Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Front Cell Dev Biol ; 9: 759820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746152

RESUMO

Recently, the effect of endocrine-disrupting chemicals on the cancer procession has been a concern. Nonylphenol (NP) is a common environmental estrogen that has been shown to enhance the proliferation of colorectal cancer (CRC) cells in our previous studies; however, the underlying mechanism remains unclear. In this study, we confirmed the increased concentration of NP in the serum of patients with CRC. RNA sequencing was used to explore the differentially expressed genes after NP exposure. We found 16 upregulated genes and 12 downregulated genes in COLO205 cells after NP treatment. Among these differentially expressed genes, we found that coiled-coil domain containing 80 (CCDC80) was downregulated by NP treatment and was associated with CRC progression. Further experiments revealed that the overexpression of CCDC80 significantly suppressed NP-induced cell proliferation and recovered the reduced cell apoptosis. Meanwhile, the overexpression of CCDC80 significantly inhibited the activation of ERK1/2 induced by NP treatment. ERK1/2 inhibitor (PD98059) treatment also suppressed NP-induced CRC cell growth, but the overexpression of CCDC80 did not enhance the effect of ERK1/2 inhibitor. Taken together, NP treatment significantly inhibited the expression of CCDC80, and the overexpression of CCDC80 suppressed NP-induced CRC cell growth by inhibiting the activation of ERK1/2. These results suggest that NP could induce CRC cell growth by influencing the expression of multiple genes. CCDC80 and ERK1/2 inhibitors may be suitable therapeutic targets in NP-related CRC progression.

2.
Front Genet ; 12: 736500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675964

RESUMO

An adult Sinocyclocheilus maitianheensis, a surface-dwelling golden-line barbel fish, was collected from Maitian river (Kunming City, Yunnan Province, China) for whole-genome sequencing, assembly, and annotation. We obtained a genome assembly of 1.7 Gb with a scaffold N50 of 1.4 Mb and a contig N50 of 24.7 kb. A total of 39,977 protein-coding genes were annotated. Based on a comparative phylogenetic analysis of five Sinocyclocheilus species and other five representative vertebrates with published genome sequences, we found that S. maitianheensis is close to Sinocyclocheilus anophthalmus (a cave-restricted species with similar locality). Moreover, the assembled genomes of S. maitianheensis and other four Sinocyclocheilus counterparts were used for a fourfold degenerative third-codon transversion (4dTv) analysis. The recent whole-genome duplication (WGD) event was therefore estimated to occur about 18.1 million years ago. Our results also revealed a decreased tendency of copy number in many important genes related to immunity and apoptosis in cave-restricted Sinocyclocheilus species. In summary, we report the first genome assembly of S. maitianheensis, which provides a valuable genetic resource for comparative studies on cavefish biology, species protection, and practical aquaculture of this potentially economical fish.

4.
Front Cell Dev Biol ; 9: 673073, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485275

RESUMO

Meiosis, an essential step in gametogenesis, is the key event in sexually reproducing organisms. Thousands of genes have been reported to be involved in meiosis. Therefore, a specialist database is much needed for scientists to know about the function of these genes quickly and to search for genes with potential roles in meiosis. Here, we developed "MeiosisOnline," a publicly accessible, comprehensive database of known functional genes and potential candidates in meiosis (https://mcg.ustc.edu.cn/bsc/meiosis/index.html). A total of 2,052 meiotic genes were manually curated from literature resource and were classified into different categories. Annotation information was provided for both meiotic genes and predicted candidates, including basic information, function, protein-protein interaction (PPI), and expression data. On the other hand, 165 mouse genes were predicted as potential candidates in meiosis using the "Greed AUC Stepwise" algorithm. Thus, MeiosisOnline provides the most updated and detailed information of experimental verified and predicted genes in meiosis. Furthermore, the searching tools and friendly interface of MeiosisOnline will greatly help researchers in studying meiosis in an easy and efficient way.

5.
Exp Ther Med ; 22(4): 1117, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34504571

RESUMO

The aim of the present study was to evaluate the biomechanical mechanism of injuries of the thoracolumbar junction by the methods of a backward fall simulation experiment and finite element (FE) analysis (FEA). In the backward fall simulation experiment, one volunteer was selected to obtain the contact force data of the sacrococcygeal region during a fall. Utilizing the fall data, the FEA simulation of the backward fall process was given to the trunk FE model to obtain the stress status of local bone structures of the thoracolumbar junction during the fall process. In the fall simulation test, the sacrococcygeal region of the volunteer landed first; the total impact time was 1.14±0.58 sec, and the impact force was up to 4,056±263 N. The stress of thoracic (T)11 was as high as 42 MPa, that of the posterior margin and the junction of T11 was as high as 70.67 MPa, and that of the inferior articular process and the superior articular process was as high as 128 MPa. The average stress of T12 and the anterior margin of lumbar 1 was 25 MPa, and that of the endplate was as high as 21.7 MPa, which was mostly distributed in the back of the endplate and the surrounding cortex. According to the data obtained from the fall experiment as the loading condition of the FE model, the backward fall process can be simulated to improve the accuracy of FEA results. In the process of backward fall, the front edge of the vertebral body and the root of vertebral arch in the thoracolumbar junction are stress concentration areas, which have a greater risk of injury.

6.
Hum Reprod ; 36(10): 2793-2804, 2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34392356

RESUMO

STUDY QUESTION: Can whole-exome sequencing (WES) reveal pathogenic mutations in two consanguineous Pakistani families with infertile patients? SUMMARY ANSWER: A homozygous spermatogenesis associated 22 (SPATA22) frameshift mutation (c.203del), which disrupts the interaction with meiosis specific with OB-fold (MEIOB), and a MEIOB splicing mutation (c.683-1G>A) that led to loss of MEIOB protein cause familial infertility. WHAT IS KNOWN ALREADY: MEIOB and SPATA22, direct binding partners and functional collaborators, form a meiosis-specific heterodimer that regulates meiotic recombination. The protein stability and the axial localization of MEIOB and SPATA22 depend on each other. Meiob and Spata22 knockout mice have the same phenotypes: mutant spermatocytes can initiate meiotic recombination but are unable to complete DSB repair, leading to crossover formation failure, meiotic prophase arrest, and sterility. STUDY DESIGN, SIZE, DURATION: We performed WES for the patients and controls in two consanguineous Pakistani families to screen for mutations. The pathogenicity of the identified mutations was assessed by in vitro assay and mutant mouse model. PARTICIPANTS/MATERIALS, SETTING, METHODS: Two consanguineous Pakistani families with four patients (three men and one woman) suffering from primary infertility were recruited. SPATA22 and MEIOB mutations were screened from the WES data, followed by functional verification in cultured cells and mice. MAIN RESULTS AND THE ROLE OF CHANCE: A homozygous SPATA22 frameshift mutation (c.203del) was identified in a patient with non-obstructive azoospermia (NOA) from a consanguineous Pakistani family and a homozygous MEIOB splicing mutation (c.683-1G>A) was identified in two patients with NOA and one infertile woman from another consanguineous Pakistani family. The SPATA22 mutation destroyed the interaction with MEIOB. The MEIOB splicing mutation induced Exon 9 skipping, which causes a 32aa deletion in the oligonucleotide-binding domain without affecting the interaction between MEIOB and SPATA22. Furthermore, analyses of the Meiob mutant mice modelling the patients' mutation revealed that the MEIOB splicing mutation leads to loss of MEIOB proteins, abolished SPATA22 recruitment on chromosome axes, and meiotic arrest due to meiotic recombination failure. Thus, our study suggests that SPATA22 and MEIOB may both be causative genes for human infertility. LIMITATIONS, REASONS FOR CAUTION: As SPATA22 and MEIOB are interdependent and essential for meiotic recombination, screening for mutations of SPATA22 and MEIOB in both infertile men and women in larger cohorts is important to further reveal the role of the SPATA22 and MEIOB heterodimer in human fertility. WIDER IMPLICATIONS OF THE FINDINGS: These findings provide direct clinical and functional evidence that mutations in SPATA22 and MEIOB can cause meiotic recombination failure, supporting a role for these mutations in human infertility and their potential use as targets for genetic diagnosis of human infertility. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Key Research and Developmental Program of China (2018YFC1003900, 2018YFC1003700, and 2019YFA0802600), the National Natural Science Foundation of China (31890780, 31630050, 32061143006, 82071709, and 31871514), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB19000000). The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Azoospermia , Infertilidade/genética , Meiose , Animais , Proteínas de Ciclo Celular/genética , Consanguinidade , Proteínas de Ligação a DNA/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação , Espermatogênese , Sequenciamento Completo do Exoma
7.
Food Funct ; 12(14): 6442-6451, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34076003

RESUMO

Currently, little is known regarding the association between dietary choline intake and osteoporosis in elderly individuals, as well as if such intakes affect bone health and result in fractures. This study was aimed to examine associations between daily dietary choline intake and osteoporosis in elderly individuals. A total of 31 034 participants from the National Health and Nutritional Examination Survey (NHANES) during 2005-2010 were enrolled, and 3179 participants with complete data and aged 65 years and older were identified. Baseline characteristics and dietary intake data were obtained through method of in-home administered questionnaires. Of 3179 individuals with a mean age of 73.7 ± 5.6 years, female (P < 0.001) and non-hispanic white (P < 0.001) occupied a higher proportion in the osteoporosis group. The logistic regression analysis indicated that the prevalence of osteoporosis in three tertile categories with gradually enhanced dietary choline intake was decreased progressively (P for trend <0.001). The restricted cubic spline (RCS) showed that the risk of osteoporosis generally decreased with increasing daily dietary choline intake (P < 0.001), while this trend was not apparent in relation between the daily dietary choline intake and risk of hip fracture (P = 0.592). The receiver operating characteristic (ROC) analysis identified a daily dietary choline intake of 232.1 mg as the optimal cutoff value for predicting osteoporosis. Our nationwide data suggested that a lower level of daily dietary choline intake was positively associated with the increased risk of osteoporosis in the US elderly population.


Assuntos
Colina/administração & dosagem , Dieta/métodos , Osteoporose/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Ingestão de Alimentos , Feminino , Fraturas do Quadril/epidemiologia , Humanos , Masculino , Inquéritos Nutricionais , Prevalência , Curva ROC , Fatores de Risco
8.
Genome Res ; 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155038

RESUMO

Protein-truncating variants (PTVs) have important impacts on phenotype diversity and disease. However, their population genetics characteristics in more globally diverse populations are not well defined. Here, we describe patterns of PTVs in 1320 genes sequenced in 10,539 healthy controls and 9434 patients with psoriasis, all of Han Chinese ancestry. We identify 8720 PTVs, of which 77% are novel, and estimate 88% of all PTVs are deleterious and subject to purifying selection. Furthermore, we show that individuals with psoriasis have a significantly higher burden of PTVs compared to controls (P = 0.02). Finally, we identified 18 PTVs in 14 genes with unusually high levels of population differentiation, consistent with the action of local adaptation. Our study provides insights into patterns and consequences of PTVs.

9.
Appl Environ Microbiol ; 87(17): e0101321, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34160279

RESUMO

Superoxide dismutases (SODs) are important metalloenzymes that protect fungal pathogens against the toxic effects of reactive oxygen species (ROS) generated by host defense mechanisms during the infection process. The activation of Cu/Zn-SOD1 is found to be dependent on copper chaperone for SOD1 (Ccs1). However, the role of the Ccs1 ortholog in the human pathogen Aspergillus fumigatus and how these SODs coordinate to mediate oxidative stress response remain elusive. Here, we demonstrated that A. fumigatus CcsA, a Saccharomyces cerevisiae Ccs1 ortholog, is required for cells in response to oxidative response and the activation of Sod1. Deletion of ccsA resulted in increased ROS accumulation and enhanced sensitivity to oxidative stress due to the loss of SodA activity. Molecular characterization of CcsA revealed that the conserved CXC motif is required not only for the physical interaction with SodA but also for the oxidative stress adaption. Notably, addition of Mn2+ or overexpression of cytoplasmic Mn-SodC could rescue the defects of the ccsA or sodA deletion mutant, indicating the important role of Mn2+ and Mn-SodC in ROS detoxification; however, deletion of the CcsA-SodA complex could not affect A. fumigatus virulence. Collectively, our findings demonstrate that CcsA functions as a Cu/Zn-Sod1 chaperone that participates in the adaptation to oxidative stress in A. fumigatus and provide a better understanding of the CcsA-SodA complex-mediated oxidative stress response in filamentous fungi. IMPORTANCE Reactive oxygen species (ROS) produced by phagocytes have been reported to participate in the killing of fungal pathogens. Superoxide dismutases (SODs) are considered to be the first line of defense against superoxide anions. Characterizing the regulatory mechanisms of SOD activation is important for understanding how fungi adapt to oxidative stress in hosts. Our findings demonstrated that CcsA functions as a SodA chaperone in A. fumigatus and that the conserved CXC motif within CcsA is required for its interaction with SodA and the CcsA-SodA-mediated oxidative response. These data may provide new insights into how fungal pathogens adapt to oxidative stress via the CcsA-SodA complex.


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/metabolismo , Cobre/metabolismo , Proteínas Fúngicas/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Aspergilose/metabolismo , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Citoplasma/genética , Citoplasma/metabolismo , Proteínas Fúngicas/genética , Humanos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Virulência
10.
Hum Mol Genet ; 30(21): 1977-1984, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34155512

RESUMO

Serine/threonine kinases domain-containing proteins are known to play important functions in sperm flagella and male fertility. However, the roles of these proteins in human reproduction remain poorly understood and whether their variants are associated with human asthenozoospermia have not been reported. Here, we recruited a Pakistani family having four infertile patients diagnosed with idiopathic asthenozoospermia without any ciliary-related symptoms. Whole-exome sequencing identified a novel homozygous frameshift mutation (c.1235del, p.T412Kfs*14) in serine/threonine kinase 33 (STK33), which displays a highly conserved and predominant expression in testis in humans. This variant led to a dramatic reduction of STK33 messenger RNA (mRNA) in the patients. Patients homozygous for the STK33 variant presented reduced sperm motility, frequent morphological abnormalities of sperm flagella and completely disorganized flagellar ultrastructures, which are typical for multiple morphological abnormalities of the flagella (MMAF) phenotypes. Overall, these findings present evidence establishing that STK33 is an MMAF-related gene and provide new insights for understanding the role of serine/threonine kinases domain-containing proteins in human male reproduction.

11.
Asian J Androl ; 23(6): 627-632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34100391

RESUMO

Multiple morphological abnormalities of the sperm flagella (MMAF) is a specific type of asthenoteratozoospermia, presenting with multiple morphological anomalies in spermatozoa, such as absent, bent, coiled, short, or irregular caliber flagella. Previous genetic studies revealed pathogenic mutations in genes encoding cilia and flagella-associated proteins (CFAPs; e.g., CFAP43, CFAP44, CFAP65, CFAP69, CFAP70, and CFAP251) responsible for the MMAF phenotype in infertile men from different ethnic groups. However, none of them have been identified in infertile Pakistani males with MMAF. In the current study, two Pakistani families with MMAF patients were recruited. Whole-exome sequencing (WES) of patients and their parents was performed. WES analysis reflected novel biallelic loss-of-function mutations in CFAP43 in both families (Family 1: ENST00000357060.3, p.Arg300Lysfs*22 and p.Thr526Serfs*43 in a compound heterozygous state; Family 2: ENST00000357060.3, p.Thr526Serfs*43 in a homozygous state). Sanger sequencing further confirmed that these mutations were segregated recessively in the families with the MMAF phenotype. Semiquantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) was carried out to detect the effect of the mutation on mRNA of the affected gene. Previous research demonstrated that biallelic loss-of-function mutations in CFAP43 accounted for the majority of all CFAP43-mutant MMAF patients. To the best of our knowledge, this is the first study to report CFAP43 biallelic loss-of-function mutations in a Pakistani population with the MMAF phenotype. This study will help researchers and clinicians to understand the genetic etiology of MMAF better.

12.
Food Funct ; 12(13): 5703-5718, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34048514

RESUMO

Osteoporosis (OP) is a kind of systemic metabolic disease characterized by decreased bone mass and destruction of the bone microstructure. In recent years, it has become an expected research trend to explore the cross-linking relationship in the pathogenesis process of OP so as to develop reasonable and effective intervention strategies. With the further development of intestinal microbiology and the profound exploration of the gut microbiota (GM), it has been further revealed that the "brain-gut" axis may be a potential target for the bone, thereby affecting the occurrence and progression of OP. Hence, based on the concept of "brain-gut-bone" axis, we look forward to deeply discussing and summarizing the cross-linking relationship of OP in the next three parts, including the "brain-bone" connection, "gut-bone" connection, and "brain-gut" connection, so as to provide an emerging thought for the prevention strategies and mechanism researches of OP.


Assuntos
Microbioma Gastrointestinal , Osteoporose/prevenção & controle , Animais , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Feminino , Trato Gastrointestinal/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Imunitário/metabolismo , Masculino , Camundongos , Vias Neurais/metabolismo , Osteoporose/patologia , Osteoporose/terapia , Transdução de Sinais
13.
Zool Res ; 42(3): 362-376, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33998184

RESUMO

Intermuscular bones (IBs) are slender linear bones embedded in muscle, which ossify from tendons through a process of intramembranous ossification, and only exist in basal teleosts. IBs are essential for fish swimming, but they present a choking risk during human consumption, especially in children, which can lead to commercial risks that have a negative impact on the aquaculture of these fish. In this review, we discuss the morphogenesis and functions of IBs, including their underlying molecular mechanisms, as well as the advantages and disadvantages of different methods for IB studies and techniques for breeding and generating IB-free fish lines. This review reveals that the many key genes involved in tendon development, osteoblast differentiation, and bone formation, e.g., scxa, msxC, sost, twist, bmps, and osterix, also play roles in IB development. Thus, this paper provides useful information for the breeding of new fish strains without IBs via genome editing and artificial selection.


Assuntos
Desenvolvimento Ósseo/fisiologia , Peixes/crescimento & desenvolvimento , Animais , Aquicultura , Dieta , Peixes/genética
14.
Asian J Androl ; 23(5): 479-483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33975987

RESUMO

The novel coronavirus disease (COVID-19) pandemic is emerging as a global health threat and shows a higher risk for men than women. Thus far, the studies on andrological consequences of COVID-19 are limited. To ascertain the consequences of COVID-19 on sperm parameters after recovery, we recruited 41 reproductive-aged male patients who had recovered from COVID-19, and analyzed their semen parameters and serum sex hormones at a median time of 56 days after hospital discharge. For longitudinal analysis, a second sampling was obtained from 22 of the 41 patients after a median time interval of 29 days from first sampling. Compared with controls who had not suffered from COVID-19, the total sperm count, sperm concentration, and percentages of motile and progressively motile spermatozoa in the patients were significantly lower at first sampling, while sperm vitality and morphology were not affected. The total sperm count, sperm concentration, and number of motile spermatozoa per ejaculate were significantly increased and the percentage of morphologically abnormal sperm was reduced at the second sampling compared with those at first in the 22 patients examined. Though there were higher prolactin and lower progesterone levels in patients at first sampling than those in controls, no significant alterations were detected for any sex hormones examined over time following COVID-19 recovery in the 22 patients. Although it should be interpreted carefully, these findings indicate an adverse but potentially reversible consequence of COVID-19 on sperm quality.


Assuntos
COVID-19/fisiopatologia , SARS-CoV-2 , Sêmen/fisiologia , Espermatozoides/fisiologia , Adulto , Astenozoospermia/virologia , COVID-19/complicações , China , Hormônios Esteroides Gonadais/sangue , Humanos , Masculino , Progesterona/sangue , Prolactina/sangue , Análise do Sêmen , Contagem de Espermatozoides , Motilidade Espermática , Espermatozoides/anormalidades , Fatores de Tempo
15.
Front Cell Dev Biol ; 9: 650250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33855026

RESUMO

Diminished regeneration or healing capacity of tendon occurs during aging. It has been well demonstrated that tendon stem/progenitor cells (TSPCs) play a vital role in tendon maintenance and repair. Here, we identified an accumulation of senescent TSPCs in tendon tissue with aging. In aged TSPCs, the activity of JAK-STAT signaling pathway was increased. Besides, genetic knockdown of JAK2 or STAT3 significantly attenuated TSPC senescence in aged TSPCs. Pharmacological inhibition of JAK-STAT signaling pathway with AG490 similarly attenuated cellular senescence and senescence-associated secretory phenotype (SASP) of aged TSPCs. In addition, inhibition of JAK-STAT signaling pathway also restored the age-related dysfunctions of TSPCs, including self-renewal, migration, actin dynamics, and stemness. Together, our findings reveal the critical role of JAK-STAT signaling pathway in the regulation of TSPC aging and suggest an ideal therapeutic target for the age-related tendon disorders.

16.
Virulence ; 12(1): 1091-1110, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33843471

RESUMO

In eukaryotes, calcium not only is an essential mineral nutrient but also serves as an intracellular second messenger that is necessary for many physiological processes. Previous studies showed that the protein phosphatase-calcineurin protects fungi from toxicity caused by the extracellular calcium; however, little is known about how calcineurin mediates the cellular physiology process for this function. In this study, by monitoring intracellular calcium, particularly by tracking vacuolar calcium dynamics in living cells through a novel procedure using modified aequorin, we found that calcineurin dysfunction systematically caused abnormal intracellular calcium homeostasis in cytosol, mitochondria, and vacuole, leading to drastic autophagy, global organelle fragmentation accompanied with the increased expression of cell death-related enzymes, and cell death upon extracellular calcium stimuli. Notably, all detectable defective phenotypes seen with calcineurin mutants can be significantly suppressed by alleviating a cytosolic calcium overload or increasing vacuolar calcium storage capacity, suggesting toxicity of exogenous calcium to calcineurin mutants is tightly associated with abnormal cytosolic calcium accumulation and vacuolar calcium storage capacity deficiency. Our findings provide insights into how the original recognized antifungal drug target-calcineurin regulates intracellular calcium homeostasis for cell survival and may have important implications for antifungal therapy and clinical drug administration.

17.
Angew Chem Int Ed Engl ; 60(29): 15886-15890, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33860576

RESUMO

Owing to their unique afterglow ability, long-wavelength light activatable persistent luminescence (PersL) nanoparticles (PLNPs) have been emerging as an important category of imaging probes. Long-wavelength LED light has been shown to be effective in recharging these nanoparticles. However, finding a simple and effective method to amplify such renewable PersL signals under long-wavelength light is still a key challenge. Herein, we discovered that a dye-sensitization strategy was able to effectively boost the renewable PersL signals of the NIR emitting ZnGa2 O4 :Cr3+ (ZGC)) under long-wavelength LED light. Moreover, as a proof-of-principle tumorectomy demonstration, this new class of dye sensitized ZGC enabled simultaneous intraoperative anatomic tumor navigation and effective microscopic detection of tumor cells in pathological diagnosis.

18.
Zool Res ; 42(3): 262-266, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33764016

RESUMO

The Dianchi golden-line barbel, Sinocyclocheilus grahami (Regan, 1904), is one of the "Four Famous Fishes" of Yunnan Province, China. Given its economic value, this species has been artificially bred successfully since 2007, with a nationally selected breed (" S. grahami, Bayou No. 1") certified in 2018. For the future utilization of this species, its growth rate, disease resistance, and wild adaptability need to be improved, which could be achieved with the help of molecular marker-assisted selection (MAS). In the current study, we constructed the first chromosome-level genome of S. grahami, assembled 48 pseudo-chromosomes, and obtained a genome assembly of 1.49 Gb. We also performed QTL-seq analysis of S. grahami using the highest and lowest bulks (i.e., largest and smallest size) in both a sibling and random population. We screened two quantitative trait loci (QTLs) (Chr3, 14.9-39.1 Mb and Chr17, 4.1-27.4 Mb) as the major growth-related locations. Several candidate genes (e.g., map2k5, stat1, phf21a, sox6, and smad6) were also identified, with functions related to growth, such as cell differentiation, neuronal development, skeletal muscle development, chondrogenesis, and immunity. These results built a solid foundation for in-depth MAS studies on the growth traits of S. grahami.


Assuntos
Cyprinidae/crescimento & desenvolvimento , Cyprinidae/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genoma , Locos de Características Quantitativas/genética , Animais , Cromossomos , Ligação Genética , Estudo de Associação Genômica Ampla
19.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658361

RESUMO

The human GlyT1 glycine transporter requires chloride for its function. However, the mechanism by which Cl- exerts its influence is unknown. To examine the role that Cl- plays in the transport cycle, we measured the effect of Cl- on both glycine binding and conformational changes. The ability of glycine to displace the high-affinity radioligand [3H]CHIBA-3007 required Na+ and was potentiated over 1,000-fold by Cl- We generated GlyT1b mutants containing reactive cysteine residues in either the extracellular or cytoplasmic permeation pathways and measured changes in the reactivity of those cysteine residues as indicators of conformational changes in response to ions and substrate. Na+ increased accessibility in the extracellular pathway and decreased it in the cytoplasmic pathway, consistent with stabilizing an outward-open conformation as observed in other members of this transporter family. In the presence of Na+, both glycine and Cl- independently shifted the conformation of GlyT1b toward an outward-closed conformation. Together, Na+, glycine, and Cl- stabilized an inward-open conformation of GlyT1b. We then examined whether Cl- acts by interacting with a conserved glutamine to allow formation of an ion pair that stabilizes the closed state of the extracellular pathway. Molecular dynamics simulations of a GlyT1 homolog indicated that this ion pair is formed more frequently as that pathway closes. Mutation of the glutamine blocked the effect of Cl-, and substituting it with glutamate or lysine resulted in outward- or inward-facing transporter conformations, respectively. These results provide an unexpected insight into the role of Cl- in this family of transporters.


Assuntos
Cloretos/química , Proteínas da Membrana Plasmática de Transporte de Glicina/química , Simulação de Dinâmica Molecular , Linhagem Celular , Cloretos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Humanos , Transporte de Íons , Conformação Proteica , Sódio/química , Sódio/metabolismo
20.
Hum Reprod ; 36(5): 1436-1445, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33713115

RESUMO

STUDY QUESTION: Are mutations in the zinc finger SWIM domain-containing protein 7 gene (ZSWIM7) associated with human male infertility? SUMMARY ANSWER: The homozygous frameshift mutation (c.231_232del) in ZSWIM7 causes decreased meiotic recombination, spermatogenesis arrest, and infertility in men. WHAT IS KNOWN ALREADY: ZSWIM7 is a SWIM domain-containing Shu2/SWS1 protein family member and a subunit of the Shu complex. Zswim7 knockout mice were infertile due to impaired meiotic recombination. However, so far there is no direct evidence that mutations of ZSWIM7 cause human infertility. STUDY DESIGN, SIZE, DURATION: Screening for mutations of ZSWIM7 was performed using in-house whole-exome sequencing data from 60 men with non-obstructive azoospermia (NOA). Mice with a corresponding Zswim7 mutation were generated for functional verification. PARTICIPANTS/MATERIALS, SETTING, METHODS: Sixty Chinese patients, who were from different regions of China, were enrolled. All the patients were diagnosed with NOA owing to spermatocyte maturation arrest based on histopathological analyses and/or immunostaining of spermatocyte chromosome spreads. ZSWIM7 mutations were screened from the whole-exome sequencing data of these patients, followed by functional verification in mice. MAIN RESULTS AND THE ROLE OF CHANCE: A homozygous frameshift mutation (c.231_232del) in ZSWIM7 was found in two out of the 60 unrelated NOA patients. Both patients displayed small testicular size and spermatocyte maturation arrest in testis histology. Spermatocyte chromosome spreads of one patient revealed meiotic maturation arrest in a pachytene-like stage, with incomplete synapsis and decreased meiotic recombination. Male mice carrying a homozygous mutation similar to that of our patients were generated and also displayed reduced recombination, meiotic arrest and azoospermia, paralleling the spermatogenesis defects in our patients. LIMITATIONS, REASONS FOR CAUTION: As Zswim7 is also essential for meiosis in female mice, future studies should evaluate the ZSWIM7 mutations more in depth and in larger cohorts of infertile patients, including males and females, to validate the findings. WIDER IMPLICATIONS OF THE FINDINGS: These findings provide direct clinical and functional evidence that the recurrent ZSWIM7 mutation (c.231_232del) causes decreased meiotic recombination and leads to male infertility, illustrating the genotype-phenotype correlations of meiotic recombination defects in humans. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Natural Science Foundation of China (31890780, 31630050, 32061143006, 82071709, and 31871514), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB19000000), and the National Key Research and Developmental Program of China (2018YFC1003900 and 2019YFA0802600). TRIAL REGISTRATION NUMBER: Not applicable.


Assuntos
Azoospermia/genética , Proteínas de Ligação a DNA/genética , Animais , China , Feminino , Humanos , Masculino , Meiose , Camundongos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...