Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
ACS Biomater Sci Eng ; 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33651596

RESUMO

Overcoming multiple biological barriers, including circulation time in vivo, tumor vascular endothelium, reticuloendothelial system (RES), extracellular matrix (ECM), etc., is the key to improve the therapeutic efficacy of drug delivery systems in treating tumors. Inspired by the ability of natural erythrocytes to cross multiple barriers, in this study, a biomimetic delivery system named NE@DOX-Ang2 was developed for enhancing the chemotherapy of breast cancer, which employed nano-erythrocyte (NE) encapsulating doxorubicin (DOX) and surface modification with a targeted angiopep-2 peptide (Ang2). NE@DOX-Ang2 enhanced the capacity to cross biological barriers in a three-dimensional (3D) tumor spheroid model and in vivo in mice. Compared with a conventional drug delivery system of liposomes, the half-life of NE@DOX-Ang2 increased approximately 2.5 times. Moreover, NE@DOX-Ang2 exhibited excellent tumor-targeting ability and antitumor effects in vitro and in vivo. Briefly, the prepared nano-erythrocyte drug carrier has features of favorable biocompatibility and low immunogenicity and the advantage of prolonging the half-life of drugs, which may provide a novel perspective for development of clinically available nanomedicines.

2.
J Drug Target ; : 1-10, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33655819

RESUMO

Drug delivery with the help of nanoparticles could transport more payloads to tumour site. Owing to their limited accumulation and penetration in the tumour tissues, to increase delivery efficiency is currently still required for applying nanomedicine to treat tumour. Here, we initially report a pressure-driven accumulation of drug-loaded nanoparticles to tumours for efficient tumour therapy with a dry cupping device. The mesoporous Mn-doped silica based nanoparticles delivering 5-aza-2-deoxycytidine and docetaxel were prepared, characterised and used as a model nanomedicine to investigate the potential of dry cupping treatment. For this system, the Mn doping not only endowed the mesoporous silica nanoparticles biodegradability, but also made it much easier to bind a tumour targeting group, which is a G-quadruplex-forming aptamer AS1411. On tumour-bearing mice, the in vivo results demonstrated that the dry cupping treatment could substantially improve the distribution of nanomedicines at tumour site, resulting in enhanced treatment efficacy. Overall, this method enables the therapeutical nanoparticles accumulate to tumour through increasing the blood perfusion as well as altering the biological barrier, which opened up possibilities for the development of pressure-driven nanomedicine accumulation at tumour site.

3.
Theranostics ; 11(1): 379-396, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391481

RESUMO

Photodynamic therapy (PDT) holds a number of advantages for tumor therapy. However, its therapeutic efficiency is limited by non-sustainable reactive oxygen species (ROS) generation and heterogeneous distribution of photosensitizer (PS) in tumor. Herein, a "Sustainable ROS Generator" (SRG) is developed for efficient antitumor therapy. Methods: SRG was prepared by encapsulating small-sized Mn3O4-Ce6 nanoparticles (MC) into dendritic mesoporous silica nanoparticles (DMSNs) and then enveloped with hyaluronic acid (HA). Due to the high concentration of HAase in tumor tissue, the small-sized MC could be released from DMSNs and homogeneously distributed in whole tumor. Then, the released MC would be uptaken by tumor cells and degraded by high levels of intracellular glutathione (GSH), disrupting intracellular redox homeostasis. More importantly, the released Ce6 could efficiently generate singlet oxygen (1O2) under laser irradiation until the tissue oxygen was exhausted, and the manganese ion (Mn2+) generated by degraded MC would then convert the low toxic by-product (H2O2) of PDT to the most harmful ROS (·OH) for sustainable and recyclable ROS generation. Results: MC could be homogeneously distributed in whole tumor and significantly reduced the level of intracellular GSH. At 2 h after PDT, obvious intracellular ROS production was still observed. Moreover, during oxygen recovery in tumor tissue, ·OH could be continuously produced, and the nanosystem could induce 82% of cell death comparing with 30% of cell death induced by free Ce6. For in vivo PDT, SRG achieved a complete inhibition on tumor growth. Conclusion: Based on these findings, we conclude that the designed SRG could induce sustainable ROS generation, homogeneous intratumoral distribution and intracellular redox homeostasis disruption, presenting an efficient strategy for enhanced ROS-mediated anti-tumor therapy.

4.
Adv Healthc Mater ; : e2002171, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33448146

RESUMO

The unique tumor microenvironment (TME) characteristics such as immunosuppression impeded traditional cancer treatments. In contrast, developing cascade catalytic nanoplatforms by fully making use of substances in TME for cancer therapy may deserve full credit. Herein, a cascade catalytic nanoplatform based on glucose oxidase (GOD) modified mesoporous iron oxide nanoparticles (IONP) loaded with Artemisinin (ART) is developed, which is designed as IONP-GOD@ART. GOD can catalyze the oxidization of glucose into gluconic acid and H2 O2 , which not only realizes tumor starvation therapy, but also provides H2 O2 for IONP mediated Fenton reaction. Simultaneously, mesoporous IONP releases Fe2+ and Fe3+ ions in acidic TME. On the one hand, iron ions undergo Fenton reaction to generate hydroxyl radicals for chemodynamic therapy. On the other hand, the endoperoxide bridge in ART is broken in presence of Fe2+ and further generates reactive oxygen species (ROS) to achieve therapeutic purpose. In this sense, IONP-GOD@ART manipulates TME characteristics and leads to "butterfly effect", which brings out a large amount of ROS for eliciting immunogenic cell death, inducing M1-TAMs polarization, and further reprogramming immunosuppressive TME for enhanced immunotherapy. By this delicate design, the cascade catalytic nanoplatform of IONP-GOD@ART realizes potent cancer immunotherapy for tumor regression and metastasis prevention.

5.
J Hazard Mater ; 409: 124994, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33450515

RESUMO

Activated carbon (AC) retention beds are widely used in nuclear facilities, removing radioactive contaminants from exhaust air. Dynamic adsorption coefficient (DAC) is the core parameter to quantify the performance. Its definition has not been unified and it is affected by the geometry of the retention bed, the presence, the flow rate, and the concentration of adsorbate. So, DAC is currently a parameter characterizing the adsorption performance of the retention bed instead of the AC. In this regard, the definition of DAC should be revised, stripping away the influence of other factors. In this study, a 1D model for the AC column, a 2D model for blank piping, and a mathematical model for retention factor is developed. All are validated with simulations and experiments based on the "pulse dynamic method". They are used to analyze the factors affecting DAC quantitatively in detail, including the direct effect of blank piping, the indirect effect of blank piping by affecting the pulse height into the column, and the effect of krypton concentration distribution in the column. Finally, an improved definition of DAC characterizing AC instead of retention bed is given. This definition can be used as a reference for scholars who formulate relevant standards.

6.
Pharm Dev Technol ; 26(1): 1-10, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32985928

RESUMO

The use of chemotherapeutic drug paclitaxel (PTX) for the treatment of tumors has several limitations, including multidrug resistance (MDR) and serious adverse reactions. This research aims to co-encapsulate PTX and the chemosensitizer 2-methoxyestradiol (2-ME) into folate-conjugated human serum albumin nanoparticles (FA-HSANPs) to reduce multiple drug resistance and improve antitumor efficiency. The results show PTX/2-ME@FA-HSANPs had uniform particle size (180 ± 12.31 nm) and high encapsulation efficacy. It also exhibited highly potent cytotoxicity and apoptosis-inducing activities in the G2/M phase of PTX-resistant EC109/Taxol cells. Moreover, PTX/2-ME@FA-HSANPs not only displayed better inhibition of tumor growth in S-180 tumor-bearing mice than PTX alone but also reduced pathological damage to normal tissues. In summary, PTX/2-ME@FA-HSANPs could be a promising vehicle for tumor therapy and reducing drug resistance. This research will also provide references for other MDR treatment.

7.
Nanotechnology ; 32(1): 015301, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33078716

RESUMO

Clinical data shows that antitumor treatments are often ineffective if tumor cells have metastasized. To gain an effective antitumor therapeutic effect, in this report, the tumor cell was limited to the primary site and simultaneously ablated by chemotherapy. Considering the extremely complicated process of cancer metastasis, we seek to comprehensively suppress tumor metastases at both micro and macro levels, which closely link to migration and interact with each other. At the micro level, the motility of the tumor cell was decreased via accelerating mitochondria fusion. At the macro level, the unfavorable hypoxia environment was improved. A liposome-based multifunctional nanomedicine was designed by coloading latrunculin B (LAT-B), an inhibitor of actin polymerization, and doxorubicin (DOX) into the hydrophobic bilayers and aqueous cavity, respectively. Meanwhile, an oxygen reservoir named perfluoropentane (PFP) was encapsulated into the liposome core to fulfill synergistic treatment of metastatic tumors. In this paper, we demonstrated that the metastasis of the tumor cell could be effectively inhibited by LAT-B through promoting mitochondria fusion without affecting its function, making it as an encouraging candidate for effective anti-metastasis therapy. Meanwhile, we found that the combination of LAT-B and DOX shows a synergistic effect against tumors because the combined effect of these two drugs cover the entire cell proliferation process. In a word, this report presents a potential improvement in the treatment of metastatic cancer.

8.
Colloids Surf B Biointerfaces ; 198: 111499, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33317899

RESUMO

Nanoparticle-structuring aimed at the acetic acid (A) transporter on intestinal epithelial cells and tumor cells is a new potential strategy to enhance oral bioavailability and anti-tumor efficacy. In this study, chitosan (CS) was modified with hydrophilic A and hydrophobic lipoic acid (L), to produce ACSL. A novel ACSL-modified multifunctional liposomes (Lip) loaded with docetaxel (DTX; DTX-ACSL-Lip) was then prepared and characterized. DTX-ACSL-Lip recorded higher pH sensitivity and slower release than DTX-Lip and showed dithiothreitol (DTT) response release. DTX-ACSL-Lip uptake by Caco-2 cells was also significantly enhanced mainly viaA transporters compared with DTX-Lip. ACSL modification of DTX-Lip also improved oral bioavailability by 10.70-folds, with a 3.45-fold increase in Cmax and a 1.19-fold prolongation in retention time of DTX in the blood. Moreover, the grafting degree of A significantly affected cell uptake and oral bioavailability. They also showed a significant (1.33-fold) increase in drug intratumoral distribution, as well as an increase in tumor growth inhibition rate from 54.34% to 87.51% without weight loss, compared with DTX-Lip. Therefore, modification of DTX-Lip with ACSL can significantly enhance the oral bioavailability and anti-tumor efficacy of DTX without obvious toxicity, confirming the potential of the dual strategy of targeting A transporter and controlled drug release in tumor cells in oral therapy of tumor.

9.
J Extracell Vesicles ; 10(1): e12025, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33304477

RESUMO

Extracellular vesicles (EV) have attracted increasing attention as tumour biomarkers due to their unique biological property. However, conventional methods for EV analysis are mainly based on bulk measurements, which masks the EV-to-EV heterogeneity in tumour diagnosis and classification. Herein, a localized fluorescent imaging method (termed Digital Profiling of Proteins on Individual EV, DPPIE) was developed for analysis of multiple proteins on individual EV. In this assay, an anti-CD9 antibody engineered biochip was used to capture EV from clinical plasma sample. Then the captured EV was specifically recognized by multiple DNA aptamers (CD63/EpCAM/MUC1), followed by rolling circle amplification to generate localized fluorescent signals. By-analyzing the heterogeneity of individual EV, we found that the high-dimensional data collected from each individual EV would provide more precise information than bulk measurement (ELISA) and the percent of CD63/EpCAM/MUC1-triple-positive EV in breast cancer patients was significantly higher than that of healthy donors, and this method can achieve an overall accuracy of 91%. Moreover, using DPPIE, we are able to distinguish the EV between lung adenocarcinoma and lung squamous carcinoma patients. This individual EV heterogeneity analysis strategy provides a new way for digging more information on EV to achieve multi-cancer diagnosis and classification.

10.
Artigo em Inglês | MEDLINE | ID: mdl-33305859

RESUMO

Tumor fibrotic stroma forms complex barriers for therapeutic nanomedicine. Although nanoparticle vehicles are promising in overcoming biological barriers for drug delivery, fibrosis causes hypoxia, immunosuppression and limited immunocytes infiltration, and thus reduces antitumor efficacy of nanosystems. Herein, we report the development of cancer-associated fibroblasts (CAFs) responsive honeycomb-like nanoassemblies of carbon dots (CDs) to spatially program the delivery of multiple therapeutics for enhanced antitumor chemoimmunotherapy. Doxorubicin (DOX) and immunotherapeutic enhancer (Fe ions) are immobilized on the surface of CDs, whereas tumor microenvironment modifier (losartan, LOS) is encapsulated within the mesopores. The drugs-loaded nanoassemblies disassociate into individual CDs to release LOS to mitigate stroma and hypoxia in response to CAFs. The individual CDs carrying DOX and Fe ion efficiently penetrate deep into tumor to trigger intensified immune responses. Our in vitro and in vivo studies show that the nanoassemblies exhibit effective T cells infiltration, tumor growth inhibition and lung metastasis prevention, thereby providing a therapeutic platform for desmoplasia solid tumor.

11.
J Mater Chem B ; 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33226396

RESUMO

Pore-forming toxins (PFTs), the most common virulence proteins, are promising therapeutic keys in bacterial infections. CAL02, consisting of sphingomyelin (Sm) and containing a maximum ratio of cholesterol (Ch), has been applied to sequester PFTs. However, Sm, a saturated phospholipid, leads to structural rigidity of the liposome, which does not benefit PFT combination. Therefore, in order to decrease the membrane rigidity and improve the fluidity of liposomes, we have introduced an unsaturated phospholipid, phosphatidylcholine (Pc), to the saturated Sm. In this report, a soft nanoliposome (called CSPL), composed of Ch, Sm and Pc, was artificially prepared. In order to further improve its antibacterial effect, vancomycin (Van) was loaded into the hydrophilic core of CSPL, where Van can be released radically at the infectious site through transmembrane pores formed by the PFTs in CSPL. This soft Van@CSPL nanoliposome with detoxification/drug release was able to inhibit the possibility of antibiotic resistance and could play a better role in treating severe invasive infections in mice.

12.
Int J Pharm ; : 120098, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33220381

RESUMO

Drug toxicity and insufficient drug dosing place a limit on the effect of chemotherapy. Optimal efficacy is achieved by exposing tumor cells to the maximum tolerated dose of a chemotherapeutic drug. In this study, we developed a strategy (graphic summary) for enhancing the therapeutic and diagnostic capabilities of known chemotherapeutics. We used a dual-mode near-infrared (NIR) fluorescence/photoacoustic imaging technology to achieve actively guided tumor targeting of the photothermal therapeutic agent indocyanine green (ICG) and the chemotherapeutic drug 2-methoxyestradiol (2-ME), which were loaded into thermosensitive liposomes (TSLs) with surface-grafted tumor-targeting peptide cRGDyk (cRGDyk-2-ME@ICG-TSLs). In vitro studies demonstrated that cRGDyk-2-ME@ICG-TSLs effectively induced drug accumulation and cytotoxicity in NIR laser-irradiated B16-F10 melanoma cells using dual targeting based on the cRGDyk peptide and temperature sensitivity. An in vivo study showed that 24 h after intravenously injecting cRGDyk-2-ME@ICG-TSLs into melanoma tumor-bearing mice, the dual-mode NIR fluorescence/photoacoustic imaging could accurately identify tumors and normal tissues. In addition, the combination of cRGDyk-2-ME@ICG-TSLs and NIR radiation suppressed tumor growth in tumor-bearing nude mice and was associated with a low risk of side effects on normal organs. Our results indicate that TSLs are a suitable drug delivery system for diagnostic and chemotherapeutic agents guided by dual-mode imaging.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33220929

RESUMO

Dysfunction of long noncoding RNA (lncRNA) is associated with tumorigenesis of various malignancies, including glioma. Previously, lncRNA ARRDC1 antisense RNA 1(ARRDC1-AS1) has been reported to be dysregulated in several tumors. However, the roles of ARRDC1-AS1 in glioma have not been investigated. In this study, we firstly reported that ARRDC1-AS1 expression was distinctly increased in both glioma specimens and cell lines, and high ARRDC1-AS1 expression was associated with advanced clinical progression and poor prognosis of glioma patients. Additionally, STAT1 could activate the transcription of ARRDC1-AS1. Functional studies revealed that knockdown of ARRDC1-AS1 suppressed the proliferation, migration and invasion of glioma cells. Mechanisms exploration indicated ARRDC1-AS1 served as a sponge of miR-432-5p to upregulate PRMT5 expressions. Rescue experiments indicated that knockdown of miR-432-5p reversed the inhibiting effects of ARRDC1-AS1 knockdown on glioma cells. Overall, our findings highlighted the importance of STAT1/ARRDC1-AS1/miR-432-5p/PRMT5 axis in glioma progression and offered novel strategies for glioma treatments.

14.
Front Neurol ; 11: 950, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178091

RESUMO

Background: Benign paroxysmal positional vertigo (BPPV) is a self-limiting and recurrent disease but the cost is considerable. The number of patients with BPPV increased significantly under the quarantine policy in Hangzhou. The unhealthy lifestyle risk factors of BPPV have not yet been investigated. Thus, the objective is to analyze whether an unhealthy lifestyle is a risk factor of BPPV. Methods: One hundred and sixty three patients with idiopathic BPPV aged 22-87 years (BPPV group), and 89 aged 23-92 years sex-matched control subjects (non-BPPV group) were enrolled in this study. All BPPV patients received a definitive diagnosis which excluded secondary BPPV. Non-BPPV cases excluded BPPV, sudden deafness, Meniere's disease, ear or craniofacial surgery, vestibular neuritis, and head trauma history. We obtained a blood lipids profile, serum uric acid, total bilirubin, and related diagnostic information through the electronic medical record system. To get the time of physical activities and recumbent positions, we asked the patient or their family from February 2020 to June 2020, and the rest of the patient's information was acquired by phone or WeChat. Data Analyses: The t-test or chi-squared test, univariate, and multiple logistic regression analyses were performed for the two groups. For each factor, odds ratios were calculated with 95% confidence intervals (CIs). Moreover, test equality of two or more receiver operating characteristic (ROC) analyses were applied to the physical activities, and recumbent position time; area under curve (AUC) measures were calculated with 95% CIs and compared with each other. Results: The BPPV group had unhealthy lifestyles such as poor physical activities, prolonged recumbent position time, and low rate of calcium or VD supplementation in univariate logistic regression analyses (P < 0.05). Poor physical activities and prolonged recumbent position time were independently associated with BPPV in multiple logistic regression models (OR = 18.92, 95% CI: 6.34-56.43, p = 0.00 and OR = 1.15, 95% CI: 1.01-1.33, p < 0.04). In the comparison of ROC curves of recumbent position time and physical activities in identifying BPPV, AUCs were 0.68 (0.61-0.74), and 0.68 (0.63-0.73), respectively. Conclusion: We conclude that poor physical activities and prolonged recumbent position time may be independent risk factors for BPPV patients, but hypertension, hyperuricemia, hyperlipidemia, hemoglobin, diabetes, serum bilirubin, CHD, and CI, may not be.

15.
Nano Lett ; 20(11): 8102-8111, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33064007

RESUMO

Multidrug resistance (MDR) of a tumor is the main cause of failure of clinical chemotherapy. Herein, we report a simple, yet versatile, tumor-targeting "calcium ion nanogenerator" (TCaNG) to reverse drug resistance by inducing intracellular Ca2+ bursting. Consequently, the TCaNG could induce Ca2+ bursting in acidic lysosomes of tumor cells and then reverse drug resistance according to the following mechanisms: (i) Ca2+ specifically accumulates in mitochondria, suppressing cellular respiration and relieving tumor hypoxia, thus inhibiting P-glycoprotein biosynthesis by downregulating HIF-1α expression. (ii) Ca2+-bursting-induced respiratory depression blocks intracellular ATP production, which further leads to the P-gp incompetence. As a result, the TCaNG could decrease the IC50 of DOX to MCF-7/ADR cells by approximately 30 times and reduce the proliferation of drug-resistant tumors by approximately 13 times without obvious side effects. This simple, safe, and effective "Ca2+ bursting" strategy holds the potential for clinical application in tumor treatment.

16.
Parkinsons Dis ; 2020: 1216568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062247

RESUMO

Introduction: This study investigated the influence of lockdown during the 2019 coronavirus disease (COVID-19) pandemic on the quality of life of patients with Parkinson's disease (PD). Methods: We conducted a questionnaire survey involving 113 patients with PD from Xihu District, Hangzhou, Zhejiang. During the epidemic prevention and control period (February 1 to March 31, 2020), patients enrolled were asked to fill out questionnaires, including the "COVID-19 Questionnaire for PD Patients during the Period of Epidemic Prevention and Control" and "39-item Parkinson's Disease Questionnaire (PDQ-39)." During the phase of gradual release of epidemic prevention and control (April 1 to April 30, 2020), all patients were followed up again, and PDQ-39 questionnaires were completed. Results: The quality of life for patients during the period of epidemic prevention and control was worse than that after epidemic prevention and control (P < 0.001). The biggest problem that they faced was that they could not receive their doctor's advice or guidance regularly. The quality of life of patients who had difficulty getting doctors' guidance or those who changed their routine medication due to lockdown was even worse. Telemedicine was quite effective and efficient for patients to get doctors' guidance during lockdown. Conclusions: The inconvenient treatment during the pandemic directly caused the aggravation of patients' symptoms and the decline in their quality of life. It is suggested that social media (such as WeChat or Tencent QQ) are used for regular interactions and follow-up appointments for patients with inconvenient medical treatment.

17.
Biomaterials ; 256: 120221, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32738651

RESUMO

Nanoparticle-based CRISPR/Cas9 delivery systems hold great promise for specific and precise treatment of genetic disorder diseases. Herein, we developed a DNA nanoflower-based platform for microRNA-responsive cytosolic delivery of Cas9/sgRNA complex into tumor cells. The biocompatible DNA nano-vehicles can efficiently load Cas9/sgRNA by sequence hybridization. Importantly, this hybridization can be replaced by a tumor specific miRNA through toehold-mediated strand displacement process and achieve cell-type-specific release of Cas9/sgRNA from the DNA nanoflowers. We have verified that this miRNA-responsive releasing process can significantly improve the genome editing efficiency comparing with non-responsive control. This strategy suggests a versatile way for designing more specific and efficient CRISPR-based genome therapy system by incorporating stimuli-responsive Cas9/sgRNA release process.

18.
ACS Appl Mater Interfaces ; 12(34): 38163-38174, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32846473

RESUMO

For further efficiency improvement in kesterite-type Cu2ZnSn(S,Se)4 (CZTSSe) solar cells, it is essential to address the carrier recombination issue at the back electrode interface (BEI) caused by the undesirable built-in potential orientation toward an absorber as an n-MoSe2 interfacial layer formed. In this regard, back surface field (BSF) incorporation, i.e., field-effect passivation, shows promise for dealing with this issue due to its positive effect in decreasing recombination at the BEI. In this study, the BSF was realized with the p-type conduction transition in interfacial layer MoSe2 by incorporating Nb into the back electrode. The BSF width can be tuned via modulating the carrier concentration of the absorber, which has been demonstrated by capacitance-voltage characterization. A beyond 7% efficiency BSF-applied CZTSSe solar cell is prepared, and the effects of a tunable BSF and the mechanism underpinning device performance improvement have been investigated in detail. The wider BSF distribution in the absorber induces a decrease in reverse saturation current density (J0) due to the stronger BSF effect in suppressing BEI recombination. As a result, an accompanying increase in open-circuit voltage (VOC) and short-circuit current density (JSC) is achieved as compared to the BSF-free case. This study offers an alternative strategy to address the BEI recombination issue and also broadens the interface passivation research scope of potentially competitive kesterite solar cells.

19.
J Drug Target ; : 1-13, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32795132

RESUMO

It is important to enhance penetration depth of nanomedicine and realise rapid drug release simultaneously at targeted tumour for improving anti-tumour efficiency of chemotherapeutic drugs. This project employed sodium alginate (Alg) as matrix material, to establish tumour-responsive nanogels with particle size conversion and drug controlled release functions. Specifically, tumour-targeting peptide CRGDK was conjugated with Alg first (CRGDK-Alg). Then, doxorubicin (DOX) was efficiently encapsulated in CRGDK-FeAlg nanogel during the cross-linking process (CRGDK-FeAlg/DOX). This system was closed during circulation. Once reaching tumour, the particle size of nanogels was reduced to ∼25 nm, which facilitated deep penetration of DOX in tumour tissues. After entering tumour cells, the size of nanogels was further reduced to ∼10 nm and DOX was released simultaneously. Meanwhile, FeAlg efficiently catalysed H2O2 to produce •OH by Fenton reaction, achieving local chemodynamic therapy without O2 mediation. Results showed CRGDK-FeAlg/DOX significantly inhibited tumour proliferation in vivo with V/V0 of 1.13 after treatment, significantly lower than that of control group with V/V0 of 4.79.

20.
Nano Lett ; 20(9): 6272-6280, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32787161

RESUMO

Although immunogenic cell death (ICD)-based chemoimmunotherapy elicits an immune response, it always focuses on eliminating "seeds" (tumor cells) but neglects "soil" (tumor microenvironment, TME), leading to tumor growth and metastasis. Herein, a type of detachable core-shell nanoplatform (DOX@HA-MMP-2-DEAP/CXB) is developed, which could swell in the acidic TME because of the protonation of the 3-diethylaminopropyl isothiocyanate (DEAP) inner core for celecoxib (CXB) release, while hyaluronic acid@doxorubicine (HA@DOX) prodrug in the outer shell could release by the cleavage of matrix metalloproteinase-2 (MMP-2) peptide. HA@DOX targets tumor cells precisely for triggering ICD. And CXB acts on multiple immune cells to remodulate TME, such as increasing the infiltration of dendritic cells (DCs) and T cells, decreasing the infiltration of the immunosuppressive cells, and eliminating the physical barriers between T cells and tumor cells. For comparison, HA-DOCA/DOX/CXB traditional nanoparticles are constructed. And DOX@HA-MMP-2-DEAP/CXB performs an impressive antitumor effect, which shows potential in enhancing the effect of chemoimmunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...