Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33513589

RESUMO

The MXene combining high surface area, prominent biocompatibility, and wide near infrared (NIR) absorption has been recognized as one of the most promising materials for tumor therapy. The application of MXene in tumor therapy is negatively affected by the current design methods lack the control of size distribution and the great tendency to agglomerate as well as poor photodynamic therapy. To solve the above problems, we report a facile strategy to process Ti3C2 nanosheets into three-dimensional structure with honeycomb structure and anti-aggregation properties for synergistic therapy of chemotherapy, photothermal and photodynamic therapy. The three dimensional(3D)MXene is synthesized by spray drying, in which the MXene surface is oxidized to TiO2. The microspheres present prominent NIR light trigger photothermal effect and excellent NIR light photostability, which respond in an on-off manner. Moreover, the microspheres exhibit outstanding drug-loading capability of doxorubicin (DOX) as high as 87.3%, and substantial singlet oxygen generation (1O2) was shown under 650 nm laser irradiation. Our studies indicate that 3D MXene-DOX could effectively achieve Hela cells killing in vitro, which provides a multifunctional drug delivery platform as a prospective candidate for future combined cancer therapy.

2.
FEBS J ; 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33492759

RESUMO

Inhibitor of DNA-binding 1 (ID1) protein has been studied intensively for its functions in tumorigenesis and maintenance of stem cell-like properties, but its roles in virus infection are less understood. In the present study, we have clearly shown that the foot-and-mouth disease virus (FMDV) promotes ID1 degradation via Cdh1-mediated ubiquitination to facilitate its replication. Mechanistic investigations reveal Forkhead Box O1 (FOXO1) as an ID1 partner, which suppresses interferon regulatory factors 3 expression and interferon (IFN) production. Further investigation identified that ID1 suppresses FOXO1 transcription activity through HDAC4-mediated deacetylation, promoting IFN production and antiviral immune response. These studies establish a prominent role for ID1 in suppressing FDMV replication, which may be extended to other viruses.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33398902

RESUMO

Tensile-strained Mxene/carbon nanotube (CNT) porous microspheres were developed as an electrocatalyst for the lithium polysulfide (LiPS) redox reaction. The internal stress on the surface results in lattice distortion with expanding Ti-Ti bonds, endowing the Mxene nanosheet with abundant active sites and regulating the d-band center of Ti atoms upshifted closer to the Fermi level, leading to strengthened LiPS adsorbability and accelerated catalytic conversion. The macroporous framework offers uniformed sulfur distribution, potent sulfur immobilization, and large surface area. The composite interwoven by CNT tentacle enhances conductivity and prevents the restacking of Mxene sheets. This combination of tensile strain effect and hierarchical architecture design results in smooth and favorable trapping-diffusion-conversion of LiPS on the interface. The Li-S battery exhibits an initial capacity of 1451 mAh g-1 at 0.2 C, rate capability up to 8 C, and prolonged cycle life.

4.
Exp Hematol ; 94: 37-46, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33346030

RESUMO

The switch/sugar nonfermenting (SWI/SNF) family of chromatin remodeling complexes have been implicated in normal hematopoiesis. The ARID2 protein is a component of the polybromo-associated BAF (PBAF), one of the two main SWI/SNF complexes. In the current study, we used a conditional Arid2 knockout mouse model to determine its role in normal hematopoiesis. We found that the loss of Arid2 has no discernable effects on steady-state hematopoiesis, with the exception of a modest effect on erythropoiesis. On bone marrow transplantation, however, the loss of Arid2 affects HSC differentiation in a cell-autonomous manner, resulting in significant decreases in the ability to reconstitute the lymphoid lineage. Gene expression analysis of Arid2 knockout cells revealed enrichment of myeloid-biased multipotent progenitor (MPP) cell signatures, while the lymphoid-biased MPPs are enriched in the wild type, consistent with the observed phenotype. Moreover, Arid2 knockout cells revealed enrichment of inflammatory pathways with upregulation of TLR receptors, as well as downstream signaling cascade genes. Furthermore, under lymphocyte-biased growth conditions in vitro, Arid2 null bone marrow cells have significantly impaired proliferation, which decreased further on lipopolysaccharide stimulation. Overall, these data suggest that the loss of Arid2 impairs HSC differentiation ability, and this effect may be mediated through upregulation of inflammatory pathways.

5.
Science ; 370(6522): 1295-1300, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33303610

RESUMO

The enhanced vegetation productivity driven by increased concentrations of carbon dioxide (CO2) [i.e., the CO2 fertilization effect (CFE)] sustains an important negative feedback on climate warming, but the temporal dynamics of CFE remain unclear. Using multiple long-term satellite- and ground-based datasets, we showed that global CFE has declined across most terrestrial regions of the globe from 1982 to 2015, correlating well with changing nutrient concentrations and availability of soil water. Current carbon cycle models also demonstrate a declining CFE trend, albeit one substantially weaker than that from the global observations. This declining trend in the forcing of terrestrial carbon sinks by increasing amounts of atmospheric CO2 implies a weakening negative feedback on the climatic system and increased societal dependence on future strategies to mitigate climate warming.

6.
Nanomaterials (Basel) ; 10(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207623

RESUMO

A three-dimensionally ordered macroporous ZnO (3DOM ZnO) framework was synthesized by a template method to serve as a sulfur host for lithium-sulfur batteries. The unique 3DOM structure along with an increased active surface area promotes faster and better electrolyte penetration accelerating ion/mass transfer. Moreover, ZnO as a polar metal oxide has a strong adsorption capacity for polysulfides, which makes the 3DOM ZnO framework an ideal immobilization agent and catalyst to inhibit the polysulfides shuttle effect and promote the redox reactions kinetics. As a result of the stated advantages, the S/3DOM ZnO composite delivered a high initial capacity of 1110 mAh g-1 and maintained a capacity of 991 mAh g-1 after 100 cycles at 0.2 C as a cathode in a lithium-sulfur battery. Even at a high C-rate of 3 C, the S/3DOM ZnO composite still provided a high capacity of 651 mAh g-1, as well as a high areal capacity (4.47 mAh cm-2) under high loading (5 mg cm-2).

7.
Adv Sci (Weinh) ; 7(22): 2002358, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33240776

RESUMO

Germanium (Ge)-based materials have been considered as potential anode materials for sodium-ion batteries owing to their high theoretical specific capacity. However, the poor conductivity and Na+ diffusivity of Ge-based materials result in retardant ion/electron transportation and insufficient sodium storage efficiency, leading to sluggish reaction kinetics. To intrinsically maximize the sodium storage capability of Ge, the nitrogen doped carbon-coated Cu3Ge/Ge heterostructure material (Cu3Ge/Ge@N-C) is developed for enhanced sodium storage. The pod-like structure of Cu3Ge/Ge@N-C exposes numerous active surface to shorten ion transportation pathway while the uniform encapsulation of carbon shell improves the electron transportation, leading to enhanced reaction kinetics. Theoretical calculation reveals that Cu3Ge/Ge heterostructure can offer decent electron conduction and lower the Na+ diffusion barrier, which further promotes Ge alloying reaction and improves its sodium storage capability close to its theoretical value. In addition, the uniform encapsulation of nitrogen-doped carbon on Cu3Ge/Ge heterostructure material efficiently alleviates its volume expansion and prevents its decomposition, further ensuring its structural integrity upon cycling. Attributed to these unique superiorities, the as-prepared Cu3Ge/Ge@N-C electrode demonstrates admirable discharge capacity, outstanding rate capability and prolonged cycle lifespan (178 mAh g-1 at 4.0 A g-1 after 4000 cycles).

8.
Sci Total Environ ; 755(Pt 2): 142569, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33038811

RESUMO

Terrestrial vegetation absorbs approximately 30% of the anthropogenic carbon dioxide (CO2) emitted into the atmosphere through photosynthesis (represented by gross primary productivity, GPP) and thus effectively mitigates global warming. However, large uncertainties still remain in the global GPP estimations and their long-term trends. Here we used the satellite-based near-infrared reflectance (NIRv) as the proxy of GPP and generated a global long-term (1982-2018) GPP datasets (hereafter GPPNIRv). Analysis at the site-level showed that NIRv could accurately capture both the monthly and annual variations in GPP (R2 = 0.71 and 0.74 respectively) at 104 flux sites. Upscaling the relationships between NIRv and GPP to the global scale, the global annual GPP was estimated to be 128.3 ± 4.0 Pg C yr-1 during the last four decades, which fell between the estimations from the machine-learning upscaling approach, light-use-efficiency (LUE) models and processed-based models. The seasonal variation of GPPNIRv was also consistent with those from flux sites and models. More importantly, the inter-annual trends in GPPNIRv during the last four decades were consistent with those from processed-based models across latitudes, which outperformed the other GPP products. This evidence suggested that the long-term GPP datasets derived from NIRv have better abilities to capture the seasonal and inter-annual variations of terrestrial GPP at the global scale. The long-term GPPNIRv product could be beneficial for the estimation of terrestrial carbon fluxes and for the projection of future climates.

9.
Genes (Basel) ; 11(10)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992599

RESUMO

Emerging evidence indicates that the host microRNAs (miRNAs) are important intracellular regulators and play pivotal roles in intricate host-pathogen interaction networks. In our previous studies, ssc-microRNA-4334-5p (miR-4334-5p) was identified as a differentially expressed miRNA in microarray-based miRNAs profiling experiment, but whether miR-4334-5p regulates foot and mouth disease virus (FMDV) propagation is less understood. Here, we demonstrated that miR-4334-5p expression level was up-regulated shortly after FMDV infection, transfection of miR-4334-5p mimics promoted, while inhibitor transfection suppressed FMDV replication correspondingly. Further bioinformatic analysis and experimental study suggested ID1 was the direct target of miR-4334-5p, suppressing FMDV replication by regulating interferon (IFN) pathways. These findings shed light on microRNAs-ID1-interferon axis in regulating FMDV replication.

10.
ACS Omega ; 5(35): 21979-21987, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923756

RESUMO

Porcine deltacoronavirus (PDCoV) is a newly emerging porcine pathogenic enteric coronavirus that can cause diarrhea, vomiting, dehydration, and a high mortality rate in piglets. At present, the understanding of PDCoV pathogenesis is very limited, which seriously hinders effective prevention and control. In this study, liquid chromatography tandem-mass spectrometry (LC-MS/MS) combined with tandem mass tag (TMT) labeling was performed to compare the differential expression of proteins in PDCoV-infected and mock-infected LLC-PK cells at 18 h post-infection (hpi). In addition, the parallel reaction monitoring (PRM) technique was used to verify the quantitative proteome data. A total of 4624 differentially expressed proteins (DEPs) were quantitated, of which 128 were significantly upregulated, and 147 were significantly downregulated. Bioinformatics analysis revealed that these DEPs were involved mainly in the defense response, apoptosis, and the immune system, and several DEPs may be related to interferon-stimulated genes and the immune system. Based on DEP bioinformatics analysis, we propose that PDCoV infection may utilize the apoptosis pathway of host cells to achieve maximum viral replication. Meanwhile, the host may be able to stimulate the transcription of interferon-stimulated genes (ISGs) through the JAK/STAT signaling pathway to resist the virus. Overall, in this study, we presented the first application of proteomics analysis to determine the protein profile of PDCoV-infected cells, which provides valuable information with respect to better understanding the host response to PDCoV infection and the specific pathogenesis of PDCoV infection.

11.
J Exp Bot ; 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32902638

RESUMO

Photosynthetic capacity (leaf maximum carboxylation rate, Vcmax) is a critical parameter for accurately assessing carbon assimilation by plant canopies. Recent studies of sun-induced chlorophyll fluorescence (SIF) show potential for estimating Vcmax at the ecosystem level. However, the SIF-Vcmax relationship at leaf and canopy levels is still poorly understood. This study investigates the dynamic relationship between SIF and Vcmax and its controlling factors using SIF and CO2 response measurements in rice. The results show that SIF and its yield (SIFy) are strongly correlated with Vcmax during the growing season, though the relationship varies with rice growth stages. After flowering, SIFy has a stronger relationship with Vcmax than SIF flux does at both leaf and canopy levels. Further analysis suggests that changes in canopy structure and leaf physiology lead to the divergence of the link between SIF and Vcmax from leaf to canopy. Our findings highlight the need to account for plant physiology and canopy structure in interpreting the SIF signal across spatial scales. Our observation-based results provide evidence that remotely sensed SIF observations can be used to track seasonal variations of Vcmax at the leaf and canopy levels.

12.
Virus Res ; 286: 198064, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32574680

RESUMO

MicroRNAs play vital roles in regulating the battle between pathogens and host cells during viral challenging. MiR-4331 aggravates transmissible gastroenteritis virus (TGEV) -induced mitochondrial damage, also suppresses transcription of TGEV gene 7 via targeting cellular CDCA7. Otherwise, miR-4331-5p affects H1N1/2009 influenza A virus replication by targeting viral HA and NS. However, whether microRNA ssc-miR-4331-5p (miR-4331-5p) regulates foot and mouth virus (FMDV) replication remains unclear. To explore the role of miR-4331-5p in FMDV infection, we detected the expression level of miR-4331-5p in porcine kidney (PK-15) cells. The results showed that FMDV infection directly upregulates miR-4331-5p expression, while transfection of mimics or inhibitor of miR-4331-5p promotes or inhibits FMDV replication. Further investigation clearly showed that miR-4331-5p increases FMDV replication through inhibiting type I interferon pathways. These data demonstrate that miR-4331-5p plays an important role in regulating FMDV replication.

13.
Biotechnol Lett ; 42(10): 1907-1917, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32385744

RESUMO

OBJECTIVE: Development of an effective mucosal vaccine to induce specific immune responses against Foot-and-mouth disease virus (FMDV). RESULTS: For this purpose, the FMDV VP1 gene (SPVP1) was optimized and synthesized based on the codon bias of Lactococcus lactis (L. lactis), and then incorporated in the plasmid pNZ8148. L. lactis NZ9000 containing the pNZ8148-SPVP1 recombinant plasmid was used as an oral delivery vehicle to induce anti-FMDV mucosal and systemic immune responses in mice. After confirmation that the SPVP1 protein was expressed successfully in the recombinant L. latic, the mice were orally challenged with NZ9000-pNZ8148, NZ9000-pNZ8148-SPVP1, phosphate-buffered saline as a mock infection group, or with inactivated vaccine as a positive group. Mice immunized with NZ9000-pNZ8148-SPVP1 produced high levels of mucosal secretory IgA (sIgA), antigen-specific serum IgG, IgA, and neutralizing antibodies, and developed stronger cell-mediated immune reactions and significant T spleen lymphocyte proliferation. Furthermore, the recombinant group generated much higher levels of IFN-γ, IL-2, IL-4, IL-5, and IL-10 than the other groups. CONCLUSIONS: Potent immune responses were successfully elicited in mice with FMDV VP1 delivered through L. lactis.

14.
BMC Vet Res ; 16(1): 130, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381014

RESUMO

BACKGROUND: Porcine Deltacoronavirus (PDCoV) is a newly emerging Coronavirus that was first identified in 2012 in Hong Kong, China. Since then, PDCoV has subsequently been reported worldwide, causing a high number of neonatal piglet deaths and significant economic losses to the swine industry. Therefore, it is necessary to establish a highly sensitive and specific method for the rapid diagnosis of PDCoV. RESULTS: In the present study, a highly sensitive and specific diagnostic method using recombinase polymerase amplification combined with a lateral flow dipstick (LFD-RPA) was developed for rapid and visual detection of PDCoV. The system can be performed under a broad range of temperature conditions from 10 to 37 °C, and the detection of PDCoV can be completed in 10 min at 37 °C. The sensitivity of this assay was 10 times higher than that of conventional PCR with a lower detection limit of 1 × 102 copies/µl of PDCoV. Meanwhile, the LFD-RPA assay specifically amplified PDCoV, while there was no cross-amplification with other swine-associated viruses, including Porcine epidemic diarrhea virus (PEDV), Transmissible gastroenteritis virus (TGEV), Porcine kobuvirus (PKoV), Foot and mouth disease virus (FMDV), Porcine reproductive and respiratory syndrome virus (PRRSV), Porcine circovirus type 2 (PCV2), Classical swine fever virus (CSFV) and Seneca valley virus (SVV). The repeatability of the test results indicated that this assay had good repeatability. In addition, 68 clinical samples (48 fecal swab specimens and 20 intestinal specimens) were further tested by LFD-RPA and RT-PCR assay. The positive rate of LFD-RPA clinical samples was 26.47% higher than that of conventional PCR (23.53%). CONCLUSIONS: The LFD-RPA assay successfully detected PDCoV in less than 20 min in this study, providing a potentially valuable tool to improve molecular detection for PDCoV and to monitor the outbreak of PDCoV, especially in low-resource areas and laboratories.


Assuntos
Coronavirus/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Recombinases/metabolismo , Testes Sorológicos/veterinária , Animais , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Testes Sorológicos/métodos , Suínos , Doenças dos Suínos/virologia
15.
Arch Virol ; 165(7): 1653-1658, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32399787

RESUMO

Although porcine deltacoronavirus (PDCoV) is a significant pandemic threat in the swine population and has caused significant economic losses, information regarding the immune response in conventionally weaned pigs infected with PDCoV is scarce. Hence, the immune response in conventionally weaned pigs infected with PDCoV was assessed after challenge and rechallenge. After the first challenge, obvious diarrhea and viral shedding developed successively in all pigs in the four inoculation dose groups from 3 to 14 days postinfection (dpi), and all pigs recovered (no clinical symptoms or viral shedding) by 21 dpi. All pigs in the four groups exhibited significantly increased PDCoV-specific IgG, IgA and virus-neutralizing (VN) antibody (Ab) titers and IFN-γ levels in the serum after the first challenge. All pigs were completely protected against rechallenge at 21 dpi. The serum levels of PDCoV-specific IgG, IgA, and VN Abs increased further after rechallenge. Notably, the IFN-γ level declined continuously after 7 dpi. In addition, the levels of PDCoV-specific IgG, IgA and VN Abs in saliva increased significantly after rechallenge and correlated well with the serum Ab titers. Furthermore, the appearance of clinical symptoms of PDCoV infection in conventionally weaned pigs was delayed with reduced inoculation doses. In summary, the data presented here offer important reference information for future PDCoV animal infection and vaccine-induced immunoprotection experiments.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus/fisiologia , Doenças dos Suínos/imunologia , Animais , Anticorpos Antivirais/imunologia , Coronavirus/genética , Coronavirus/isolamento & purificação , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Diarreia/imunologia , Diarreia/virologia , Interferon gama/imunologia , Suínos , Doenças dos Suínos/virologia , Eliminação de Partículas Virais
16.
Virus Res ; 282: 197955, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32247757

RESUMO

Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that causes acute diarrhea, vomiting, dehydration and mortality in neonatal piglets, resulting in significant economic losses to the pig industry. However, there is currently little information on vaccine studies and commercially available vaccines for PDCoV. Hence, herein, a PDCoV strain, CH/XJYN/2016, was successfully isolated and serially propagated in vitro, and its biological characteristics were determined. Compared to that of previously reported and recently isolated PDCoV strains from China and the United States, the S gene of the CH/XJYN/2016 strain contains novel mutations. Infection studies revealed that CH/XJYN/2016 is pathogenic to suckling piglets and conventional weaned pigs. In addition, the median pig diarrhea dose (PDD50) of PDCoV in conventional weaned pigs was determined (2.0 log10PDD50/3 mL). Furthermore, an inactivated cell-adapted CH/XJYN/2016-based vaccine candidate was developed with different adjuvants. Compared with nonvaccinated pigs, conventional weaned pigs given the inactivated vaccine developed a potent humoral immune response and showed no clinical signs or viral shedding after challenge, indicating a potent protective effect of the vaccine against PDCoV infection. Therefore, the PDCoV vaccine developed in this study is a promising vaccine candidate that can be used for the control of PDCoV infection in pigs.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus/imunologia , Coronavirus/patogenicidade , Doenças dos Suínos/virologia , Vacinas Virais/imunologia , Animais , Linhagem Celular , Coronavirus/classificação , Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Genoma Viral/genética , Imunogenicidade da Vacina , Mutação , Filogenia , Inoculações Seriadas , Glicoproteína da Espícula de Coronavírus/genética , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Vacinação/veterinária , Vacinas de Produtos Inativados/imunologia
17.
Transbound Emerg Dis ; 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32239638

RESUMO

The high performance of chemiluminescence immunoassays (CLIAs) in diagnosis has been gradually recognized in recent years, but their application in the diagnosis of classical swine fever (CSF) has not been reported. Here, a recombinant E2 (rE2) protein and a peroxidase-conjugated monoclonal antibody (MAb G5) were used to develop a competition-based chemiluminescence immunoassay (cCLIA) for rapid and accurate detection of E2-specific antibodies in pig serum. To evaluate the feasibility of cCLIA in the diagnosis of CSF, we developed a competition-based enzyme-linked immunosorbent assay (cELISA) as a control. Under the optimum test conditions, cCLIA showed a higher signal-to-noise ratio than that of the control cELISA. The best signal-to-noise ratios of cCLIA and cELISA were 70 and 17, respectively. Then, the diagnostic performance of the two assays was compared by examining a panel of pig serum samples (n = 285) with a confirmed status, and cCLIA showed higher diagnostic sensitivity (Dn) and diagnostic specificity (Dp) values than those of cELISA. The Dn and Dp of cCLIA were 97.49% and 96.08%, respectively, and those of cELISA were 93.97% and 94.12%, respectively. Furthermore, cCLIA can provide results within 20 min, whereas the control cELISA requires at least 1 hr. According to these findings, the newly developed cCLIA has potential application in the diagnosis of CSF and offers an alternative approach for efficient and rapid detection of E2-specific antibodies.

18.
Nanoscale Res Lett ; 15(1): 86, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32303922

RESUMO

Near-infrared (NIR)-light responsive graphene have been shown exciting effect on cancer photothermal ablation therapy. Herein, we report on the preparation of Fe3O4-decorated hollow graphene microspheres (rGO@Fe3O4) by a facile spray drying and coprecipitation method for the magnetically targeted and NIR-responsive chemo-photothermal combination therapy. The microspheres displayed very high specific surface area (~ 120.7 m2 g-1) and large pore volume (~ 1.012 cm3 g-1), demonstrating distinct advantages for a high loading capacity of DOX (~ 18.43%). NIR triggered photothermal effect of the rGO@Fe3O4 microspheres responded in an on-off manner and induced a high photothermal conversion efficiency. Moreover, The Fe3O4 on the microspheres exhibited an excellent tumor cells targeting ability. The chemo-photothermal treatment based on rGO@Fe3O4/DOX showed superior cytotoxicity towards Hela cells in vitro. Our studies indicated that rGO@Fe3O4/DOX microcapsules have great potential in combined chemo-photothermal cancer treatment.

19.
Nanotechnology ; 31(45): 455405, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32348967

RESUMO

Hematite is recognized as an excellent photocatalyst for photoelectrochemical photoanodes for water oxidation because of its favorable band gap, excellent anti-photocorrosion and structural stability in alkaline solution. However, slow charge transport and fast carrier recombination in the bulk and at the hematite photoanode/electrolyte interface, have limited its applications for water splitting. Herein, we report a highly efficient hematite/ferrhydrite (Fh) core-shell photoanode system, consisting of hematite (α-Fe2O3) semiconductor nanorods which dramatically enhance light harvesting, and ferrhydrite as the hole-storage shell. Our integrated hematite/ferrhydrite core-shell photoanode shows 2.7 times increased photo-current density under simulated sun light irradiation.

20.
Mol Immunol ; 121: 118-126, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32199211

RESUMO

Foot-and-mouth disease (FMD) is an acute, severe, and highly contagious disease that affects cloven-hoofed animals and can lead to serious economic losses and social effects. Therefore, a safe and effective subunit vaccine is required to prevent and control FMD. Dendritic cells (DCs) are a type of professional antigen presenting cell (APC). Immature DCs are typically stimulated by various adjuvants via immune receptors (e.g., toll-like receptor 4 [TLR4]), which activate DCs to induce their maturation. TLR4 has been well-established to induce both innate and adaptive immune responses to various external microbial or internal damage-related molecular patterns. In this study, the multi-epitope immunogen, HAO, of foot-and-mouth disease virus (FMDV) serotypes A and O was fused with the recombinant protein, heparin-binding hemagglutinin (HBHA), a novel TLR4 agonist, to obtain a new recombinant fusion protein, termed HAO-HBHA. HAO-HBHA was found to be highly efficient at activating murine DCs by the TLR4 pathway, both in vitro and in vivo. HAO-HBHA elicited strong specific humoral immune responses detected with an ELISA and virus neutralizing antibody test (VNT). HAO-HBHA also elevated the cellular immune responses, as indicated by intracellular cytokine (e.g., IFN-γ, TNF-α, IL-4, IL-6, IL-10, and IL-12p70) expression in Th1 and Th2 cells. As a TLR4 agonist, HBHA has significant advantages for enhancing the immune efficacy of a FMDV serotype A and O bivalent multi-epitope vaccine. These findings provide a novel strategy for the development of a safe and effective multi-epitope vaccine candidate against FMDV and further extends the application of TLR agonist-based vaccine platforms.


Assuntos
Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Lectinas/farmacologia , Vacinas Virais/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Células Dendríticas/imunologia , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Feminino , Febre Aftosa/sangue , Febre Aftosa/imunologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Imunidade Celular , Imunogenicidade da Vacina , Lectinas/imunologia , Camundongos , Mycobacterium tuberculosis/imunologia , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Sorogrupo , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/imunologia , Vacinas de Subunidades/administração & dosagem , Vacinas de Subunidades/genética , Vacinas de Subunidades/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA