Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thorac Cancer ; 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32162491

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is one of the most deadly thoracic tumors. Reprogrammed glycolytic metabolism is a hallmark of cancer cells and significantly affects several cellular functions. In the current study, we aimed to investigate cluster of differentiation 147 (CD147)-mediated glucose metabolic regulation in LUAD and its association with 18 F-FDG PET/CT imaging. METHODS: The expression profile and prognostic potential of CD147 in LUAD were analyzed using UALCAN and a Kaplan-Meier plotter. Tissue immunohistochemical analyses and PET metabolic parameters were used to identify the relationship between CD147 expression and reprogrammed glycolysis. The role of CD147 in glucose metabolic reprogramming was assessed by radioactive uptake of 18 F-FDG through γ-radioimmunoassays in vitro and micro-PET/CT imaging in vivo. Western blotting assays were used to determine the expression level of monocarboxylate transporter 1 (MCT1) and MCT4 in established human LUAD cell lines (ie, HCC827 and H1975) with different CD147 expression levels via lentiviral transduction. RESULTS: CD147 was highly expressed in LUAD. A significant positive correlation existed between CD147 expression and PET metabolic parameters(SUVmax,SUVmean, SUVpeak). CD147 could promote radioactive uptake of 18 F-FDG in vitro and in vivo, suggesting the ability of CD147 to enhance glycolytic metabolism. Furthermore, as an obligate chaperone for MCT1 and MCT4, CD147 positively correlated with MCT1 and MCT4 expression in LUAD tissues and established cell lines with different CD147 expression. CONCLUSIONS: Our study revealed that CD147 is a promising novel target for LUAD treatment and CD147-mediated glucose metabolism demonstrated its contribution to the predictive role of 18 F-FDG PET/CT imaging for targeted therapeutic efficacy.

2.
Mater Sci Eng C Mater Biol Appl ; 110: 110747, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204052

RESUMO

The preparation of Pt/cerium oxide and highly ordered mesoporous carbon (Pt/CeO2/OMC) nanohybrids is reported. CeO2 can be used as an active material that enhances the electrocatalytic properties of Pt nanoparticles. OMC exhibits excellent electrical conductivity and large specific surface area, which makes it a highly promising electrocatalyst support. Benefiting from the synergistic effects of the catalytic performance of Pt/CeO2 and excellent conductivity of OMC supports, the new nanocomposite of Pt/CeO2/OMC are able to create novel features of electrocatalytic activities. Pt/CeO2/OMC tri-component composite was used as an excellent sensing platform for the determination of adrenaline. The developed sensor exhibited excellent activity and convincing analytical performance towards adrenaline, such as wide linear range, high sensitivity, low limit of detection, and low limit of quantification. In addition, the recoveries ranging from 93.4 to 103.6% were obtained in human serum samples. The successful preparation of Pt/CeO2/OMC tri-component composite may promote the development of novel electrocatalyst and facilitate the design of new electrochemical sensors.

3.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033029

RESUMO

The present research reported the effects of structural properties and immunoreactivity of celiac-toxic peptides and wheat storage proteins modified by cold jet atmospheric pressure (CJAP) plasma. It could generate numerous high-energy excited atoms, photons, electrons, and reactive oxygen and nitrogen species, including O3, H2O2, •OH, NO2- and NO3- etc., to modify two model peptides and wheat storage proteins. The Orbitrap HR-LC-MS/MS was utilized to identify and quantify CJAP plasma-modified model peptide products. Backbone cleavage of QQPFP and PQPQLPY at specific proline and glutamine residues, accompanied by hydroxylation at the aromatic ring of phenylalanine and tyrosine residues, contributed to the reduction and modification of celiac-toxic peptides. Apart from fragmentation, oxidation, and agglomeration states were evaluated, including carbonyl formation and the decline of γ-gliadin. The immunoreactivity of gliadin extract declined over time, demonstrating a significant decrease by 51.95% after 60 min of CJAP plasma treatment in vitro. The CJAP plasma could initiate depolymerization of gluten polymer, thereby reducing the amounts of large-sized polymers. In conclusion, CJAP plasma could be employed as a potential technique in the modification and reduction of celiac-toxic peptides and wheat storage proteins.

4.
Medicine (Baltimore) ; 99(5): e18921, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32000403

RESUMO

BACKGROUND: Recent studies have suggested that the potential functional polymorphism R47H in triggering receptors expressed on myeloid cells 2 (TREM2) is associated with several neurodegenerative diseases, however, the results remain inconclusive. This meta-analysis aimed to investigate the association between TREM2 R47H and the risk for 3 typical neurodegenerative diseases: Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS). METHODS: A literature review was carried out using PubMed, Medline, and Embase. Data analysis was conducted using Stata 15.0 software. The pooled odds ratio (ORs) and 95% confidence interval (CIs) were calculated. RESULTS: A total of 35 articles were identified as eligible: 22 on AD, 3 on ALS, 7 on PD, 2 on AD and ALS, and 1 on ALS and PD. The AD set included 23,092 cases and 30,920 controls, the ALS set included 7391 cases and 12,442 controls, and the PD set included 8498 patients and 9161 controls. We found that R47H was associated with an increased risk of AD in the total pooled population (P < .001, OR = 4.02, 95% CI = 3.15-5.13). However, this significant difference existed for Caucasian people (OR = 4.16, 95% CI = 3.24-5.33) but not for Asian or African people. Moreover, we did not find any significant differences in minor allele frequency distribution between the PD and control groups or between the ALS and control groups, not only for the total pooled population but also for the subgroups of different ethnicities. CONCLUSION: Our study suggested that R47H in the TREM2 gene leads to an increased risk for developing AD, but not for ALS and PD, which adds evidence to the notion that diverse pathogenesis may be involved in different neurogenerative diseases.


Assuntos
Doença de Alzheimer/genética , Esclerose Amiotrófica Lateral/genética , Glicoproteínas de Membrana/genética , Doença de Parkinson/genética , Receptores Imunológicos/genética , Predisposição Genética para Doença , Humanos , Polimorfismo Genético
5.
Talanta ; 209: 120431, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31892001

RESUMO

Reeds live widely in swamp and wetland and have an important ecological balance functions in environmental protection. However, the use of reeds is not effectively. The carbon dots (CDs) have been developed as the family of 0D nanocarbon materials and have all the advantages of the carbon family. In this work, we prepared CDs via hydrothermal method using reed. It is surprising that the reed-derived CDs are an effective reducing agent. A highly catalytically active composite material CDs-Cu2O/CuO was synthesized using economical, green, one-step ultrasonic method and used for the detection of hydrazine. The electrochemical detection of hydrazine was investigated by cyclic voltammetry. The result shows that the CDs-Cu2O/CuO exhibited good electrocatalytic activity for the oxidation of hydrazine. The fabricated sensor presented a wide linear range from 0.99 µM to 5903 µM and a detection limit of 0.024 µM. In addition, the CDs-Cu2O/CuO exhibited good sensitivity, stability and repeatability. Therefore, the CDs-Cu2O/CuO provides a new idea for the utilization of reed and low-cost electrocatalytic nanocomposite.

6.
Cancer Immunol Immunother ; 69(4): 535-548, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31965268

RESUMO

From a metabolic perspective, cancer may be considered as a metabolic disease characterized by reprogrammed glycolytic metabolism. The aim of the present study was to investigate CD147-mediated glucose metabolic regulation in hepatocellular carcinoma (HCC) and its contribution to altered immune responses in the tumor microenvironment. Several HCC cell lines and corresponding nude mice xenografts models differing in CD147 expressions were established to directly investigate the role of CD147 in the reprogramming of glucose metabolism, and to determine the underlying molecular mechanisms. Immunohistochemistry (IHC) analyses and flow cytometry were used to identify the relationship between reprogrammed glycolysis and immunosuppression in HCC. Upregulated CD147 expressions were found to be associated with enhanced expressions of GLUT1, MCT1 in HCC tumorous tissues. CD147 promoted the glycolytic metabolism in HCC cell lines in vitro via the PI3K/Akt/mTOR signaling pathway. A positive correlation existed between a profile of immunosuppressive lymphocytes infiltration and CD147 expression in HCC tissues. Accumulation of FOXP3-expressing regulatory T cells was induced under a stimulation with lactate in vitro. In conclusion, CD147 promoted glycolytic metabolism in HCC via the PI3K/Akt/mTOR signaling pathway, and was related to immunosuppression in HCC.

7.
J Colloid Interface Sci ; 560: 1-10, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31630023

RESUMO

Glucose is a popular biosensor target due to its closely with diabetes or hypoglycemia in blood. Designing efficiency electrocatalysts for the determination of glucose is vital to develop glucose detection devices. CoMoO4, as a kind of bimetallic oxide material, exhibits unique electrochemical properties. 3D macroporous carbon (MPC) has large specific surface area and excellent electrical conductivity, providing an effective support for loading other nano-entities to form novel composite with good synergetic effects. Herein, nanorod-like CoMoO4 anchored onto MPC support was synthesized for the development of a promising electrochemical sensing platform for glucose. Attributing to the synergic effects between the good electrocatalytic performance of CoMoO4 nanorods and the extraordinary electrical conductivity of 3D layered MPC, the novel CoMoO4/MPC composites non-enzymatic sensor shows excellent electrocatalytic performance for oxidation of glucose. Under the optimum conditions, the proposed CoMoO4/MPC hybrids provided a reliable linear range of 5 × 10-7 to 1.08 × 10-4 M with a low limit of detection (0.13 µM) for the detection of glucose. Meanwhile, the CoMoO4/MPC sensing platform shows fast response time of 1.76 s, good stability and selectivity for detecting glucose. Moreover, this non-enzymatic sensor also has been successfully applied to measure glucose level in human blood samples. Therefore, the developed sensor holds a new promise for the construction of facile and sensitive non-enzymatic glucose analytical platform.

8.
Biosens Bioelectron ; 148: 111834, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31706175

RESUMO

Efficient platforms for detecting telomerase activity are essential for early tumor monitoring and diagnosis. Herein, an enzyme-free electroanalytical strategy was developed for reliable and highly sensitive telomerase activity assay based on the increased electrochemical signals of methylene blue (MB) catalyzed by well monodisperse Au nanorods (AuNRs). In the presence of dNTPs and telomerase extracts, the assistant DNA 1 in the double stranded DNA can be extended to telomere repeat units (TTAGGG)n, which could form a hairpin structure by telomerase-triggered extension. The assistant DNA 2 was ingeniously dissociated from the double stranded DNA to combine with capture DNA. As a result, a large amount of AuNRs could be anchored on the surface of these sequences and used for electrocatalytic oxidation of MB. The developed biosensor showed a low limit of detection of 8.20 HeLa cells mL-1 and a wide dynamic range from 30 to 1.04 × 107 HeLa cells mL-1 for the determination of telomerase activity, which can provide a new way for telomerase activity assays in early diagnosis for cancers.

9.
J Colloid Interface Sci ; 563: 189-196, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31874306

RESUMO

The development of highly efficient, stable, and low-cost non-noble-metal electrocatalysts for oxygen evolution reactions (OER) is a major challenge for facilitate the efficiency of green energy storage. Bimetallic oxides are considered promising candidates as the electrocatalysts for OER because of their remarkable electrocatalytic activity, good stability, and low cost. In this work, ZIF-67 precursors were prepared via microwave irradiation and used as a self-sacrificing template. We proposed a rapid and scalable strategy to prepare Fe, Co bimetal embedded nanoporous carbon (Fe-Co/NPC) polyhedron composites by thermal decomposition of Fe species incorporated ZIF-67 precursor. Benefiting from the distinctive 3D polyhedron structural and compositional advantages, Fe-Co/NPC with hierarchical porous structure showed excellent electrochemical performance as ideal electrode material for OER. The resulting Fe-Co/NPC displayed outstanding electrocatalytic activity for OER with appreciable onset potential (1.59 V (vs. RHE)), small Tafel slope (53.55 mV dec-1), low over-potential (396 mV) to reach 10 mA cm-2, and excellent durability with negligible loss in current density after 1000 cycles. The current work demonstrated new insight into the design and construction of 3D structured Fe-Co/NPC polyhedron catalysts with highly electrocatalytic activity and good stability for electrocatalysis applications.

10.
Front Oncol ; 9: 1062, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681597

RESUMO

Radiomics has become an area of interest for tumor characterization in 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) imaging. The aim of the present study was to demonstrate how imaging phenotypes was connected to somatic mutations through an integrated analysis of 115 non-small cell lung cancer (NSCLC) patients with somatic mutation testings and engineered computed PET/CT image analytics. A total of 38 radiomic features quantifying tumor morphological, grayscale statistic, and texture features were extracted from the segmented entire-tumor region of interest (ROI) of the primary PET/CT images. The ensembles for boosting machine learning scheme were employed for classification, and the least absolute shrink age and selection operator (LASSO) method was used to select the most predictive radiomic features for the classifiers. A radiomic signature based on both PET and CT radiomic features outperformed individual radiomic features, the PET or CT radiomic signature, and the conventional PET parameters including the maximum standardized uptake value (SUVmax), SUVmean, SUVpeak, metabolic tumor volume (MTV), and total lesion glycolysis (TLG), in discriminating between mutant-type of epidermal growth factor receptor (EGFR) and wild-type of EGFR- cases with an AUC of 0.805, an accuracy of 80.798%, a sensitivity of 0.826 and a specificity of 0.783. Consistently, a combined radiomic signature with clinical factors exhibited a further improved performance in EGFR mutation differentiation in NSCLC. In conclusion, tumor imaging phenotypes that are driven by somatic mutations may be predicted by radiomics based on PET/CT images.

11.
iScience ; 21: 19-30, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31654851

RESUMO

Development of spinel oxides as low-cost and high-efficiency catalysts is highly desirable; however, rational synthesis of efficient and stable spinel systems with precisely controlled structure and components remains challenging. We demonstrate the design of complex nanostructured cobalt-based bimetallic spinel catalysts for low-temperature CO oxidation by a simple template-free method. The self-assembled multi-shelled mesoporous spinel nanostructures provide high surface area (203.5 m2/g) and favorable unique surface chemistry for producing abundant active sites and lead to the creation of robust microsphere configured by 16-nm spinel nanosheets, which achieve satisfactory water-resisting property and catalytic activity. Theoretical models show that O vacancies at exposed {110} facets in cubic spinel phase guarantee the strong adsorption of reactive oxygen species on the surface of catalysts and play a key role in the prevention of deactivation under moisture-rich conditions. The design concept with architecture and composition control can be extended to other mixed transition metal oxide compositions.

12.
J Phys Chem Lett ; 10(22): 7037-7043, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31647678

RESUMO

Climbing up the volcano peak stands as a challenging problem for oxygen reduction. Repeated efforts have been made to fine-tune the binding energy of oxygen reaction intermediates within a narrow region of 0.2 eV by adjusting the catalyst electronic structure. Herein, we address ourselves to two different, oft-neglected but nontrivial questions: (a) Does a superior oxygen reduction reaction catalyst in rotating disk electrode experiments still work well in practical fuel cells (usually at a different potential)? (b) For a given catalyst, can we place it on the volcano peak by adjusting the electrode potential (ϕM), which can be easily varied within 0.5 V in experiments, and the potential at the reaction plane in solution (ϕOHP), which is modulated by double-layer electrostatic effects? To answer these two questions, we articulate the mathematical origin of the volcano plot and reveal its dependence on ϕM and ϕOHP by combining a microkinetic model for the oxygen reduction reaction and a mean-field model for the double layer. Furthermore, we explore possible approaches of adjusting ϕOHP, for instance, by varying electrolyte concentration and particularly by tuning the electrostatic properties of the support material in a supported catalyst system. The investigation of how electrostatic properties of the support material affect the volcano plot of a supported catalyst opens an additional channel of catalyst-support interactions.

13.
Int J Mol Med ; 44(5): 1899-1907, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31485642

RESUMO

Patients with ischemic hearts who have refused coronary vascular reconstruction may exhibit dynamic myocardial remodeling and cardiac dysfunction. In the present study, the role of miRNA­1 and its association with the ubiquitin­proteasome system (UPS) in regulating myocardial remodeling was investigated. A myocardial infarction (MI) model was constructed and the hearts were treated with miRNA­1 antagomir, miRNA­1 lentiviral vectors and the UPS proteasome blocker bortezomib. The expression levels of miRNA­1 were evaluated using reverse transcription PCR and the abundance of the ubiquitin­proteasome protein and caspase­3 were evaluated via western blot analysis. Furthermore, the collagen volume fraction was calculated using Masson's trichrome staining, and the apoptosis index was detected via terminal deoxynucleotidyl transferase dUTP­biotin nick end labeling staining. Transforming growth factor (TGF)­ß expression was assessed via immunohistochemical staining. Echocardiographic characteristics and myocardial infarct size were analyzed. miRNA­1 expression levels were found to be increased following MI. miRNA­1 antagomir administration clearly inhibited miRNA­1 expression, whereas the miRNA­1 lentiviral vector exerted the opposite effect. The levels of 19s proteasome, 20S proteasome and ubiquitin ligase E3 were decreased in the miRNA­1 antagomir group, but were significantly increased in the miRNA­1 lentiviral group; however, only 20S proteasome expression was decreased in the bortezomib group. Collagen hyperplasia and TGF­ß expression were decreased in both the miRNA­1 antagomir and bortezomib groups, although the effects of the miRNA­1 antagomir were more noticeable. The miRNA­1 antagomir and the UPS proteasome blocker both alleviated the ultrastructural impairments, demonstrated by a decreased left ventricular (LV) end­diastolic diameter and LV mass, but the miRNA­1 antagomir was also able to increase LV ejection fraction and LV fractional shortening. miRNA­1 regulated UPS­associated mRNA expression and affected the majority of the UPS components in the myocardium, thereby leading to increased myocardial cell apoptosis, myocardial fibrosis and remodeling. The miRNA­1 antagomir exerted a more prominent cardioprotective effect compared with the UPS proteasome blocker bortezomib.

14.
Anal Chim Acta ; 1081: 103-111, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31446947

RESUMO

Both DNA cytosine methylation (5-methyl-2'-deoxycytidine, m5dC) and RNA cytosine methylation (5-methylcytidine, m5rC) are important epigenetic marks that play regulatory roles in diverse biological processes. m5dC and m5rC can be further oxidized by the ten-eleven translocation (TET) proteins to form 5-hydroxymethyl-2'-deoxycytidine (hm5dC) and 5-hydroxymethylcytidine (hm5rC), respectively. 2'-O-methyl-5-hydroxymethylcytidine (hm5rCm) was recently also identified as a second oxidative metabolite of m5rC in RNA. Previous studies showed that the dysregulation of cytidine modifications in both DNA and RNA are closely related to a variety of human diseases. These cytidine modifications are generally excreted from cell into urine. If these cytidine modifications exhibit specific features related to certain diseases, determination of the cytidine modifications in urine could be utilized as non-invasive diagnostic of diseases. Here, we established a solid-phase extraction in combination with liquid chromatography-mass spectrometry (LC-MS/MS) analysis for simultaneous detection of these cytidine modifications in human urine samples. The developed method enabled the distinct detection of these cytidine modifications. We reported, for the first time, the presence of hm5rCm in human urine. Furthermore, we found that compared to the healthy controls, the contents of hm5dC, hm5rC, and hm5rCm showed significant increases in urine samples of cancer patients, including lymphoma patients, gastric cancer patients, and esophageal cancer patients. This study indicates that the urinary hydroxylmethylation modifications of hm5dC, hm5rC, and hm5rCm may serve as potential indicator of cancers.


Assuntos
Cromatografia Líquida/métodos , Citidina/análogos & derivados , Citidina/urina , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , DNA/química , Metilação de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA/química
15.
J Biomater Sci Polym Ed ; 30(12): 995-1007, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31084413

RESUMO

A series of injectable in situ dual-crosslinking hydrogels (HA/ALG) based on oxidized sodium alginate (oxi-ALG) and hyaluronic acid modified with thiol and hydrazide (HA-SH/CDH) were prepared via hydrazone bonds and disulfide bonds. The chemical structures, morphologies, rheological properties, gelling time, swelling ratio, degradation rate and drug release behavior of hydrogels were investigated. HA/ALG hydrogels exhibited tunable gelling time, rheological properties, swelling ratio and degradation rate with varying precursor concentrations. The gelling time of HA/ALG hydrogels ranged from 157 s to 955 s, the values of yield stress of HA2/ALG2, HA3/ALG3 and HA4/ALG4 hydrogels were 1724, 4349 and 5306 Pa, and the degradation percentage of HA2/ALG2, HA3/ALG3 and HA4/ALG4 hydrogels were about 64%, 51% and 42% after incubating 35 days, respectively. Bovine serum albumin (BSA) was used as a model drug to investigate the drug controlled release properties, and the in vitro cumulative release percentage of BSA from HA2/ALG2, HA3/ALG3 and HA4/ALG4 drug-loaded hydrogels were about 79%, 72% and 69% after 20 days. The series of injectable in situ dual-crosslinking HA/ALG hydrogels could be an attractive candidate for drug delivery system, tissue engineering and regenerative medicine.

16.
Biomed Res Int ; 2019: 6803943, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139646

RESUMO

During myocardial infarction, quickly opening the occluded coronary artery is a major method to save the ischemic myocardium. However, it also induces reperfusion injury, resulting in a poor prognosis. Alleviating the reperfusion injury improves the prognosis of the patients. Dihydromyricetin (DHM), a major component in the Ampelopsis grossedentata, has numerous biological functions. This study aims to clarify the effects of DHM under the ischemia/reperfusion (I/R) condition. We elucidated the role of Sirt3 in the cardiomyocyte response to DHM based on the hearts and primary cardiomyocytes. Cardiac function, mitochondrial biogenesis, and infarct areas were examined in the different groups. We performed Western blotting to detect protein expression levels after treatments. In an in vitro study, primary cardiomyocytes were treated with Hypoxia/Reoxygenation (H/R) to simulate the I/R. DHM reduced the infarct area and improved cardiac function. Furthermore, mitochondrial dysfunction was alleviated after DHM treatment. Moreover, DHM alleviated oxidative stress indicated by decreased ROS and MnSOD. However, the beneficial function of DHM was abolished after removing the Sirt3. On the other hand, the mitochondrial function was improved after DHM intervention in vitro study. Interestingly, Sirt3 downregulation inhibited the beneficial function of DHM. Therefore, the advantages of DHM are involved in the improvement of mitochondrial function and decreased oxidative stress through the upregulation of Sirt3. DHM offers a promising therapeutic avenue for better outcome in the patients with cardiac I/R injury.


Assuntos
Flavonóis/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Sirtuína 3/metabolismo , Animais , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Flavonóis/farmacologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxigênio
17.
Front Microbiol ; 10: 994, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134030

RESUMO

Algal cultures are generally co-cultures of algae and bacteria, especially when considering outdoor cultivation. However, the effects of associated bacteria on algal growth remain largely unexplored, particularly in the context of Isochrysis galbana. In the present study, we investigated the effects of antibiotic on the growth of I. galbana and its associated bacterial community. We found advantageous responses of I. galbana to antibiotic exposure, evidenced by the increased growth, and the maximal photochemical efficiency of PSII (Fv/Fm). Since antibiotics can cause major disturbances within bacterial community, we further conducted 16S rDNA amplicon sequencing to determine the changes of bacterial community diversity following antibiotic treatment. We found that antibiotic treatment considerably and negatively affected the abundance and diversity of bacterial community, and 17 significantly decreased bacterial species in the antibiotic-treated medium, including Pseudomonas stutzeri, were identified. Further co-culture experiments revealed that P. stutzeri inhibited the growth of I. galbana, and the inhibitory activity was retained in the cell-free bacterial filtrate. These results indicated that the negative effect of bacteria was not exclusively transmitted through contact with I. galbana but could be also mediated via secretory compounds. Taken together, our findings not only fully characterized the bacterial community associated with I. galbana and how the bacterial community changed in response to antibiotic perturbations, but also provided a valuable information about the interactions between I. galbana and its associated bacteria, which might help improve the yield, and quality of I. galbana during its cultivation processes.

18.
J Colloid Interface Sci ; 549: 98-104, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026767

RESUMO

Hydrazine is a possible human carcinogen because of its hyper toxicity. Therefore, the determination of hydrazine is particularly important for environmental protection and public security. Electrochemical method for the detection of hydrazine has drawn great interests because of its high sensitivity, fast response time, simple operation, and low cost. In this work, a leaf-like copper oxide (CuO) anchored onto wormlike ordered mesoporous carbon (OMC) composite was prepared for the construction of an electrochemical sensing platform for hydrazine. Because of the synergetic catalytic effect and unique structural properties, the obtained nanosized CuO incorporated in OMC exhibited good electrocatalytic performance for the oxidation of hydrazine with a catalytic rate constant (kcat) of 1.28 × 105 M-1s-1. Moreover, the content ratio of CuO: OMC was optimized to improve the electrocatalytic performance. The CuO/OMC hybrids can act as a sensitive and effective sensing platform for the determination of hydrazine, exhibiting wide linear range, high sensitivity, low limit of detection, and good stability. This comprehensive and systematic study may provide great opportunities for the design and construction of electrochemical sensors for environmental monitoring.

19.
Mol Imaging Biol ; 21(6): 1026-1033, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30877592

RESUMO

PURPOSE: Probe-based confocal laser endomicroscopy (pCLE) is a novel technique allowing real-time and high-resolution imaging in vivo. It provides microscopic images and increases the penetration depth of tissues compared with conventional white light endoscopy. The aim of the present study was to track ovarian cancer cells in organs by fluorescent polymer dots based on pCLE. PROCEDURES: SKOV3-mCherry cells were incubated with polymer dots for 24 h in a serum-free culture medium. Labeled cells were administrated to nude mice via intravenous, intraperitoneal, and lymph node injection. The fluorescent signals of labeled cells in organs were observed by pCLE. Furthermore, the results were confirmed by frozen section analysis. RESULTS: pCLE displayed fluorescence signals of labeled cells in the vessels of organs. Besides, the accumulations of labeled cells visualized in detoxification organs like the spleen and kidney were increased with time. CONCLUSIONS: In this article, we present a real-time and convenient method for tracking SKOV3-mCherry in living mice by combined fluorescent polymer dots with pCLE.

20.
Thorac Cancer ; 10(4): 659-664, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30776196

RESUMO

BACKGROUND: The purpose of this study was to investigate an association between EGFR mutation status and 18 F-fluorodeoxyglucose positron emission tomography-computed tomography (18 F-FDG PET-CT) image features in lung adenocarcinoma. METHODS: Retrospective analysis of the data of 139 patients with lung adenocarcinoma confirmed by surgical pathology who underwent preoperative 18 F-FDG PET-CT was conducted. Correlations between EGFR mutation status, clinical characteristics, and PET-CT parameters, including the maximum standardized uptake value (SUVmax), the mean of the SUV (SUVmean), the peak of the SUV (SUVpeak) of the primary tumor, and the ratio of SUVmax between the primary tumor and the mediastinal blood pool (SUVratio), were statistically analyzed. Multivariate logistic regression analysis was performed to identify predictors of EGFR mutation. Receiver operating characteristic curves of statistical quantitative parameters were compared. RESULTS: EGFR mutations were detected in 74 (53.2%) of the 139 lung adenocarcinomas and were more frequent in non-smoking patients. Univariate analysis showed that the SUVmax, SUVmean, SUVpeak, and SUVratio were lower in EGFR-mutated than in wild-type tumors. The receiver operating characteristic curves showed no significant differences between their diagnostic efficiencies. Multivariate logistic regression analysis showed that being a never smoker was an independent predictor of EGFR mutation. CONCLUSION: Quantitative parameters based on 18 F-FDG PET-CT have modest power to predict the presence of EGFR mutation in lung adenocarcinoma; however, when compared to smoking history, they are not good or significant predictive factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA