Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 704
Filtrar
1.
Nucleic Acids Res ; 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36161321

RESUMO

Single-cell studies have delineated cellular diversity and uncovered increasing numbers of previously uncharacterized cell types in complex tissues. Thus, synthesizing growing knowledge of cellular characteristics is critical for dissecting cellular heterogeneity, developmental processes and tumorigenesis at single-cell resolution. Here, we present Cell Taxonomy (https://ngdc.cncb.ac.cn/celltaxonomy), a comprehensive and curated repository of cell types and associated cell markers encompassing a wide range of species, tissues and conditions. Combined with literature curation and data integration, the current version of Cell Taxonomy establishes a well-structured taxonomy for 3,143 cell types and houses a comprehensive collection of 26,613 associated cell markers in 257 conditions and 387 tissues across 34 species. Based on 4,299 publications and single-cell transcriptomic profiles of ∼3.5 million cells, Cell Taxonomy features multifaceted characterization for cell types and cell markers, involving quality assessment of cell markers and cell clusters, cross-species comparison, cell composition of tissues and cellular similarity based on markers. Taken together, Cell Taxonomy represents a fundamentally useful reference to systematically and accurately characterize cell types and thus lays an important foundation for deeply understanding and exploring cellular biology in diverse species.

2.
Front Oncol ; 12: 949962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059611

RESUMO

Introduction: Primary intrathoracic liposarcoma is extremely rare, and most published series lack genetic analyses. The aim of our study is to better understand the clinicopathologic and genetic features of these rare lesions. Materials and methods: Forty-three primary intrathoracic liposarcomas were identified and most cases were analyzed by systematic genetic studies, including fluorescence in situ hybridization (FISH), whole-exome sequencing (WES), and Sanger sequencing. Results: This series included 27 males and 16 females (ratios, 1.68:1) aged 24-73 years (median, 53 years). Tumors mainly occurred in the mediastinum (n=23, 53.5%), followed by pleural cavity (n=16, 37.2%) and lung (n=4, 9.3%). The study included 21 well-differentiated liposarcomas (WDLs), 19 dedifferentiated liposarcomas (DDLs), 2 myxoid pleomorphic liposarcomas (MPLs) and 1 pleomorphic liposarcoma (PL), without identification of myxoid liposarcoma. FISH analysis identified MDM2 amplification in 17 of 18 WDLs (94.4%) and all DDLs (16/16, 100.0%). The MDM2-nonamplified WDL was CDK4-nonamplified but FRS2-amplified. WES and Sanger sequencing found somatic TP53 mutation in the 2 MPLs. Follow-up information was available for 33 of 38 cases (86.8%). Thirteen patients (39.4%) showed no evidence of disease, 10 patients (30.3%) were alive with disease, and 8 patients (24.2%) died of disease. Fourteen cases developed recurrence and 1 with metastasis. Conclusions: WDL/DDL was the overwhelming subtype in this location, followed by MPL and PL. Analysis of the FRS2 gene, in combination with MDM2 and other genes of 12q13-15, may more precisely characterize WDL/DDLs. MPL is the most fatal subtype of this site. Further studies are needed to explore the role of TP53 in the pathogenesis of MPL.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36082183

RESUMO

Background: The therapeutic effects of Qiliqiangxin capsule (QLQX), a Chinese patent medicine, in patients with chronic heart failure are well established. However, whether QLQX modulates cardiac calcium (Ca2+) signals, which are crucial for the heart function, remains unclear. Aim of the Study. This study aimed to evaluate the role of QLQX in modulating Ca2+ signals in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Materials and Methods: Fluorescence imaging was used to monitor Ca2+ signals in the cytosol and nuclei of hiPSC-CMs. For Ca2+ spark measurements, the line-scan mode of a confocal microscope was used. Results: The QLQX treatment substantially decreased the frequency of spontaneous Ca2+ transients, whereas the amplitude of Ca2+ transients elicited by electrical stimulation did not change. QLQX increased the Ca2+ spark frequency in both the cytosol and nuclei without changing the sarcoplasmic reticulum Ca2+ content. Interestingly, QLQX ameliorated abnormal Ca2+ transients in CMs differentiated from hiPSCs derived from patients with long-QT syndrome. Conclusions: Our findings provide the first line of evidence that QLQX directly modulates cardiac Ca2+ signals in a human cardiomyocyte model.

4.
Signal Transduct Target Ther ; 7(1): 318, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36100602

RESUMO

Excessive inflammatory responses contribute to the pathogenesis and lethality of highly pathogenic human coronaviruses, but the underlying mechanism remains unclear. In this study, the N proteins of highly pathogenic human coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), middle east respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), were found to bind MASP-2, a key serine protease in the lectin pathway of complement activation, resulting in excessive complement activation by potentiating MBL-dependent MASP-2 activation, and the deposition of MASP-2, C4b, activated C3 and C5b-9. Aggravated inflammatory lung injury was observed in mice infected with adenovirus expressing the N protein. Complement hyperactivation was also observed in SARS-CoV-2-infected patients. Either blocking the N protein:MASP-2 interaction, MASP-2 depletion or suppressing complement activation can significantly alleviate N protein-induced complement hyperactivation and lung injury in vitro and in vivo. Altogether, these data suggested that complement suppression may represent a novel therapeutic approach for pneumonia induced by these highly pathogenic coronaviruses.


Assuntos
COVID-19 , Lesão Pulmonar , Animais , COVID-19/genética , Lectina de Ligação a Manose da Via do Complemento/genética , Proteínas do Nucleocapsídeo de Coronavírus , Humanos , Inflamação/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Camundongos , SARS-CoV-2
5.
Anal Chem ; 94(38): 13052-13060, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36094399

RESUMO

Genotyping of folate metabolism genes is of great importance in disease diagnosis and prevention. However, most current detection methods used for folate metabolism gene genotyping are based on sequencing and chips, which suffer from a high cost and laborious and time-consuming procedures. Herein, we reported a multiplex asymmetric PCR-HRM strategy for identifying genotypes of folate metabolism genes in a single tube. The proposed multiplex PCR-HRM assay has been successfully applied to identify the genotypes of folate metabolism genes, methylene tetrahydrofolate reductase (C677T, A1298C) and methionine synthase reductase A66G, on 1 µL of genomic DNA (gDNA) samples directly released from blood specimens, and the genotyping results were 100% consistent with the results of sequencing. The assay allows us to accurately detect the genotypes of gDNA with the detection limit down to 1 ng, which meets the clinical requirement. What is more, the capacity of resistance to aerosol pollution of the multiplex asymmetric PCR-HRM biosensing was first addressed and has been evaluated as it can withstand contamination of roughly 12.5-25% interfering nucleic acids. Because of the advantages of multiplex detection, high accuracy, and resistance to aerosol pollution and having no open tube procedure, this approach would pave the way for establishing a fast and cost-effective platform for folate metabolism gene genotyping and other SNP genotyping in clinical diagnostics.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2) , Ácidos Nucleicos , Ferredoxina-NADP Redutase , Ácido Fólico/metabolismo , Genótipo , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Reação em Cadeia da Polimerase Multiplex , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real
7.
Anal Chim Acta ; 1225: 340199, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36038230

RESUMO

Degradation analysis of therapeutic mAb is of high interest for critical quality attributes assessment and biotransformation studies. However, some obstacles, including low in vivo concentrations of mAb and complex biological matrices containing IgGs, could seriously interfere with mAb bioanalysis. In this study, a bioanalytical platform was developed for studying in vitro/in vivo modifications of trastuzumab, in which specific capture on mimotope peptide modified material was combined with trypsin digestion and LC-QTOF-MS analysis. It is worth noting that this material exhibits high specificity, suitable dynamic binding capacity, very little non-specific protein adsorption, and thus provides good enrichment and quantification performances for trastuzumab from patient serums. In particular, this bioanalytical platform was successfully applied to the dynamic monitoring of modifications of trastuzumab, such as deamidation, isomerization, oxidation and cyclization. Except for the faster deamidation of LC-Asn-30 and HC-Asn-387/392/393 under serum incubation, similar degradation trends for other sites were observed in phosphate buffer and spiked serum. Differences of peptide modification degrees of trastuzumab in patient serums were also observed. The novel platform exhibited superior specificity than Protein A/G/L based analytical methods, lower cost and higher stability than antigen or anti-idiotypic antibody based analytical methods, ensuring the evaluation of modification sites.


Assuntos
Anticorpos Monoclonais , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Humanos , Peptídeos , Espectrometria de Massas em Tandem/métodos , Trastuzumab
8.
Front Chem ; 10: 910353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936102

RESUMO

The combination of histone deacetylase inhibitor and BRAF inhibitor (BRAFi) has been shown to enhance the antineoplastic effect and reduce the progress of BRAFi resistance. In this study, a series of (thiazol-5-yl)pyrimidin-2-yl)amino)-N-hydroxyalkanamide derivatives were designed and synthesized as novel dual inhibitors of BRAF and HDACs using a pharmacophore hybrid strategy. In particular, compound 14b possessed potent activities against BRAF, HDAC1, and HDAC6 enzymes. It potently suppressed the proliferation of HT-29 cells harboring BRAFV600E mutation as well as HCT116 cells with wild-type BRAF. The dual inhibition against BRAF and HDAC downstream proteins was validated in both cells. Collectively, the results support 14b as a promising lead molecule for further development and a useful tool for studying the effects of BRAF/HDAC dual inhibitors.

9.
Stat Med ; 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948279

RESUMO

Patients with chronic diseases, such as cancer or epilepsy, are often followed through multiple stages of clinical interventions. Dynamic treatment regimes (DTRs) are sequences of decision rules that assign treatments at each stage based on measured covariates for each patient. A DTR is said to be optimal if the expectation of the desirable clinical benefit reaches a maximum when applied to a population. When there are three or more options for treatments at each decision point and the clinical outcome of interest is a time-to-event variable, estimating an optimal DTR can be complicated. We propose a doubly robust method to estimate optimal DTRs with multicategory treatments and survival outcomes. A novel blip function is defined to measure the difference in expected outcomes among treatments, and a doubly robust weighted least squares algorithm is designed for parameter estimation. Simulations using various weight functions and scenarios support the advantages of the proposed method in estimating optimal DTRs over existing approaches. We further illustrate the practical value of our method by applying it to data from the Standard and New Antiepileptic Drugs study. In this analysis, the proposed method supports the use of the new drug lamotrigine over the standard option carbamazepine. When the actual treatments match the estimated optimal treatments, survival outcomes tend to be better. The newly developed method provides a practical approach for clinicians that is not limited to cases of binary treatment options.

10.
BMC Gastroenterol ; 22(1): 392, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987606

RESUMO

BACKGROUND: Napsin B Aspartic Peptidase, Pseudogene (NAPSB) was associated with CD4 + T cell infiltration in pancreatic ductal adenocarcinoma. However, the biological role of NAPSB in hepatocellular carcinoma (HCC) remains to be determined. METHODS: The expression of NAPSB in HCC as well as its clinicopathological association were analyzed using data from several public datasets. qRT-PCR was used to verify the relative expression of NAPSB in patients with HCC using the Zhongnan cohort. Kaplan-Meier analyses, and univariate and multivariate Cox regression were conducted to determine the prognosis value of NAPSB on patients with HCC. Then enrichment analyses were performed to identify the possible biological functions of NAPSB. Subsequently, the immunological characteristics of NAPSB in the HCC tumor microenvironment (TME) were demonstrated comprehensively. The role of NAPSB in predicting hot tumors and its impact on immunotherapy and chemotherapy responses was also analyzed by bioinformatics methods. RESULTS: NAPSB was downregulated in patients with HCC and high NAPSB expression showed an improved survival outcome. Enrichment analyses showed that NAPSB was related to immune activation. NAPSB was positively correlated with immunomodulators, tumor-infiltrating immune cells, T cell inflamed score and cancer-immunity cycle, and highly expressed in immuno-hot tumors. High expression of NAPSB was sensitive to immunotherapy and chemotherapy, possibly due to its association with pyroptosis, apoptosis and necrosis. CONCLUSIONS: NAPSB was correlated with an immuno-hot and inflamed TME, and tumor cell death. It can be utilized as a promising predictive marker for prognosis and therapy in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Prognóstico , Microambiente Tumoral
11.
Front Oncol ; 12: 934735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016613

RESUMO

Objectives: This study aims to evaluate the diagnostic performance of machine-learning-based contrast-enhanced CT radiomic analysis for categorizing benign and malignant ovarian tumors. Methods: A total of 1,329 patients with ovarian tumors were randomly divided into a training cohort (N=930) and a validation cohort (N=399). All tumors were resected, and pathological findings were confirmed. Radiomic features were extracted from the portal venous phase images of contrast-enhanced CT. The clinical predictors included age, CA-125, HE-4, ascites, and margin of tumor. Both radiomics model (including selected radiomic features) and mixed model (incorporating selected radiomic features and clinical predictors) were constructed respectively. Six classifiers [k-nearest neighbor (KNN), support vector machines (SVM), random forest (RF), logistic regression (LR), multi-layer perceptron (MLP), and eXtreme Gradient Boosting (XGBoost)] were used for each model. The mean relative standard deviation (RSD) and area under the receiver operating characteristic curve (AUC) were applied to evaluate and select the best classifiers. Then, the performances of the two models with selected classifiers were assessed in the validation cohort. Results: The MLP classifier with the least RSD (1.21 and 0.53, respectively) was selected as the best classifier in both radiomics and mixed models. The two models with MLP classifier performed well in the validation cohort, with the AUCs of 0.91 and 0.96 and with accuracies (ACCs) of 0.83 and 0.87, respectively. The Delong test showed that the AUC of mixed model was statistically different from that of radiomics model (p<0.001). Conclusions: Machine-learning-based CT radiomic analysis could categorize ovarian tumors with good performance preoperatively. The mixed model with MLP classifier may be a potential tool in clinical applications.

12.
J Phys Chem A ; 126(33): 5654-5662, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35950981

RESUMO

To address the convergence issues in the natural occupation optimization of reduced density matrix functional theory (RDMFT), we recently proposed the explicit-by-implicit (EBI) idea to handle the ensemble N-representability constraint (Yao et al. J. Phys. Chem. Lett. 2021, 12, 6788). This work continues to focus on these issues that can affect the reliability of the electronic structure description in RDMFT; further explores the combination of EBI, as well as the (augmented) Lagrangian methods (both LM and ALM), with both first- and second-order numerical optimization algorithms; and carefully evaluates their performances in natural occupation optimizations of various systems, including strongly correlated systems and large molecules. By comparing both converged energies and elapsed times, it can be seen that the LM and ALM have serious convergence issues for systems of different sizes. In contrast, the optimizations of EBI can converge to better energies with fewer iterations. However, due to the local convergence nature of the Newton's Method (NM) algorithm, EBI@NM still suffers from the local minimum issue for both strongly correlated systems and large molecules. Overall, the combination of EBI with the simple first-order algorithm of gradient descent (GD), namely EBI@GD, consistently provides the lowest converged energies for different types of systems, with the lowest computational scaling. These tests demonstrate the advantages of EBI in the calculations of transition states, strongly correlated systems, and large molecules. Meanwhile, the insights gained from this work are helpful to further develop more efficient algorithms for RDMFT.

13.
Mol Ecol Resour ; 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35951477

RESUMO

Accurate identification of plants remains a significant challenge for taxonomists and is the basis for plant diversity conservation. Although DNA barcoding methods are commonly used for plant identification, these are limited by the low amplification success and low discriminative power of selected genomic regions. In this study, we developed a k-mer-based approach, the DNA signature sequence (DSS), to accurately identify plant taxon-specific markers, especially at the species level. DSS is a constant-length nucleotide sequence capable of identifying a taxon and distinguishing it from other taxa. In this study, we performed the first large-scale study of DSS markers in plants. DSS candidates of 3899 angiosperm plant species were calculated based on a chloroplast data set with 4356 assemblies. Using Sanger sequencing of PCR amplicons and high-throughput sequencing, DSSs were validated in four and 165 species, respectively. Based on this, the universality of the DSSs was over 79.38%. Several indicators influencing DSS marker identification and detection have also been evaluated, and common criteria for DSS application in plant identification have been proposed.

14.
Chem Commun (Camb) ; 58(67): 9373-9376, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35920106

RESUMO

The non-uniform plating-stripping behaviours of Li metal anodes hinder the application of Li metal batteries. Here, a stable 3D matrix is designed by coating a carbon skeleton with MXene, and the significant influence of the crystallographic texture of Li metal on electrochemical behaviour is investigated. The results demonstrate that the 3D MXene/carbon skeleton can effectively induce the evolution of advantageous Li(110) facets with a dendrite-free anode interface. Consequently, the modified Li metal anodes deliver stable plating-stripping behaviours.

15.
Diagnostics (Basel) ; 12(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36010320

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is known to alter the biventricular shape and temporal phases of the cardiac cycle. The presence of interventricular septal (IVS) displacement has been associated with the severity of PH. There has been limited cardiac magnetic resonance (CMR) data regarding the temporal parameters of the cardiac cycle in PH. This study aimed to quantify the temporal changes in the cardiac cycle derived from CMR in PH patients with and without IVS displacement and sought to understand the mechanism of cardiac dysfunction in the cardiac cycle. METHODS: Patients with PH who had CMR and right heart catheterization (RHC) examinations were included retrospectively. Patients were divided into an IVS non-displacement (IVSND) group and an IVS displacement (IVSD) group according to IVS morphology, as observed on short-axis cine CMR images. Additionally, age-matched healthy volunteers were included as the health control (HC). Temporal parameters, IVS displacement, ventricular volume and functional parameters were obtained by CMR, and pulmonary hemodynamics were obtained by RHC. The risk stratification of the PH patients was also graded according to the guidelines. RESULTS: A total of 70 subjects were included, consisting of 33 IVSD patients, 15 IVSND patients, and 22 HC patients. In the IVSND group, only the right ventricle ejection fraction (RVEF) was decreased in the ventricular function, and no temporal change in the cardiac cycle was found. A prolonged isovolumetric relaxation time (IRT) and shortened filling time (FT) in both ventricles, along with biventricular dysfunction, were detected in the IVSD group (p < 0.001). The IRT of the right ventricle (IRTRV) and FT of the right ventricle (FTRV) in the PH patients were associated with pulmonary vascular resistance, right cardiac index, and IVS curvature, and the IRTRV was also associated with the RVEF in a multivariate regression analysis. A total of 90% of the PH patients in the IVSD group were stratified into intermediate- and high-risk categories, and they showed a prolonged IRTRV and a shortened FTRV. The IRTRV was also the predictor of the major cardiovascular events. CONCLUSIONS: The temporal changes in the cardiac cycle were related to IVS displacement and mainly impacted the diastolic period of the two ventricles in the PH patients. The IRT and FT changes may provide useful pathophysiological information on the progression of PH.

16.
Transplantation ; 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36042552

RESUMO

BACKGROUND: The hemodynamic effects of aortic arch vessel (AAV) clamping during normothermic regional perfusion (NRP) in donation after circulatory death is unknown. We investigated effects of AAV clamping during NRP compared with no clamping in a porcine model. METHODS: In 16 pigs, hemodynamic parameters were recorded including biventricular pressure-volume measurements and invasive blood pressure. Additionally, blood gas parameters and inflammatory cytokines were used to assess the effect of AAV clamping. The animals were centrally cannulated for NRP, and baseline measurements were obtained before hypoxic circulatory arrest was induced by halting mechanical ventilation. During an 8-min asystole period, the animals were randomized to clamp (n = 8) or no-clamp (n = 8) of the AAV before commencement of NRP. During NRP, circulation was supported with norepinephrine (NE) and dobutamine. After 30 min of NRP, animals were weaned and observed for 180 min post-NRP. RESULTS: All hearts were successfully reanimated and weaned from NRP. The nonclamp groups received significantly more NE to maintain a mean arterial pressure >60 mm Hg during and after NRP compared with the clamp group. There were no between group differences in blood pressure or cardiac output. Pressure-volume measurements demonstrated preserved cardiac function' including ejection fraction and diastolic and systolic function. No between group differences in inflammatory markers were observed. CONCLUSION: AAV clamping did not negatively affect donor cardiac function or inflammation after circulatory death and NRP. Significantly less NE was used to support in the clamp group than in the nonclamp group.

17.
J Phys Chem Lett ; : 7081-7086, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35900208

RESUMO

Redox mediators (RMs) have a substantial ability to govern oxygen reduction reaction (ORR) in Li-O2 batteries, which can realize large capacity and high-rate capability. However, studies on understanding RM-assisted ORR mechanisms are still in their infancy. Herein, a quinone-based molecule, vitamin K1 (VK1), is first used as the ORR RM for Li-O2 batteries, together with 2,5-di-tert-butyl-1,4-benzoquinone (DBBQ), to elucidate key factors on the catalytic activity of RMs. By combining experiments and first-principle computations, we demonstrate that the reduced VK1 has strong oxygen affinity and can effectively retard the deposition of Li2O2 films on the electrode surface, thereby guaranteeing enough active sites for electron transfer. Besides, the low reaction free energy of disproportionation of the Li(VK1)O2 intermediate into Li2O2 also significantly accelerates the ORR process. Consequently, the catalytic activity of VK1 is significantly boosted, and the discharge capacity of VK1-assisted batteries is 3.2-4.5 times that of DBBQ-assisted batteries. This study provides new insight for better understanding the working roles of RMs in Li-O2 batteries.

18.
Nanomaterials (Basel) ; 12(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808058

RESUMO

In-sensor computing can simultaneously output image information and recognition results through in-situ visual signal processing, which can greatly improve the efficiency of machine vision. However, in-sensor computing is challenging due to the requirement to controllably adjust the sensor's photosensitivity. Herein, it is demonstrated a ternary cationic halide Cs0.05FA0.81MA0.14 Pb(I0.85Br0.15)3 (CsFAMA) perovskite, whose External quantum efficiency (EQE) value is above 80% in the entire visible region (400-750 nm), and peak responsibility value at 750 nm reaches 0.45 A/W. In addition, the device can achieve a 50-fold enhancement of the photoresponsibility under the same illumination by adjusting the internal ion migration and readout voltage. A proof-of-concept visually enhanced neural network system is demonstrated through the switchable photosensitivity of the perovskite sensor array, which can simultaneously optimize imaging and recognition results and improve object recognition accuracy by 17% in low-light environments.

19.
Front Oncol ; 12: 878635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814458

RESUMO

Giant cell tumor of tendon sheath (GCTTS) is a benign tumor. It occurs predominantly in the hands, ankles, and knees. A 39-year-old female presented with GCTTS in the right breast after breast augmentation. There was a clear borderline between the tumor and breast tissue. In terms of morphological appearance, synovial metaplasia could be observed in part of the collagenous capsule. The tumor was moderately cellular and was composed of synovium-like monocytes. The main part of the tumor was blended with nested and scattered xanthomatous cells, lymphocytes, and osteoclast-like giant cells. Hemosiderin granules were distributed in the lesion. Immunohistochemical staining and fluorescence in situ hybridization (FISH) analyses were performed. CD68 staining was positive in osteoclast-like giant cells. In addition, neither significant USP6 translocation nor CSF1 translocation was detected by FISH. We hypothesized that the pathogenesis of this rare GCT-TS was based on synovial metaplasia and did not depend on the translocation of classical CSF1.

20.
Front Chem ; 10: 905645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35815218

RESUMO

Developing bioresponsive nanocarriers with particular tumor cell targeting and on-demand payload release has remained a great challenge for combined chemo-photodynamic therapy (chemo-PDT). In this study, an intelligent nanocarrier (DATAT-NPCe6) responded to hierarchical endogenous tumor pH, and an exogenous red light was developed through a simple mixed micelle approach. The outside TAT ligand was masked to prevent an unexpected interaction in blood circulation. Following the accumulation of DATAT-NPCe6 in tumor tissues, tumor acidity at pH ∼6.5 recovered its targeting ability via triggering DA moiety degradation. Furthermore, the cascaded chemo-PDT was accomplished through light-stimulated nanocarrier disassembly and doxorubicin (DOX) release. Taking advantage of stability and controllability, this work provides a facile approach to designing bioresponsive nanocarriers and represents a proof-of-concept combinatorial chemo-PDT treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...