Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 418
Filtrar
1.
Arch Microbiol ; 204(6): 325, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575833

RESUMO

A Gram-stain-negative, aerobic and rod-shaped bacterium, designated strain SM 2104T, was isolated from a deep-sea sediment sample collected from the Southwest Indian Ocean. Strain SM 2104T grew at 10-37 °C (optimum at 25 °C), and with 1.0-9.0% (w/v, optimum with 2-4%) NaCl. It hydrolyzed starch, tween 80 and gelatin but did not reduced nitrate to nitrite. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SM 2104T was affiliated with the genus Alteromonas, sharing the highest 16S rRNA gene sequence similarities with type strains of Alteromonas flava (97.5%) and Alteromonas facilis (97.4%) and forming a distinct clade together with the two Alteromonas species. The digital DNA-DNA hybridization and average nucleotide identity values between strain SM 2104 T and type strains of Alteromonas flava and Alteromonas facilis were below 14.5%, and 71.0%, respectively. The major fatty acids of strain SM 2104T were summed feature 3 (C16:1ω6c/C16:1ω7c), C16:0 and summed feature 8 (C18:1ω7c/C18:1ω6c). The major polar lipids of strain SM 2104T were phosphatidylethanolamine and phosphatidylglycerol and the only respiratory quinone of strain SM 2104T was ubiquinone-8. The genomic DNA G + C content of strain SM 2104T was 48.0%. On the basis of the phylogenetic, phenotypic, chemotaxonomic and genomic analyses presented in this study, strain SM 2104T is considered to represent a novel species within the genus Alteromonas, for which the name Alteromonas oceansediminis sp. nov. is proposed. The type strain is SM 2104T (= CCTCC AB 2021121T = KCTC 82867T).

2.
Artigo em Inglês | MEDLINE | ID: mdl-35469706

RESUMO

OBJECTIVES: Although the cause of Meniere's disease (MD) is not fully understood, endolymphatic hydrops is widely believed to be responsible for MD. Previous studies have used Air-Conducted Sound (ACS)-induced Vestibular Evoked Myogenic Potentials (VEMPs) to evaluate otolithic function in patients with MD. However, the use of Galvanic Vestibular Stimulation-VEMPs (GVS-VEMPs) with other vestibular tests in MD has been rare. This study aimed to explore the application of galvanic VEMPs in assessing MD. METHODS: Normal individuals and patients with unilateral definite MD were included in this retrospective study. All participants underwent pure tone audiometry. Ocular and cervical VEMPs induced by GVS, and ACS were recorded. The characteristic parameters of VEMPs (n1 latency, p1 latency, amplitude, and AR) were analyzed. RESULTS: The provocation rates of GVS-VEMPs did not differ between MD patients and control individuals. Compared with ACS, GVS could evoke potentials with longer latencies. MD patients presented GVS-VEMPs with lower amplitudes and ACS-cVEMP with shorter latencies and had a higher response rate in GVS-oVEMP. However, no differences or correlations were found in the characteristic parameters of GVS-VEMPs among the different stages of MD. CONCLUSIONS: GVS is as effective as ACS for inducing VEMP, and GVS-VEMP recording can detect retrolabyrinthine degeneration in MD. Further research is needed to assess the utility of GVS-VEMP in the evaluation of MD severity. LEVEL OF EVIDENCE: Level 4.

3.
Acta Otolaryngol ; : 1-7, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35382691

RESUMO

BACKGROUND AND OBJECTIVE: Few previous studies have used virtual-reality (VR) technology to measure subjective visual vertical (SVV) and subjective visual horizontal (SVH) during static head tilt (0°, 30°, 45°, 60° and 90°). We propose a novel vestibular test for measuring the normal range of SVV and SVH during static head tilt in healthy adults. METHODS: Eighty healthy adults were included in the study. SVV and SVH were calculated in nine head positions. RESULTS: With head tilt 90° to the right, SVV skewed to the right, and SVH skewed upward. With head tilt 90° to the left, SVV skewed to the left, and SVH skewed downward. SVV was asymmetrical only at a head tilt of 90°. SVV and SVH were similar at all degrees of head tilt, except for 30° to the right, 45° to the left, and 0°. CONCLUSIONS: VR measurements showed that SVV and SVH differed at various degrees of static head tilt. The standardized protocol proposed here may be used to establish a reference range for utricle function when evaluating acute, unilateral vestibular lesions.

4.
Appl Environ Microbiol ; 88(7): e0167721, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35285716

RESUMO

Vibrio collagenases of the M9A subfamily are closely related to Vibrio pathogenesis for their role in collagen degradation during host invasion. Although some Vibrio collagenases have been characterized, the collagen degradation mechanism of Vibrio collagenase is still largely unknown. Here, an M9A collagenase, VP397, from marine Vibrio pomeroyi strain 12613 was characterized, and its fragmentation pattern on insoluble type I collagen fibers was studied. VP397 is a typical Vibrio collagenase composed of a catalytic module featuring a peptidase M9N domain and a peptidase M9 domain and two accessory bacterial prepeptidase C-terminal domains (PPC domains). It can hydrolyze various collagenous substrates, including fish collagen, mammalian collagens of types I to V, triple-helical peptide [(POG)10]3, gelatin, and 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-o-Arg (Pz-peptide). Atomic force microscopy (AFM) observation and biochemical analyses revealed that VP397 first assaults the C-telopeptide region to dismantle the compact structure of collagen and dissociate tropocollagen fragments, which are further digested into peptides and amino acids by VP397 mainly at the Y-Gly bonds in the repeating Gly-X-Y triplets. In addition, domain deletion mutagenesis showed that the catalytic module of VP397 alone is capable of hydrolyzing type I collagen fibers and that its C-terminal PPC2 domain functions as a collagen-binding domain during collagenolysis. Based on our results, a model for the collagenolytic mechanism of VP397 is proposed. This study sheds light on the mechanism of collagen degradation by Vibrio collagenase, offering a better understanding of the pathogenesis of Vibrio and helping in developing the potential applications of Vibrio collagenase in industrial and medical areas. IMPORTANCE Many Vibrio species are pathogens and cause serious diseases in humans and aquatic animals. The collagenases produced by pathogenic Vibrio species have been regarded as important virulence factors, which occasionally exhibit direct pathogenicity to the infected host or facilitate other toxins' diffusion through the digestion of host collagen. However, our knowledge concerning the collagen degradation mechanism of Vibrio collagenase is still limited. This study reveals the degradation strategy of Vibrio collagenase VP397 on type I collagen. VP397 binds on collagen fibrils via its C-terminal PPC2 domain, and its catalytic module first assaults the C-telopeptide region and then attacks the Y-Gly bonds in the dissociated tropocollagen fragments to release peptides and amino acids. This study offers new knowledge regarding the collagenolytic mechanism of Vibrio collagenase, which is helpful for better understanding the role of collagenase in Vibrio pathogenesis and for developing its industrial and medical applications.


Assuntos
Colágeno Tipo I , Vibrio , Sequência de Aminoácidos , Aminoácidos , Animais , Colágeno/metabolismo , Colágeno Tipo I/genética , Colagenases/genética , Colagenases/metabolismo , Mamíferos , Peptídeos/metabolismo , Tropocolágeno , Vibrio/metabolismo
5.
Front Microbiol ; 13: 838608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295296

RESUMO

Trimethylamine N-oxide (TMAO), which was detected at nanomolar concentrations in surface seawaters, is an important carbon, nitrogen and/or energy source for marine bacteria. It can be metabolized by marine bacteria into volatile methylated amines, the second largest source of nitrogen after N2 gas in the oceans. The SAR11 bacteria are the most abundant oligotrophic plankton in the oceans, which represents approximately 30% of the bacterial cells in marine surface waters. Genomic analysis suggested that most SAR11 bacteria possess an ATP-binding cassette transporter TmoXWV that may be responsible for importing TMAO. However, it was still unclear whether SAR11 bacteria can utilize TMAO as the sole nitrogen source and how they import TMAO. Here, our results showed that Pelagibacter strain HTCC1062, a SAR11 bacterium, can grow with TMAO as the sole nitrogen source. TmoXWV from strain HTCC1062 (TmoXWV1062) was verified to be a functional TMAO importer. Furthermore, TmoX1062, the periplasmic substrate binding protein of TmoXWV1062, was shown to have high binding affinities toward TMAO at 4°C (K d = 920 nM), 10°C (K d = 500 nM) and 25°C (K d = 520 nM). The high TMAO binding affinity and strong temperature adaptability of TmoX1062 reveal a possible oligotrophic niche adaptation strategy of strain HTCC1062, which may help it gain a competitive advantage over other bacteria. Structure comparison and mutational analysis indicated that the TMAO binding mechanism of TmoX1062 may have differences from the previously reported mechanism of TmoX of Ruegeria pomeroyi DSS-3. This study provides new insight into TMAO utilization by the widespread SAR11 bacteria.

6.
Mar Drugs ; 20(3)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35323458

RESUMO

Alginate oligosaccharides (AOS) have many biological activities and significant applications in prebiotics, nutritional supplements, and plant growth development. Alginate lyases have unique advantages in the preparation of AOS. However, only a limited number of alginate lyases have been so far reported to have potentials in the preparation of AOS with specific degrees of polymerization. Here, an alginate-degrading strain Pseudoalteromonasarctica M9 was isolated from Sargassum, and five alginate lyases were predicted in its genome. These putative alginate lyases were expressed and their degradation products towards sodium alginate were analyzed. Among them, AlyM2 mainly generated trisaccharides, which accounted for 79.9% in the products. AlyM2 is a PL6 lyase with low sequence identity (≤28.3%) to the characterized alginate lyases and may adopt a distinct catalytic mechanism from the other PL6 alginate lyases based on sequence alignment. AlyM2 is a bifunctional endotype lyase, exhibiting the highest activity at 30 °C, pH 8.0, and 0.5 M NaCl. AlyM2 predominantly produces trisaccharides from homopolymeric M block (PM), homopolymeric G block (PG), or sodium alginate, with a trisaccharide production of 588.4 mg/g from sodium alginate, indicating its promising potential in preparing trisaccharides from these polysaccharides.


Assuntos
Alginatos/química , Proteínas de Bactérias , Polissacarídeo-Liases , Pseudoalteromonas/enzimologia , Sargassum/microbiologia , Trissacarídeos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Pseudoalteromonas/genética , Pseudoalteromonas/isolamento & purificação , RNA Ribossômico 16S
7.
Mar Drugs ; 20(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35323464

RESUMO

Chitooligosaccharides (COSs) have been widely used in agriculture, medicine, cosmetics, and foods, which are commonly prepared from chitin with chitinases. So far, while most COSs are prepared from colloidal chitin, chitinases used in preparing COSs directly from natural crystalline chitin are less reported. Here, we characterize three chitinases, which were identified from the marine bacterium Pseudoalteromonas flavipulchra DSM 14401T, with an ability to degrade crystalline chitin into (GlcNAc)2 (N,N'-diacetylchitobiose). Strain DSM 14401 can degrade the crystalline α-chitin in the medium to provide nutrients for growth. Genome and secretome analyses indicate that this strain secretes six chitinolytic enzymes, among which chitinases Chia4287, Chib0431, and Chib0434 have higher abundance than the others, suggesting their importance in crystalline α-chitin degradation. These three chitinases were heterologously expressed, purified, and characterized. They are all active on crystalline α-chitin, with temperature optima of 45-50 °C and pH optima of 7.0-7.5. They are all stable at 40 °C and in the pH range of 5.0-11.0. Moreover, they all have excellent salt tolerance, retaining more than 92% activity after incubation in 5 M NaCl for 10 h at 4 °C. When acting on crystalline α-chitin, the main products of the three chitinases are all (GlcNAc)2, which suggests that chitinases Chia4287, Chib0431, and Chib0434 likely have potential in direct conversion of crystalline chitin into (GlcNAc)2.


Assuntos
Proteínas de Bactérias/química , Quitina/química , Quitinases/química , Dissacarídeos/química , Pseudoalteromonas/enzimologia , Proteínas de Bactérias/isolamento & purificação , Quitinases/isolamento & purificação , Genoma Bacteriano , Pseudoalteromonas/genética , Cloreto de Sódio/química
8.
ACS Appl Bio Mater ; 5(2): 841-852, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35113530

RESUMO

Engineered nanoparticles are widely used in biological imaging and drug delivery because of their excellent physical and chemical properties, but almost all the original functions of engineered nanoparticles suffer from a complex matrix. Herein, we proposed a strategy of preparing nanoparticle protein corona antigens (NPCAgs) through exposing a magnetic core silicon shell (Fe3O4@SiO2) fluorescent probe to an antigen protein solution, which could reduce the adsorption of nanoparticles (NPs) with other proteins in serum. In the presence of target anti-BSA IgG, a competitive-type displacement reaction was implemented between NPs@BSA and other proteins by target anti-BSA IgG through the specific antigen-antibody reaction. In addition, secondary structure analysis showed that almost all of the NPCAgs retained their natural conformation, which ensured the function of the NPCAgs, specifically capturing an antibody. Therefore, the NPCAgs showed good performance in immunoassays and immunoimaging, which should shed light on the application in imaging and identification of other nanomaterials.


Assuntos
Nanopartículas , Coroa de Proteína , Antígenos , Imunoensaio/métodos , Imunoglobulina G , Nanopartículas/química , Coroa de Proteína/química , Dióxido de Silício/química
9.
Mar Genomics ; 61: 100911, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35058038

RESUMO

Halomonas sp. MT13, a moderately psychrotolerant, piezotolerant and exopolysaccharide-producing bacterium, was isolated from deep-sea sediment of the Mariana Trench at the depth of 8300 m. Here, we report the complete genome sequence of strain MT13 and its genomic characteristics related to deep-sea environmental adaptation by comparing with its three closely related Halomonas species. The genome of strain MT13 contains one circular chromosome of 3,643,760 bp without any plasmid. Gene annotation, Cluster of Orthologous Groups (COG) and KEGG analysis showed that strain MT13 possesses a serial of genes involved in deep-sea environmental adaptation, including ectoine biosynthesis, osmolyte transport, and cold-shock response. Compared with type strains of three closely related Halomonas species, strain MT13 has higher proportions of genes assigned to translation, ribosomal structure and biogenesis, and coenzyme, lipid and inorganic ion transport and metabolism, but lacks genes involved in flagellar assembly. The genome of strain MT13 would deepen our knowledge on the adaptation strategies of microorganisms dwelling in deep-sea environment.


Assuntos
Halomonas , Aclimatação/genética , Sequência de Bases , Genômica , Halomonas/genética , Filogenia
10.
Antonie Van Leeuwenhoek ; 115(3): 391-405, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35022928

RESUMO

Two Gram-stain-negative, aerobic, non-motile, and rod-shaped bacterial strains, designated SM1352T and A20T, were isolated from intertidal sediments collected from King George Island, Antarctic. They shared 99.8% 16S rRNA gene sequence similarity with each other and had the highest sequence similarity of 98.1% to type strain of Aureibaculum marinum but < 93.4% sequence similarity to those of other known bacterial species. The genomes of strains SM1352T and A20T consisted of 5,108,092 bp and 4,772,071 bp, respectively, with the G + C contents both being 32.0%. They respectively encoded 4360 (including 37 tRNAs and 6 rRNAs) and 4032 (including 36 tRNAs and 5 rRNAs) genes. In the phylogenetic trees based on 16S rRNA gene and single-copy orthologous clusters (OCs), both strains clustered with Aureibaculum marinum and together formed a separate branch within the family Flavobacteriaceae. The ANI and DDH values between the two strains and Aureibaculum marinum BH-SD17T were all below the thresholds for species delineation. The major cellular fatty acids (> 10%) of the two strains included iso-C15:0, iso-C15:1 G, iso-C17:0 3-OH. Their polar lipids predominantly included phosphatidylethanolamine, one unidentified aminophospholipid, one unidentified aminolipid, and two unidentified lipids. Genomic comparison revealed that both strains possessed much more glycoside hydrolases and sulfatase-rich polysaccharide utilization loci (PULs) than Aureibaculum marinum BH-SD17T. Based on the above polyphasic evidences, strains SM1352T and A20T represent two novel species within the genus Aureibaculum, for which the names Aureibaculum luteum sp. nov. and Aureibaculum flavum sp. nov. are proposed. The type strains are SM1352T (= CCTCC AB 2014243 T = JCM 30335 T) and A20T (= CCTCC AB 2020370 T = KCTC 82503 T), respectively.


Assuntos
Flavobacteriaceae , Água do Mar , Regiões Antárticas , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Flavobacteriaceae/genética , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Vitamina K 2
11.
Nat Commun ; 13(1): 566, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091565

RESUMO

The collagenases of Vibrio species, many of which are pathogens, have been regarded as an important virulence factor. However, there is little information on the structure and collagenolytic mechanism of Vibrio collagenase. Here, we report the crystal structure of the collagenase module (CM) of Vibrio collagenase VhaC and the conformation of VhaC in solution. Structural and biochemical analyses and molecular dynamics studies reveal that triple-helical collagen is initially recognized by the activator domain, followed by subsequent cleavage by the peptidase domain along with the closing movement of CM. This is different from the peptidolytic mode or the proposed collagenolysis of Clostridium collagenase. We propose a model for the integrated collagenolytic mechanism of VhaC, integrating the functions of VhaC accessory domains and its collagen degradation pattern. This study provides insight into the mechanism of bacterial collagenolysis and helps in structure-based drug design targeting of the Vibrio collagenase.


Assuntos
Proteínas de Bactérias/química , Colágeno/metabolismo , Colagenases/química , Conformação Proteica , Vibrio/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Biocatálise , Cromatografia Líquida , Colagenases/genética , Colagenases/metabolismo , Cristalografia por Raios X , Espectrometria de Massas , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Vibrio/enzimologia , Vibrio/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-35100102

RESUMO

Two novel Gram-stain-negative, facultative anaerobic, non-flagellated, rod-shaped bacterial strains, designated MT13T and MT32, were isolated from sediment samples collected from the Mariana Trench at a depth of 8300 m. The two strains grew at -2-30 °C (optimum, 25 °C), at pH 5.5-10.0 (optimum, pH 7.5-8.0) and with 0-15 % (w/v) NaCl (optimum, 3-6 %). They did not reduce nitrate to nitrite nor hydrolyse Tweens 40 and 80, aesculin, casein, starch and DNA. The genomic G+C contents of draft genomes of strain MT13T and MT32 were 52.2 and 54.1 m ol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains MT13T and MT32 were affiliated with the genus Halomonas, with the highest similarity to the type strain of Halomonas olivaria. The values of average nucleotide identity and in silico DNA-DNA hybridization between strain MT13T and MT32, and between strain MT13T and five closely related type strains of Halomonas species indicated that strains MT13T and MT32 belonged to the same species, but represented a novel species in the genus of Halomonas. The major cellular fatty acids of strains MT13T and MT32 were C16 : 0, summed feature 3(C16 : 1 ω7c/ω6c) and summed feature 8 (C18 : 1 ω7c/ω6c). Major polar lipids of strains MT13T and MT32 included phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Ubiquinone-9 was the predominant respiratory quinone. Based on data from the present polyphasic study, strains MT13T and MT32 represent a novel species of the genus Halomonas, for which the name Halomonas profundi sp. nov. is proposed. The type strain is MT13T (=MCCC 1K06389T=KCTC 82923T).


Assuntos
Sedimentos Geológicos/microbiologia , Halomonas , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Halomonas/classificação , Halomonas/isolamento & purificação , Hibridização de Ácido Nucleico , Oceano Pacífico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
13.
Mar Drugs ; 20(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35049903

RESUMO

Although the S8 family in the MEROPS database contains many peptidases, only a few S8 peptidases have been applied in the preparation of bioactive oligopeptides. Bovine bone collagen is a good source for preparing collagen oligopeptides, but has been so far rarely applied in collagen peptide preparation. Here, we characterized a novel S8 gelatinase, Aa2_1884, from marine bacterium Flocculibacter collagenilyticus SM1988T, and evaluated its potential application in the preparation of collagen oligopeptides from bovine bone collagen. Aa2_1884 is a multimodular S8 peptidase with a distinct domain architecture from other reported peptidases. The recombinant Aa2_1884 over-expressed in Escherichia coli showed high activity toward gelatin and denatured collagens, but no activity toward natural collagens, indicating that Aa2_1884 is a gelatinase. To evaluate the potential of Aa2_1884 in the preparation of collagen oligopeptides from bovine bone collagen, three enzymatic hydrolysis parameters, hydrolysis temperature, hydrolysis time and enzyme-substrate ratio (E/S), were optimized by single factor experiments, and the optimal hydrolysis conditions were determined to be reaction at 60 ℃ for 3 h with an E/S of 400 U/g. Under these conditions, the hydrolysis efficiency of bovine bone collagen by Aa2_1884 reached 95.3%. The resultant hydrolysate contained 97.8% peptides, in which peptides with a molecular weight lower than 1000 Da and 500 Da accounted for 55.1% and 39.5%, respectively, indicating that the hydrolysate was rich in oligopeptides. These results indicate that Aa2_1884 likely has a promising potential application in the preparation of collagen oligopeptide-rich hydrolysate from bovine bone collagen, which may provide a feasible way for the high-value utilization of bovine bone collagen.


Assuntos
Colágeno/química , Gelatinases/farmacologia , Oligopeptídeos/química , Proteobactérias , Animais , Organismos Aquáticos , Gelatinases/química , Hidrólise , Relação Estrutura-Atividade
14.
Appl Environ Microbiol ; 88(3): e0221921, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34818098

RESUMO

As the most abundant d-amino acid (DAA) in the ocean, d-alanine (d-Ala) is a key component of peptidoglycan in the bacterial cell wall. However, the underlying mechanisms of bacterial metabolization of d-Ala through the microbial food web remain largely unknown. In this study, the metabolism of d-Ala by marine bacterium Pseudoalteromonas sp. strain CF6-2 was investigated. Based on genomic, transcriptional, and biochemical analyses combined with gene knockout, d-Ala aminotransferase was found to be indispensable for the catabolism of d-Ala in strain CF6-2. Investigation on other marine bacteria also showed that d-Ala aminotransferase gene is a reliable indicator for their ability to utilize d-Ala. Bioinformatic investigation revealed that d-Ala aminotransferase sequences are prevalent in genomes of marine bacteria and metagenomes, especially in seawater samples, and Gammaproteobacteria represents the predominant group containing d-Ala aminotransferase. Thus, Gammaproteobacteria is likely the dominant group to utilize d-Ala via d-Ala aminotransferase to drive the recycling and mineralization of d-Ala in the ocean. IMPORTANCE As the most abundant d-amino acid in the ocean, d-Ala is a component of the marine DON (dissolved organic nitrogen) pool. However, the underlying mechanism of bacterial metabolization of d-Ala to drive the recycling and mineralization of d-Ala in the ocean is still largely unknown. The results in this study showed that d-Ala aminotransferase is specific and indispensable for d-Ala catabolism in marine bacteria and that marine bacteria containing d-Ala aminotransferase genes are predominantly Gammaproteobacteria widely distributed in global oceans. This study reveals marine d-Ala-utilizing bacteria and the mechanism of their metabolization of d-Ala. The results shed light on the mechanisms of recycling and mineralization of d-Ala driven by bacteria in the ocean, which are helpful in understanding oceanic microbial-mediated nitrogen cycle.


Assuntos
Pseudoalteromonas , Alanina/metabolismo , Antivirais , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Água do Mar/microbiologia , Transaminases/genética
15.
Appl Environ Microbiol ; 88(2): e0180621, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34788071

RESUMO

Dimethylsulfoniopropionate (DMSP) is one of the most abundant organic sulfur compounds in the oceans, which is mainly degraded by bacteria through two pathways, a cleavage pathway and a demethylation pathway. Its volatile catabolites dimethyl sulfide (DMS) and methanethiol (MT) in these pathways play important roles in the global sulfur cycle and have potential influences on the global climate. Intense DMS/DMSP cycling occurs in the Arctic. However, little is known about the diversity of cultivable DMSP-catabolizing bacteria in the Arctic and how they catabolize DMSP. Here, we screened DMSP-catabolizing bacteria from Arctic samples and found that bacteria of four genera (Psychrobacter, Pseudoalteromonas, Alteromonas, and Vibrio) could grow with DMSP as the sole carbon source, among which Psychrobacter and Pseudoalteromonas are predominant. Four representative strains (Psychrobacter sp. K31L, Pseudoalteromonas sp. K222D, Alteromonas sp. K632G, and Vibrio sp. G41H) from different genera were selected to probe their DMSP catabolic pathways. All these strains produce DMS and MT simultaneously during their growth on DMSP, indicating that all strains likely possess the two DMSP catabolic pathways. On the basis of genomic and biochemical analyses, the DMSP catabolic pathways in these strains were proposed. Bioinformatic analysis indicated that most Psychrobacter and Vibrio bacteria have the potential to catabolize DMSP via the demethylation pathway and that only a small portion of Psychrobacter strains may catabolize DMSP via the cleavage pathway. This study provides novel insights into DMSP catabolism in marine bacteria. IMPORTANCE Dimethylsulfoniopropionate (DMSP) is abundant in the oceans. The catabolism of DMSP is an important step of the global sulfur cycle. Although Gammaproteobacteria are widespread in the oceans, the contribution of Gammaproteobacteria in global DMSP catabolism is not fully understood. Here, we found that bacteria of four genera belonging to Gammaproteobacteria (Psychrobacter, Pseudoalteromonas, Alteromonas and Vibrio), which were isolated from Arctic samples, were able to grow on DMSP. The DMSP catabolic pathways of representative strains were proposed. Bioinformatic analysis indicates that most Psychrobacter and Vibrio bacteria have the potential to catabolize DMSP via the demethylation pathway and that only a small portion of Psychrobacter strains may catabolize DMSP via the cleavage pathway. Our results suggest that novel DMSP dethiomethylases/demethylases may exist in Pseudoalteromonas, Alteromonas, and Vibrio and that Gammaproteobacteria may be important participants in the marine environment, especially in polar DMSP cycling.


Assuntos
Compostos de Sulfônio , Bactérias , Liases de Carbono-Enxofre/genética , Humanos , Sulfetos/metabolismo , Compostos de Sulfônio/metabolismo , Enxofre/metabolismo
16.
Bioact Mater ; 10: 504-514, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34901563

RESUMO

Antioxidant biomaterials have attracted much attention in various biomedical fields because of their effective inhibition and elimination of reactive oxygen species (ROS) in pathological tissues. However, the difficulty in ensuring biocompatibility, biodegradability and bioavailability of antioxidant materials has limited their further development. Novel bioavailable antioxidant materials that are derived from natural resources are urgently needed. Here, an integrated multi-omics method was applied to fabricate antioxidant biomaterials. A key cysteine-rich thrombospondin-1 type I repeat-like (TSRL) protein was efficiently discovered from among 1262 adhesive components and then used to create a recombinant protein with a yield of 500 mg L-1. The biocompatible TSRL protein was able to self-assemble into either a water-resistant coating through Ca2+-mediated coordination or redox-responsive hydrogels with tunable physical properties. The TSRL-based hydrogels showed stronger 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging rates than glutathione (GSH) and ascorbic acid (Aa) and protected cells against external oxidative stress significantly more effectively. When topically applied to mice skin, TSRL alleviated epidermal hyperplasia and suppressed the degradation of collagen and elastic fibers caused by ultraviolet radiation B (UVB) irradiation, confirming that it enhanced antioxidant activity in vivo. This is the first study to successfully characterize natural antioxidant biomaterials created from marine invertebrate adhesives, and the findings indicate the excellent prospects of these biomaterials for great applications in tissue regeneration and cosmeceuticals.

17.
Environ Microbiol ; 24(1): 98-109, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913576

RESUMO

Based on 16S rRNA gene analyses, the same bacterial operational taxonomic units (OTUs) are common to both the Arctic and Antarctic oceans, supporting the concept 'everything is everywhere'. However, whether the same OTUs from both poles have identical genomes, i.e. whether 'everything is still everywhere' at the genomic level has not yet been examined systematically. Here, we isolated, sequenced and compared the genomes of 45 culturable marine bacteria belonging to three genera of Salinibacterium, Psychrobacter and Pseudoalteromonas from both polar oceans. The bacterial strains with identical 16S rRNA genes were common to both poles in every genus, and four identical genomes were detected in the genus Salinibacterium from the Arctic region. However, no identical genomes were observed from opposite poles in this study. Our data, therefore, suggest that 'everything is not everywhere' at the genomic level. The divergence time between bacteria is hypothesized to exert a strong impact on the bacterial biogeography at the genomic level. The geographical isolation between poles was observed for recently diverged, highly similar genomes, but not for moderately similar genomes. This study thus improves our understanding of the factors affecting the genomic-level biogeography of marine microorganisms isolated from distant locations.


Assuntos
Genômica , Pseudoalteromonas , Regiões Antárticas , Geografia , Filogenia , Pseudoalteromonas/genética , RNA Ribossômico 16S/genética
18.
Mar Drugs ; 19(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34940675

RESUMO

Bovine bone is rich in collagen and is a good material for collagen peptide preparation. Although thermolysin-like proteases (TLPs) have been applied in different fields, the potential of TLPs in preparing bioactive collagen peptides has rarely been evaluated. Here, we characterized a thermophilic TLP, A69, from a hydrothermal bacterium Anoxybacillus caldiproteolyticus 1A02591, and evaluated its potential in preparing bioactive collagen peptides. A69 showed the highest activity at 60 °C and pH 7.0. We optimized the conditions for bovine bone collagen hydrolysis and set up a process with high hydrolysis efficiency (99.4%) to prepare bovine bone collagen peptides, in which bovine bone collagen was hydrolyzed at 60 °C for 2 h with an enzyme-substrate ratio of 25 U/g. The hydrolysate contained 96.5% peptides that have a broad molecular weight distribution below 10000 Da. The hydrolysate showed good moisture-retention ability and a high hydroxyl radical (•OH) scavenging ratio of 73.2%, suggesting that the prepared collagen peptides have good antioxidative activity. Altogether, these results indicate that the thermophilic TLP A69 has promising potential in the preparation of bioactive collagen peptides, which may have potentials in cosmetics, food and pharmaceutical industries. This study lays a foundation for the high-valued utilization of bovine bone collagen.


Assuntos
Anoxybacillus , Antioxidantes/farmacologia , Colágeno/farmacologia , Metaloendopeptidases/química , Peptídeos/farmacologia , Animais , Antioxidantes/química , Bovinos , Colágeno/química , Peptídeos/química
19.
Front Neurol ; 12: 748990, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777221

RESUMO

Background: The Head Impulse Paradigm (HIMP) and Suppression Head Impulse Paradigm (SHIMP) are objective, quantitative methods that directly test the vestibulo-ocular reflex (VOR) and are increasingly becoming a standard in evaluating patients with vestibular disorders. Objective: The main objective was to assess the correlations between HIMP and SHIMP parameters in patients with superior vestibular neuritis (VN) and healthy participants. Additionally, the correlations between the parameters of each method were analyzed. Methods: A retrospective cohort, non-randomized study was designed. HIMP and SHIMP were performed on 40 patients with VN and 20 healthy participants (40 ears). HIMP and SHIMP parameters were measured and calculated. Pearson's or Spearson's correlations were used to establish the associations among them. Results: A strong positive correlation was found between HIMP and SHIMP gain (Pearson's r = 0.957, p = 0.000), while strong negative correlations were detected between HIMP and SHIMP saccade amplitudes (r = -0.637, p = 0.000) and percentages of overt saccades (r = -0.631, p = 0.000). In HIMP, strong and moderate positive correlations were identified between gain and saccade amplitude (R 2 = 0.726, p = 0.000) and gain and saccade percentage (R 2 = 0.558, p = 0.000), respectively. By contrast, an extremely weak positive correlation was observed between gain and latency (R 2 = 0.053, p = 0.040). In SHIMP, strong and moderate positive correlations were found between gain and saccade percentage (R 2 = 0.723, p = 0.000) and gain and saccade amplitude (R 2 = 0.525, p = 0.000), respectively, but no correlation was detected between gain and latency (R 2 = 0.006, p = 0.490). Conclusions: HIMP and SHIMP-related parameters were highly correlated (inter-method). Within each method (intra-method), moderate to strong correlations in VOR assessment were observed. These results further contribute to our understanding of the relationship between HIMP and SHIMP as well as to the diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...