was promoted with increasing pH, increasing HA and Fe(III) content, and decreasing ionic strength in the saturated porous medium. The transport behavior of As(V) can be well fitted by the fADE model. The model analysis revealed that sub-diffusion of As(V) was weakened in the HA-Fe/As(V) colloid with high HA content. Sub-diffusion of As(V) in the low pH colloid was stronger than that of the high-pH colloid, and the molecular diffusion and mechanical dispersion were more weakened in the high-pH colloid than that of the low-pH colloid. When observing varying ionic strengths, As(V) exhibited stronger sub-diffusion in the HA-Fe/As(V) colloid with a higher ionic strength. As for the Fe(III) content, transport of As(V) was mainly affected by sub-diffusion in the HA-Fe/As(V) colloid with a low Fe(III) content. These findings provided direct and necessary insights into the effects of the HA-Fe colloid on the migration of As(V) throughout saturated porous media under different hydrochemical conditions found in natural environments.

4.
Dev Comp Immunol ; 103: 103497, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31518591

RESUMO

The lectin pathway of complement activation is an important component of the innate immune response, which must be tightly controlled to maintain immune homeostasis. However, its control mechanisms have not been investigated in detail in bony fish. In this study, we identified and characterized two novel, phylogenetically conserved mannan-binding lectin (MBL)-associated proteins (MAps) of grass carp (Ctenopharyngodon idella), CiMAp27 and CiMAp39, which were truncated, alternatively-spliced forms of grass carp MBL-associated serine proteases (MASPs), CiMASP1 and CiMASP2, respectively. Gene expression profiling showed that both CiMAp27 and CiMAp39 were upregulated by low doses of Aeromonas hydrophila, and inhibited by high doses, which lead to the inference that these genes acted as immune factors in antibacterial defense. Sequence analysis showed that CiMAp27 lack a catalytic domain but retains two domains (CUB1-EGF) involved in the association with MBL, while CiMAp39 retained four domains (CUB1-EGF-CUB2-CCP1). Not only the two CiMASPs but also the CiMAps were detected in grass carp serum. Furthermore, both recombinant CiMASPs (rCiMASPs) and recombinant rCiMAps (rCiMAps) interacted with recombinant MBL and the two CiMAps competed with CiMASPs for binding to MBL, and hence inhibited downstream C4 binding. These results indicated that CiMAps acted as competitive inhibitors in the lectin complement pathway of grass carp.

5.
J Nanosci Nanotechnol ; 20(6): 3340-3347, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31748025

RESUMO

This work describes a "turn-off-on" fluorescence probe based on carbon quantum dots for sensing Fe3+ and ascorbic acid. The carbon quantum dots are prepared by hydrothermal method using a biocarbon source of black sesame. When excited at 355 nm, the carbon quantum dots show a strong bright blue emission peak centered at 438 nm. Obviously, the decrease of the fluorescence intensity of carbon quantum dots can be seen upon addition of Fe3+. Interestingly, the fluorescence quenching can be regained after the addition of ascorbic acid. The mechanism is that the added Fe3+ was destroyed by reductive ascorbic acid because of the redox reaction between ascorbic acid and Fe3+, making the fluorescence of the system recovered. The obtained curves are linear for Fe3+ and ascorbic acid over the range 50-1500 µM and 32.2-987.6 µM, respectively. The detection limits for Fe3+ and ascorbic acid are 2.78 µM and 0.0344 µM, respectively. Thus the carbon quantum dots can be used as a dual-function fluorescent sensor to achieve sensitive detection of Fe3+ and ascorbic acid.

6.
J Nanosci Nanotechnol ; 20(6): 3361-3372, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31748028

RESUMO

Gambogic acid (GA) is a natural compound with a polyprenylated xanthone structure that has antiinflammatory, antioxidant, and neuroprotective properties and acts as a chemopreventive agent. GA exhibits anti-tumor, antimicrobial, and anti-proliferative effects on cancer cells. In the current study, the effect of GA on phosphoinositide kinase-3 (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway was examined in human U251 glioma cells. Cell viability and apoptosis were evaluated by MTT and Annexin V/PI Double Staining. The expressions of P38, AKT, and mTOR were evaluated by western blot and qRT-PCR, respectively. MagBeads Total RNA Extraction Kit was used to isolate cell tissue RNA. GA decreased the phosphorylation of P38, AKT, and mTOR. Inhibitors of PI3K (LY294002) enhanced the phosphorylation of P38, AKT, and mTOR. GA reduced the phosphorylation of ribosomal protein precursors (Pre) and upstream binding factor (UBF), and insulin-like growth factor I (IGF-1) further enhanced the cell proliferation and expression of Pre and UBF. These results suggested that downregulation of PI3K/AKT/mTOR signaling pathway may be an important mediator in GA-affected ribosomal occurrence in glioma cells.

7.
J Colloid Interface Sci ; 559: 39-44, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31610303

RESUMO

Increased conductivity of manganese oxide (MnOx) for effectively improved supercapacity is studied in this work by addressing on introduced oxygen vacancies (OVs) besides a porous sheath of conductive polymer (polypyrrole, PPy). The assembly profile of core/sheath structured MnOx/PPy nanowires by in-situ polymerization of PPy under mild condition showing better conductivity, specific capacitance, rate performance and cycling stability than so far reported MnOx based materials. Structural characteristics of the MnOx/PPy nanowires are studied in detail, including high weight percent of MnOx core, underlying PPy layer chemically bonding MnOx core and PPy nanoparticles in outlayer, as well as the simultaneously introduced conductive oxygen vacancies (OVs) in MnOx during formation of PPy sheath. The contribution of assembly profile to the supercapacitor performances is discussed, especially concerning PPy sheath and OVs, essentially yielding improved conductivity between current collector and the MnOx core to assure large energy density and power density.

8.
Methods Mol Biol ; 2097: 197-209, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31776927

RESUMO

Exosomes are nanosized vesicles secreted by nearly all types of cells and play important roles in intercellular communication. Given their unique and important pharmacological properties, exosomes have been emerging as a new class of cell-free therapeutics. Herein, we describe exosomes developed against epidermal growth factor receptor (EGFR), a key factor in epithelial malignancies, involved in enhanced tumor growth, invasion, and metastasis. The exosomes are genetically modified for displaying two distinct types of monoclonal antibodies on the exosome surface, resulting in novel synthetic multivalent antibodies retargeted exosomes (SMART-Exos) that can simultaneously target tumor-associated human EGFR and T-cell surface CD3 receptor. By redirecting and activating T cells toward attacking EGFR-expressing cancer cells, the designed SMART-Exos exhibit highly potent and specific antitumor activity. In this chapter, the methodologies are outlined for generating and using SMART-Exos for cancer immunotherapy.

9.
Radiology ; : 190467, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31687918

RESUMO

Background Although chemical shift-encoded (CSE) MRI proton density fat fraction (PDFF) is the current noninvasive reference standard for liver fat quantification, the liver is more frequently imaged with CT. Purpose To validate quantitative CT measurements of liver fat against the MRI PDFF reference standard. Materials and Methods In this prospective study, 400 healthy participants were recruited between August 2015 and July 2016. Each participant underwent same-day abdominal unenhanced quantitative CT with a calibration phantom and CSE 3.0-T MRI. CSE MRI liver fat measurements were used to calibrate an equation to adjust CT fat measurements and put them on the PDFF measurement scale. CT and PDFF liver fat measurements were plotted as histograms, medians, and interquartile ranges compared; scatterplots and Bland-Altman plots obtained; and Pearson correlation coefficients calculated. Receiver operating characteristic curves including areas under the curve were evaluated for mild (PDFF, 5%) and moderate (PDFF, 14%) steatosis thresholds for both raw and adjusted CT measurements. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated. Results Four hundred volunteers (mean age, 52.6 years ± 15.2; 227 women) were evaluated. MRI PDFF measurements of liver fat ranged between 0% and 28%, with 41.5% (166 of 400) of participants with PDFF greater than 5%. Both raw and adjusted quantitative CT values correlated well with MRI PDFF (r2 = 0.79; P < .001). Bland-Altman analysis of adjusted CT values showed no slope or bias. Both raw and adjusted CT had areas under the receiver operating characteristic curve of 0.87 and 0.99, respectively, to identify participants with mild (PDFF, >5%) and moderate (PDFF, >14%) steatosis, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value for unadjusted CT was 75.9% (126 of 166), 85.0% (199 of 234), 78.3% (126 of 161), and 83.3% (199 of 239), respectively, for PDFF greater than 5%; and 84.8% (28 of 33), 98.4% (361 of 367), 82.4% (28 of 34), and 98.6% (361 of 366), respectively, for PDFF greater than 14%. Results for adjusted CT were mostly identical. Conclusion Quantitative CT liver fat exhibited good correlation and accuracy with proton density fat fraction measured with chemical shift-encoded MRI. © RSNA, 2019 Online supplemental material is available for this article.

10.
Neuroreport ; 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31688420

RESUMO

Hyperactivity of the hypothalamic-pituitary-adrenal axis and impairment of the central corticotropin-releasing factor system are factors in the pathogenesis of depression. Though several antagonists of the corticotropin-releasing factor 1 receptor were effective in the recognized behavioral tests for antidepressant activity, there is still little information on the potential interactions between corticotropin-releasing factor 1 receptor inhibitors and conventional antidepressant therapy. The aim of our study was to assess the influence of CP154526, a corticotropin-releasing factor 1 receptor blocker, which presented some signs of depression. Our results revealed that CP154526 (5 and 10 mg/kg) or fluoxetine (10 mg/kg) treatment notably improved the sucrose consumption, produced anti-depressive-like behavior in open-field test, as well as immobility time in forced swimming test. The levels of interleukin-6, interleukin-1ß, tumor necrosis factor-α, and corticotropin-releasing hormone concentration in the serum were inhibited effectively by CP154526 or fluoxetine administration. Real-time quantitative PCR and western blot analysis showed the upregulated levels of brain-derived neurotrophic factor and growth associated protein 43 (GAP43) in the hypothalamus of the rats exposed to chronic unpredictable mild stress (CUMS), while different degrees of downregulation in their expression were detected after CP154526 (5 and 10 mg/kg) or fluoxetine (10 mg/kg) treatment, respectively. Thus, our data demonstrated that CP154526 exhibited antidepressant effect in CUMS rats, which might be mediated by decreasing the brain-derived neurotrophic factor and GAP43 expression in the hypothalamus.

11.
Autophagy ; : 1-15, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711362

RESUMO

BAG2 (BCL2 associated athanogene 2) is associated with cell fate determination in response to various pathological conditions. However, the effects of BAG2 on M. tuberculosis-induced endoplasmic reticulum (ER) stress remain elusive. Herein, we report that M. tuberculosis infection of macrophages triggered ER stress and downregulated BAG2 expression. Overexpression of BAG2 enhanced autophagic flux and activated macroautophagy/autophagy targeted to the ER (reticulophagy). In addition, through increasingly localizing SQSTM1 to the ER in BAG2-overexpressing macrophages, we found that the autophagy receptor protein SQSTM1/p62 (sequestosome 1) is associated with the BAG2-induced reticulophagy. Our data also confirmed that BAG2 could render cells resistant to M. tuberculosis-induced cellular damage, and the anti-apoptotic effects of BAG2 in M. tuberculosis-treated macrophages were partially abolished by the autophagic flux inhibitor bafilomycin A1. Furthermore, the dissociation of BECN1 and BCL2 mediated by activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) was responsible for BAG2-activated autophagy. In addition, XBP1 downstream of the ERN1/IRE1 signaling pathway was bound to the Bag2 promoter region and transcriptionally inhibited BAG2 expression. Collectively, these results indicated that BAG2 has anti-apoptotic effects on M. tuberculosis-induced ER stress, which is dependent on the promotion of autophagic flux and the induction of selective autophagy. We revealed a potential host defense mechanism that links BAG2 to ER stress and autophagy during M. tuberculosis infection.Abbreviations: ATF6: activating transcription factor 6; BECN1: beclin 1; Baf A1: bafilomycin A1; CASP3: caspase 3; DDIT3/CHOP/GADD153: DNA damage inducible transcript 3; DAPI: 4',6-diamidino-2-phenylindole; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; HSPA5/GRP78/BiP: heat shock protein 5; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAPK/ERK: mitogen-activated protein kinase; SQSTM1/p62: sequestosome 1; UPR: unfolded protein response; XBP1: x-box binding protein 1.

12.
Int Immunopharmacol ; : 105972, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31711938

RESUMO

Mastitis is a common veterinary clinical disease that restricts the development of dairy farming around the world. Morin, extracted from Mulberry Tree and other herbs, has been reported to possess the function of anti-bacteria, anti-oxidant, and anti-inflammatory. However, whether morin could protect lipopolysaccharide (LPS)-induced mouse mastitis in vivo has not well known. This study firstly aims to evaluate the effects of morin on LPS-induced mouse mastitis in vivo, and then try to illustrate the mechanism involved in the process. Before injected with LPS, mice were intraperitoneally pre-injected with different concentrations of morin, and mice of the control and LPS group were injected with the same amount of saline. Pathologic changes of mammary gland were determined by histopathological examination. Myeloperoxidase (MPO) activities of mammary gland were determined by the MPO kits. The mRNA expressions of inflammatory cytokines including TNF-α, IL-1ß and IL-6, and those of chemokine factors CCL2 and CXCL2, and those of tight junctions occludin claudin-3 were examined by qRT-PCR analysis. The activities of IκB, p65, ERK, P38, AKT, PI3K, NLPR3, claudin-1, claudin-3 and occludin were determined by western blotting. The results showed that morin alleviated LPS-induced edema, destructed structures and infiltrated inflammatory cells of mammary gland. Morin administration significantly decreased LPS-induced TNF-α, IL-1ß, IL-6, CCL2 and CXCL2 mRNA expressions. Furthermore, western blot analysis also showed that morin significantly reduced LPS-induced phosphorylation of p65, IκB, p38 and ERK, and enhanced LPS-induced phosphorylation of AKT and PI3K. It was also found that LPS-decreased claudin-3 and occludin expressions were also inhibited by morin treatment. In summary, above results suggest that morin indeed protect LPS-induced mouse mastitis in vivo, and the mechanism was through inhibiting the PI3K/AKT, MAPK, NF-κB and NLRP3 signaling pathways and protecting the integrity of blood-milk barrier by regulating the tight junction proteins expressions.

13.
Reproduction ; 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721723

RESUMO

Coactivator-associated arginine methyltransferase 1 (CARM1) is a type I arginine methyltransferase that methylates the arginine residues of histone and nonhistone. Carm1 regulates various cellular processes, including transcriptional regulation, mRNA processing, cellular proliferation, and differentiation. Blastomeres with high Carm1 expression levels show cleavage tendency to inner cell mass (ICM) in mouse embryos. However, details about the factors for CARM1 distribution in mouse early embryos and the role of Carm1 in blastocyst development remain unclear. Here, the endonuclear distribution of CARM1 protein was heterogeneous between blastomeres from the late four-cell stage to the blastocyst stage. The heterogeneity of CARM1 distribution in blastomeres at the late four-cell stage was randomly obtained from two-cell stage embryos. From the four-cell stage to morula, CARM1 in individual blastomere remained heterogeneous. In the blastocyst stage, CARM1 protein level in ICM was much higher than that in trophoblast. We found that microRNA (miRNA) miR-181a is an important regulator for Carm1 distribution at the late four-cell stage. The ratio of heterogeneous embryos was reduced in all the embryos when miR-181a was inhibited. CARM1 inhibition reduced the level of symmetrical histone H3 arginine-26 dimethylation and impaired blastocyst development. Silencing Carm1 reduced cell number and increased cell apoptosis at the blastocyst stage. These results show a CARM1 heterogeneous distribution from the four-cell embryos to the blastocysts. miR-181a regulates the control of CARM1 heterogeneous distribution in the four-cell-stage embryos, and Carm1 is an important protein in regulating blastocyst development.

14.
Clin Nutr ; 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31694759

RESUMO

BACKGROUND: Previous clinical and animal studies suggested that medium-chain triglycerides (MCT) might be an alternative energy substrate for the brain and might benefit patients with Alzheimer's disease (AD), but the clinical evidence is not substantial or totally convincing. OBJECTIVE: To investigate the effects of MCT on cognitive ability in patients with mild to moderate AD and explore the changes in peripheral blood metabolomics. METHODS: A double-blind, randomized, placebo-controlled crossover study was undertaken in 53 mild to moderate AD patients. Participants were randomized between two sequences (placebo followed by MCT or MCT followed by placebo) and took MCT jelly or placebo jelly (canola oil) by mouth three times daily (total daily fat dose: 17.3 g MCT, or 19.7 g canola oil) for 30 days per phase. The primary outcome was cognition as measured by the Alzheimer's Disease Assessment Scale-Cognitive Subscale, Chinese version (ADAS-Cog-C). The secondary outcome was self-care as measured by the activities of daily living scale (ADL) and changes in plasma metabolites. RESULTS: This study showed a significant (p < 0.01) reduction in ADAS-Cog-C scores between the MCT (2.62 points below baseline) and placebo interventions (2.57 points above baseline). Data from 46 (86.8%) APOE4-/- subjects who completed the entire study were analyzed. Changes in ADL scores were not significantly different between the MCT and placebo interventions (p > 0.05). The concentrations of TC, HDL-C, ß-hydroxybutyrate and acetoacetate were significantly higher in the MCT group than in the placebo group (p < 0.05). Lysophosphatidylcholine 16:0 (LysoPC (16:0)), LysoPC (P-18:0), LysoPC (P-18:1(9Z)), LysoPC (20:2(11Z,14Z)), and LysoPC (22:5(4Z,7Z,10Z,13Z,16Z)) were significantly increased after MCT intervention, and the concentrations of LysoPC (18:0), palmitic acid, linoleic acid, oleic acid, and 7,12-dimethylbenz[a]anthracene were significantly decreased (p < 0.05), whereas no significant changes appeared after the placebo intervention. Androstenedione concentration increased after placebo intervention. Furthermore, a significant negative correlation was observed between changes in LysoPC (P-18:1(9Z)) and ADAS-Cog-C scores after MCT intervention (r = -0.1472, p < 0.05). CONCLUSIONS: MCT had positive effects on cognitive ability in mild to moderate AD patients with APOE4-/-. These effects of MCT might be related to the metabolism of LysoPC, oleic acid, linoleic acid and palmitic acid, in addition to the ketogenic effect. STUDY ID NUMBER: ChiCTR-IOR-16009737. REGISTRY WEBSITE: WHO ICTRP Search Portal - http://apps.who.int/trialsearch/Default.aspx.

15.
Cells ; 8(11)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689969

RESUMO

MicroRNAs (miRNAs) are important negative regulators of genes involved in physiological and pathological processes in plants and animals. It is worth exploring whether plant miRNAs play a cross-kingdom regulatory role in animals. Herein, we found that plant MIR167e-5p regulates the proliferation of enterocytes in vitro. A porcine jejunum epithelial cell line (IPEC-J2) and a human colon carcinoma cell line (Caco-2) were treated with 0, 10, 20, and 40 pmol of synthetic 2'-O-methylated plant MIR167e-5p, followed by a treatment with 20 pmol of MIR167e-5p for 0, 24, 48, and 72 h. The cells were counted, and IPEC-J2 cell viability was determined by the MTT and EdU assays at different time points. The results showed that MIR167e-5p significantly inhibited the proliferation of enterocytes in a dose- and time-dependent manner. Bioinformatics prediction and a luciferase reporter assay indicated that MIR167e-5p targets ß-catenin. In IPEC-J2 and Caco-2 cells, MIR167e-5p suppressed proliferation by downregulating ß-catenin mRNA and protein levels. MIR167e-5p relieved this inhibition. Similar results were achieved for the ß-catenin downstream target gene c-Myc and the proliferation-associated gene PCNA. This research demonstrates that plant MIR167e-5p can inhibit enterocyte proliferation by targeting the ß-catenin pathway. More importantly, plant miRNAs may be a new class of bioactive molecules for epigenetic regulation in humans and animals.

16.
Math Biosci Eng ; 16(6): 6209-6230, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31698558

RESUMO

Lagged settlement is a typical accident induced by shield construction in sandy cobble strata. This paper analyzed the process and mechanism of lagged settlement, results show that all phases are in accord with the characteristics of ellipsoid theory of particle flows. Based on this theory, a method for calculating coefficient of lateral earth pressure and loosened earth pressure is proposed in this research. For the coefficient of lateral earth pressure, the boundary of loosened ellipsoid is divided into two parts, the arch zone and the excavation zone, and the lateral pressure coefficients are derived respectively according to the stress state. For loosened earth pressure on tunnel, the Terzaghi earth pressure theory and Protodyakonov earth pressure theory are adapted in different conditions according to the state of loosened cobble soil. Theories developed in this study can be applied on determination of shield excavation parameters, as well as calculation of loosened earth pressure and control of tunnel support.

17.
Food Chem ; : 125743, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31699563

RESUMO

To reveal the potential effects of hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) on catalase (CAT), the interactions of 1-hydroxynaphthalene (1-OHNap), 9-hydroxyphenanthrene (9-OHPhe) and 1-hydroxypyrene (1-OHPyr) with CAT were investigated using multi-spectroscopic and molecular docking techniques. Fluorescence analysis showed that 1-OHNap, 9-OHPhe and 1-OHPyr can form 1:1 complex with CAT, with the binding constant of 6.31 × 103, 1.03 × 104 and 2.96 × 105 L mol-1 at 17 °C. Thermodynamic and docking parameters demonstrated that van der Waals' force, hydrogen bonds and hydrophobic interactions dominated the three binding processes. Molecular docking also revealed the specific binding mode of OH-PAHs with CAT. Synchronous fluorescence and circular dichroism spectral results indicated that the three OH-PAHs induced varied structural changes of CAT. Furthermore, CAT activity was promoted by 9-OHPhe, but inhibited by either 1-OHNap or 1-OHPyr. Under the maximum experimental concentration of OH-PAHs, the percent change of CAT activity induced by 1-OHNap, 9-OHPhe and 1-OHPyr were 8.42%, 4.26% and 13.21%.

18.
Andrologia ; : e13470, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31701550

RESUMO

The purpose of our analysis is to identify the effect of l-carnitine (LC) and l-acetyl carnitine (LAC) on the semen parameters of men with idiopathic oligoasthenoteratozoospermia (iOAT). We performed a comprehensive search to ascertain all the trials about LC and LAC in the treatment of iOAT and compared the results, including percentage of total sperm motility, sperm concentration, percentage of forward sperm motility, semen volume, percentage of atypical forms, total motile spermatozoa, forward motile spermatozoa and the number of pregnancies between the two groups that treated with LC + LAC or placebo respectively. Seven randomised controlled trials (RCTs) involving 693 patients were included in our analysis. We found that patients who treated with LC and LAC had significantly increased the percentage of forward sperm motility (MD 6.98; 95% CI 1.06-12.90; p = .02), total motile spermatozoa (MD 16.45; 95% CI 8.10-24.79; p = .0001), forward motile spermatozoa (MD 13.01; 95% CI 11.08-14.94; p < .00001) and the number of pregnancies (OR 3.76; 95% CI 1.66-8.50; p = .002). However, no significant differences were found in other semen indicators between the two groups. LC and LAC can significantly increase part of the semen parameters. The combination therapy of LC and LAC is effective in the men with iOAT.

19.
J Pharm Pharmacol ; 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31702064

RESUMO

OBJECTIVES: Metoprolol is regarded as a first-line medicine for the treatment of myocardial infarction (MI). However, the underlying mechanisms remain largely unknown. This study aimed to investigate the involvement of miR-1 in the pharmacological function of metoprolol. METHODS: In vivo MI model was established by left anterior descending coronary artery (LAD) ligation. The effects of metoprolol on infarct size and cardiac dysfunction were determined by triphenyltetrazolium chloride staining and cardiac echocardiography, respectively. In vitro oxidative stress cardiomyocyte model was established by H2 O2 treatment. The effect of metoprolol on the expression of miR-1 and connexin43 (Cx43) was quantified by real-time PCR and western blot, respectively. The intercellular communication was evaluated by lucifer yellow dye diffusion. KEY FINDINGS: Left anterior descending ligation-induced MI injury was markedly attenuated by metoprolol as shown by reduced infarct size and better cardiac function. Metoprolol reversed the up-regulation of miR-1 and down-regulation of Cx43 in MI heart. Moreover, in H2 O2 -stimulated cardiomyocytes, overexpression of miR-1 abolished the effects of metoprolol on Cx43 up-regulation and increased intercellular communication, indicating that miR-1 may be a necessary mediator for the cardiac protective function of metoprolol. CONCLUSIONS: Metoprolol relieves MI injury via suppression miR-1, thus increasing its target protein Cx43 and improving intercellular communication.

20.
Org Lett ; 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31702930

RESUMO

An efficient method for the enantioselective synthesis of cyclic ureas has been developed through Pd-catalyzed asymmetric allylic cycloaddition of readily accessible nitrogen-containing allylic carbonates with isocyanates. By using a palladium complex in situ generated from Pd2(dba)3·CHCl3 and phosphoramidite L1 or L3 as a ligand under mild reaction conditions, the process afforded imidazolidinones and tetrahydropyrimidinones with high yields and high levels of enantioselectivities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA