Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 102: 103490, 2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31877512

RESUMO

Mechanical failure of zirconia-based full-arch implant-supported fixed dental prostheses (FAFDPs) remains a critical issue in prosthetic dentistry. The option of full-arch implant treatment and the biomechanical behaviour within a sophisticated screw-retained prosthetic structure have stimulated considerable interest in fundamental and clinical research. This study aimed to analyse the biomechanical responses of zirconia-based FAFDPs with different implant configurations (numbers and distributions), thereby predicting the possible failure sites and the optimum configuration from biomechanical aspect by using finite element method (FEM). Five 3D finite element (FE) models were constructed with patient-specific heterogeneous material properties of mandibular bone. The results were reported using volume-averaged von-Mises stresses (σVMVA) to eliminate numerical singularities. It was found that wider placement of multi-unit copings was preferred as it reduces the cantilever effect on denture. Within the limited areas of implant insertion, the adoption of angled multi-unit abutments allowed the insertion of oblique implants in the bone and wider distribution of the multi-unit copings in the prosthesis, leading to lower stress concentration on both mandibular bone and prosthetic components. Increasing the number of supporting implants in a FAFDPs reduced loading on each implant, although it may not necessarily reduce the stress concentration in the most posterior locations significantly. Overall, the 6-implant configuration was a preferable configuration as it provided the most balanced mechanical performance in this patient-specific case.

2.
Int J Numer Method Biomed Eng ; 35(10): e3245, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31370097

RESUMO

Biofabricated nanostructured and microstructured scaffolds have exhibited great potential for nerve tissue regeneration and functional restoration, and prevascularization and biotransportation within 3D fascicle structures are critical. Unfortunately, an ideal internal fascicle and microvascular model of human peripheral nerves is lacking. In this study, we used microcomputed tomography (microCT) to acquire high-resolution images of the human sciatic nerve. We propose a novel deep-learning network technique, called ResNetH3D-Unet, to segment fascicles and microvascular structures. We reconstructed 3D intraneural fascicles and microvascular topography to quantify the fascicle volume ratio (FVR), microvascular volume ratio (MVR), microvascular to fascicle volume ratio (MFVR), fascicle surface area to volume ratio (FSAVR), and microvascular surface area to volume ratio (MSAVR) of human samples. The frequency distributions of the fascicle diameter, microvascular diameter, and fascicle-to-microvasculature distance were analyzed. The obtained microCT analysis and reconstruction provided high-resolution microstructures of human peripheral nerves. Our proposed ResNetH3D-Unet method for fascicle and microvasculature segmentation yielded a mean intersection over union (IOU) of 92.1% (approximately 5% higher than the U-net IOU). The 3D reconstructed model showed that the internal microvasculature runs longitudinally within the internal epineurium and connects to the external vasculature at some points. Analysis of the 3D data indicated a 48.2 ± 3% FVR, 23.7 ± 1.8% MVR, 4.9 ± 0.5% MFVR, 7.26 ± 2.58 mm-1 FSAVR, and 1.52 ± 0.52 mm-1 MSAVR. A fascicle diameter of 0.98 mm, microvascular diameter of 0.125 mm, and microvasculature-to-fascicle distance of 0.196 mm were most frequent. This study provides fundamental data and structural references for designing bionic scaffolding constructs with 3D microvascular and fascicle distributions.

3.
J Biomech ; 90: 1-8, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31079877

RESUMO

The human masticatory system has received significant attention in the areas of biomechanics due to its sophisticated co-activation of a group of masticatory muscles which contribute to the fundamental oral functions. However, determination of each muscular force remains fairly challenging in vivo; the conventional data available may be inapplicable to patients who experience major oral interventions such as maxillofacial reconstruction, in which the resultant unsymmetrical anatomical structure invokes a more complex stomatognathic functioning system. Therefore, this study aimed to (1) establish an inverse identification procedure by incorporating the sequential Kriging optimization (SKO) algorithm, coupled with the patient-specific finite element analysis (FEA) in silico and occlusal force measurements at different time points over a course of rehabilitation in vivo; and (2) evaluate muscular functionality for a patient with mandibular reconstruction using a fibula free flap (FFF) procedure. The results from this study proved the hypothesis that the proposed method is of certain statistical advantage of utilizing occlusal force measurements, compared to the traditionally adopted optimality criteria approaches that are basically driven by minimizing the energy consumption of muscle systems engaged. Therefore, it is speculated that mastication may not be optimally controlled, in particular for maxillofacially reconstructed patients. For the abnormal muscular system in the patient with orofacial reconstruction, the study shows that in general, the magnitude of muscle forces fluctuates over the 28-month rehabilitation period regardless of the decreasing trend of the maximum muscular capacity. Such finding implies that the reduction of the masticatory muscle activities on the resection side might lead to non-physiological oral biomechanical responses, which can change the muscular activities for stabilizing the reconstructed mandible.

4.
Sci Rep ; 9(1): 4682, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886223

RESUMO

The aim of this study was to investigate the fracture behaviour of fissural dental enamel under simulated occlusal load in relation to various interacting factors including fissure morphology, cuspal angle and the underlying material properties of enamel. Extended finite element method (XFEM) was adopted here to analyse the fracture load and crack length in tooth models with different cusp angles (ranging from 50° to 70° in 2.5° intervals), fissural morphologies (namely U shape, V shape, IK shape, I shape and Inverted-Y shape) and enamel material properties (constant versus graded). The analysis results showed that fissures with larger curved morphology, such as U shape and IK shape, exhibit higher resistance to fracture under simulated occlusal load irrespective of cusp angle and enamel properties. Increased cusp angle (i.e. lower cusp steepness), also significantly enhanced the fracture resistance of fissural enamel, particularly for the IK and Inverted-Y shape fissures. Overall, the outcomes of this study explain how the interplay of compositional and structural features of enamel in the fissural area contribute to the resistance of the human tooth against masticatory forces. These findings may provide significant indicators for clinicians and technicians in designing/fabricating extra-coronal dental restorations and correcting the cuspal inclinations and contacts during clinical occlusal adjustment.

5.
J Mech Behav Biomed Mater ; 92: 71-78, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30660030

RESUMO

Dental adhesive provides effective retention of filling materials via adhesive-dentin hybridization. The use of co-monomers, such as 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP), is thought to be crucial for hybridization owing to their ionic-binding to calcium and co-polymerization in the polymerizable adhesives. Optimal hybridization partly depends on the mechanical properties of polymerized adhesives, which are likely to be proportional to the degree of conversion ratio. This study assessed the correlation between polymerization quality and mechanical properties at the adhesive-dentin interfaces in the presence or absence of 10-MDP. In situ Raman microspectroscopy and nanoindentation tests were used concurrently to quantify the degree of conversion ratio and dynamic mechanical properties across the adhesive-dentin interfaces. Despite the excellent diffusion and apparent higher degree of co-polymerization, 10-MDP reduced the elastic modulus of the interface. The higher viscoelastic properties of the adhesive are suggestive of poor polymerization, namely polymerization linearity related to the long carboxyl chain of 10-MDP. Such reduced mechanical integrity of hybridization could also be associated with the inhibition of nano-layering between 10-MDP and mineralized tissue in the presence of hydroxyethyl methacrylate (HEMA). This potential drawback of HEMA necessitates further qualitative/quantitative characterization of adhesive-dentin hybridization using a HEMA-free/low concentration experimental 10-MDP monomer, which theoretically possesses superior chemical bonding potential to the current HEMA-rich protocol.

6.
J Mech Behav Biomed Mater ; 90: 248-255, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30388508

RESUMO

An increase in non-enzymatic collagen matrix cross-links, such as advanced glycation end-products (AGEs), is known to be a major complication in human mineralized tissues, often causing abnormal fractures. However, degradation of mechanical properties in relation to AGEs has not been fully elucidated at the material level. Here, we report nanoscale time-dependent deformation and dimensional recovery of human tooth dentin that has undergone glycation induced by x-ray irradiation. The reduction in enzymatic collagen cross-linking and the increased level of AGEs with concomitant growth of disordered collagen matrix diminished creep deformation recovery in the lower mineralized target region. However, the elevated AGEs level alone did not cause a reduction in time-dependent deformation and its recovery in the higher mineralized target region. In addition to the elevated AGEs level, the degradation of the mechanical properties of mineralized tissues should be assessed with care in respect to multiple parameters in the collagen matrix at the molecular level.


Assuntos
Dentina/metabolismo , Dentina/efeitos da radiação , Fenômenos Mecânicos/efeitos da radiação , Nanotecnologia , Adolescente , Adulto , Fenômenos Biomecânicos/efeitos da radiação , Colágeno/metabolismo , Glicosilação/efeitos da radiação , Humanos , Cinética , Teste de Materiais , Adulto Jovem
7.
J Mech Behav Biomed Mater ; 89: 150-161, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30286374

RESUMO

OBJECTIVES: This study aimed to develop a simple and efficient numerical modeling approach for characterizing strain and total strain energy in bone scaffolds implanted in patient-specific anatomical sites. MATERIALS AND METHODS: A simplified homogenization technique was developed to substitute a detailed scaffold model with the same size and equivalent orthotropic material properties. The effectiveness of the proposed modeling approach was compared with two other common homogenization methods based on periodic boundary conditions and the Hills-energy theorem. Moreover, experimental digital image correlation (DIC) measurements of full-field surface strain were conducted to validate the numerical results. RESULTS: The newly proposed simplified homogenization approach allowed for fairly accurate prediction of strain and total strain energy in tissue scaffolds implanted in a large femur mid-shaft bone defect subjected to a simulated in-vivo loading condition. The maximum discrepancy between the total strain energy obtained from the simplified homogenization approach and the one obtained from detailed porous scaffolds was 8.8%. Moreover, the proposed modeling technique could significantly reduce the computational cost (by about 300 times) required for simulating an in-vivo bone scaffolding scenario as the required degrees of freedom (DoF) was reduced from about 26 million for a detailed porous scaffold to only 90,000 for the homogenized solid counterpart in the analysis. CONCLUSIONS: The simplified homogenization approach has been validated by correlation with the experimental DIC measurements. It is fairly efficient and comparable with some other common homogenization techniques in terms of accuracy. The proposed method is implicating to different clinical applications, such as the optimal selection of patient-specific fixation plates and screw system.


Assuntos
Osso e Ossos/citologia , Análise de Elementos Finitos , Estresse Mecânico , Tecidos Suporte , Fenômenos Biomecânicos , Fêmur/citologia , Modelos Biológicos , Porosidade
8.
Dent Mater ; 35(1): 87-97, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30502962

RESUMO

OBJECTIVE: Tooth enamel has unsurpassed hardness and stiffness among mammalian tissue structures. Such stiff materials are usually brittle, yet mature enamel can survive for a lifetime. Understanding the nanoscale origin of enamel durability is important for developing advanced load-bearing biomaterials. Here, nanoscale exceptional contact elasticity of the human tooth enamel, based on nanoindentation tests, is reported. METHODS: Spherical indenter tips with radii of 243 and 1041nm were used to determine stress-strain curves of enamel. Force-displacement curves were recorded using quasi-static loading strain rates of 0.031, 0.041, and 0.061s-1. The storage moduli from a superimposed signal amplitude (dynamic strain at 220Hz) embedded during primary quasi-static loading and from quasi-static elastic theory were simultaneously measured. Modulus mapping was considered to be an extremely low quasi-static loading strain rate indentation test. RESULTS: The elastic limits were 7-9GPa and 5-6GPa for the small and large indenters, respectively. The elastic-plastic transition point and elastic modulus value increased with substantially increased quasi-static loading strain rate. The results suggested that the increase of the elastic limit during high-loading strain was associated with exceptional contact elasticity at the nanoscale of the enamel structure and the consequent extension of the contact area (i.e., a temporary pile-up response, dependent on the enamel nanocrystals and protein glue). SIGNIFICANCE: Structural modification at this scale effectively prevents the initiation of cracking from localized strain, thus reinforcing the bulk structure. These results may provide valuable insight for conceptualizing bio-inspired nanocomposites.


Assuntos
Esmalte Dentário , Animais , Módulo de Elasticidade , Elasticidade , Dureza , Humanos , Suporte de Carga
9.
Artigo em Inglês | MEDLINE | ID: mdl-28425209

RESUMO

Dynamic load exists in numerous biomechanical systems, and its identification signifies a critical issue for characterizing dynamic behaviors and studying biomechanical consequence of the systems. This study aims to identify dynamic load in the dental prosthetic structures, namely, 3-unit implant-supported fixed partial denture (I-FPD) and teeth-supported fixed partial denture. The 3-dimensional finite element models were constructed through specific patient's computerized tomography images. A forward algorithm and regularization technique were developed for identifying dynamic load. To verify the effectiveness of the identification method proposed, the I-FPD and teeth-supported fixed partial denture structures were investigated to determine the dynamic loads. For validating the results of inverse identification, an experimental force-measuring system was developed by using a 3-dimensional piezoelectric transducer to measure the dynamic load in the I-FPD structure in vivo. The computationally identified loads were presented with different noise levels to determine their influence on the identification accuracy. The errors between the measured load and identified counterpart were calculated for evaluating the practical applicability of the proposed procedure in biomechanical engineering. This study is expected to serve as a demonstrative role in identifying dynamic loading in biomedical systems, where a direct in vivo measurement may be rather demanding in some areas of interest clinically.


Assuntos
Prótese Parcial Fixa , Implantes Dentários , Análise de Elementos Finitos , Humanos , Estresse Mecânico , Tomografia Computadorizada por Raios X
10.
Artigo em Inglês | MEDLINE | ID: mdl-26916052

RESUMO

Design of prosthetic implants to ensure rapid and stable osseointegration remains a significant challenge, and continuous efforts have been directed to new implant materials, structures and morphology. This paper aims to develop and characterise a porous titanium dental implant fabricated by metallic powder injection-moulding. The surface morphology of the specimens was first examined with a scanning electron microscope (SEM), followed by microscopic computerised tomography (µ-CT) scanning to capture its 3D microscopic features non-destructively. The nature of porosity and pore sizes were determined statistically. A homogenisation technique based on the Hills-energy theorem was adopted to evaluate its directional elastic moduli, and the conservation of mass theorem was employed to quantify the oxygen diffusivity for bio-transportation feature. This porous medium was found to have pore sizes varying from 50 to 400 µm and the average porosity of 46.90 ± 1.83%. The anisotropic principal elastic moduli were found fairly close to the upper range of cortical bone, and the directional diffusivities could potentially enable radial osseous tissue ingrowth and vascularisation. This porous titanium successfully reduces the elastic modulus mismatch between implant and bone for dental and orthopaedic applications, and provides improved capacity for transporting oxygen, nutrient and waste for pre-vascular network formation. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Implantes Dentários , Titânio , Microtomografia por Raio-X/métodos , Difusão , Módulo de Elasticidade , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Osseointegração , Oxigênio/metabolismo , Porosidade , Propriedades de Superfície
11.
Sci Rep ; 6: 28816, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27403936

RESUMO

Healing large bone defects, especially in weight-bearing locations, remains a challenge using available synthetic ceramic scaffolds. Manufactured as a scaffold using 3D printing technology, Sr-HT-Gahnite at high porosity (66%) had demonstrated significantly improved compressive strength (53 ± 9 MPa) and toughness. Nevertheless, the main concern of ceramic scaffolds in general remains to be their inherent brittleness and low fracture strength in load bearing applications. Therefore, it is crucial to establish a robust numerical framework for predicting fracture strengths of such scaffolds. Since crack initiation and propagation plays a critical role on the fracture strength of ceramic structures, we employed extended finite element method (XFEM) to predict fracture behaviors of Sr-HT-Gahnite scaffolds. The correlation between experimental and numerical results proved the superiority of XFEM for quantifying fracture strength of scaffolds over conventional FEM. In addition to computer aided design (CAD) based modeling analyses, XFEM was conducted on micro-computed tomography (µCT) based models for fabricated scaffolds, which took into account the geometric variations induced by the fabrication process. Fracture strengths and crack paths predicted by the µCT-based XFEM analyses correlated well with relevant experimental results. The study provided an effective means for the prediction of fracture strength of porous ceramic structures, thereby facilitating design optimization of scaffolds.


Assuntos
Cerâmica/química , Tecidos Suporte/química , Suporte de Carga , Regeneração Óssea , Substitutos Ósseos , Força Compressiva , Desenho Assistido por Computador , Análise de Elementos Finitos , Fraturas Ósseas/terapia , Humanos , Teste de Materiais , Porosidade , Pressão , Impressão Tridimensional , Estresse Mecânico , Engenharia Tecidual/métodos , Microtomografia por Raio-X
12.
J Mech Behav Biomed Mater ; 59: 279-290, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26894661

RESUMO

OBJECTIVES: This study aimed to explore the "sensitivity" of the fracture load and initiation site to loading position on the central occlusal surface of a pontic tooth for both all-ceramic inlay retained and onlay supported partial denture systems. MATERIALS AND METHODS: Three dimensional (3D) finite element (FE) inlay retained and onlay supported partial denture models were established for simulating crack initiation and propagation by using the eXtended Finite Element Method (XFEM). The models were subjected to a mastication force up to 500N on the central fossa of the pontic. The loading position was varied to investigate its influence on fracture load and crack path. RESULTS: Small perturbation of the loading position caused the fracture load and crack pattern to vary considerably. For the inlay fixed partial dentures (FPDs), the fracture origins changed from the bucco-gingival aspect of the molar embrasure to the premolar embrasure when the indenter force location is slightly shifted from the mesial to distal side. In contrast, for onlay FPDs, cracking initiated from bucco-gingival aspect of the premolar embrasure when the indenter is slightly shifted to the buccal side and from molar embrasure when the indenter is shifted to the lingual side. CONCLUSIONS: The fracture load and cracking path were found to be very sensitive to loading position in the all-ceramic inlay and onlay FPDs. The study provides a basis for improved understanding on the role of localized contact loading of the cusp surface in all-ceramic FPDs.


Assuntos
Análise do Estresse Dentário , Planejamento de Dentadura , Prótese Parcial Fixa , Restaurações Intracoronárias , Cerâmica , Porcelana Dentária , Análise de Elementos Finitos
13.
Dent Mater ; 32(3): 373-84, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26794498

RESUMO

OBJECTIVE: This study aimed to individually quantify the effects of various design parameters, including margin thickness, convergence angle of abutment, and bonding conditions on fracture resistance of resin bonded glass dental crown systems (namely, glass simulated crown). MATERIALS AND METHODS: An in vitro experimental test and an in silico computational eXtended Finite Element Method (XFEM) were adopted to explore crack initiation and propagation in glass simulated crown models with the margin thickness ranging from 0.8 to 1.2mm, convergence angle from 6° to 12°, and three different bonding conditions, namely non-bonded (NB), partially bonded (PB), fully bonded (FB). RESULTS: The XFEM modeling results of cracking initiation loads and subsequent growth in the glass simulated crown models were correlated with the experimental results. It was found that the margin thickness has a more significant effect on the fracture resistance than the convergence angle. The adhesively bonded state has the highest fracture resistance among these three different bonding conditions. CONCLUSION: Crowns with thicker margins, smaller convergence angle and fully bonded are recommended for increasing fracture resistance of all-ceramic crowns. This numerical modeling study, supported by the experimental tests, provides more thorough mechanical insight into the role of margin design parameters, thereby forming a novel basis for clinical guidance as to preparation of tapered abutments for all-ceramic dental crowns.


Assuntos
Coroas , Planejamento de Prótese Dentária , Falha de Restauração Dentária , Vidro/química , Cimentos de Resina/química , Dente Suporte , Análise do Estresse Dentário , Análise de Elementos Finitos , Técnicas In Vitro , Teste de Materiais , Propriedades de Superfície
14.
Comput Methods Biomech Biomed Engin ; 19(11): 1210-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26718135

RESUMO

This study aims to establish a new computational framework that allows modeling transient oxygen diffusion in tissue scaffolds more efficiently. It has been well known that the survival of cells strongly relies on continuous oxygen/nutrient supply and metabolite removal. With optimal design in scaffold architecture, its ability to sustain long distance oxygen supply could be improved considerably. In this study, finite element based homogenization procedure is first used to characterize the initial effective biotransport properties in silico. These initial properties are proper indicators to prediction of the on-going performance of tissue scaffolds over time. The transient model by adopting an edge-based smoothed finite element method with combination of mass-redistributed method is then established to more efficiently simulate the transient oxygen transfer process in tissue scaffolds. The proposed new method allows large time steps to model the oxygen diffusion process without losing numerical accuracy, thereby enhancing the computational efficiency significantly, in particular for the design optimization problems which typically require numerous analysis iterations. A number of different scaffold designs are examined either under net diffusion without cell seeding, or under cellular oxygen/nutrient uptake with or without considering cell viability. The association between the homogenized effective diffusivity of net scaffold microstructures and corresponding transient diffusion and time-dependent cellular activities is divulged. This study provides some insights into scaffold design.


Assuntos
Análise Numérica Assistida por Computador , Engenharia Tecidual/métodos , Tecidos Suporte/química , Animais , Transporte Biológico , Contagem de Células , Sobrevivência Celular , Simulação por Computador , Difusão , Análise de Elementos Finitos , Camundongos , Células NIH 3T3 , Oxigênio/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo
15.
J Mech Behav Biomed Mater ; 53: 11-20, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26298801

RESUMO

The principle of minimal intervention dentistry (MID) is to limit removal of carious tooth tissue while maximizing its repair and survival potential. The objective of this study is to explore the fracture resistance of a permanent molar tooth with a fissure carious lesion along with three clinical restoration procedures, namely one traditional and two conservative approaches, based upon MID. The traditional restoration employs extensive surgical removal of enamel and dentine about the cavity to eliminate potential risk of further caries development, while conservative method #1 removes significantly less enamel and infected dentine, and conservative method #2 only restores the overhanging enamel above the cavity and leaves the infected and affected dentine as it was. An extended finite element method (XFEM) is adopted here to analyze the fracture behaviors of both two-dimensional (2D) and three-dimensional (3D) modeling of these four different scenarios. It was found that the two conservative methods exhibited better fracture resistance than the traditional restorative method. Although conservative method #2 has less fracture resistance than method #1, it had significantly superior fracture resistance compared to other restorations. More important, after cavity sealing it may potentially enhance the opportunity for remineralization and improved loading bearing capacity and fracture resistance.


Assuntos
Fissuras Dentárias/terapia , Restauração Dentária Permanente/métodos , Fenômenos Mecânicos , Fissuras Dentárias/patologia , Análise de Elementos Finitos , Dente Molar
16.
Artigo em Inglês | MEDLINE | ID: mdl-26444905

RESUMO

Layered all-ceramic systems have been increasingly adopted in major dental prostheses. However, ceramics are inherently brittle, and they often subject to premature failure under high occlusion forces especially in the posterior region. This study aimed to develop mechanically sound novel topological designs for all-ceramic dental bridges by minimizing the fracture incidence under given loading conditions. A bi-directional evolutionary structural optimization (BESO) technique is implemented within the extended finite element method (XFEM) framework. Extended finite element method allows modeling crack initiation and propagation inside all-ceramic restoration systems. Following this, BESO searches the optimum distribution of two different ceramic materials, namely porcelain and zirconia, for minimizing fracture incidence. A performance index, as per a ratio of peak tensile stress to material strength, is used as a design objective. In this study, the novel XFEM based BESO topology optimization significantly improved structural strength by minimizing performance index for suppressing fracture incidence in the structures. As expected, the fracture resistance and factor of safety of fixed partial dentures structure increased upon redistributing zirconia and porcelain in the optimal topological configuration. Dental CAD/CAM systems and the emerging 3D printing technology were commercially available to facilitate implementation of such a computational design, exhibiting considerable potential for clinical application in the future. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Porcelana Dentária , Prótese Parcial Fixa , Cerâmica , Desenho Assistido por Computador , Humanos , Teste de Materiais , Estresse Mecânico
17.
J Biomech ; 48(16): 4214-20, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26584964

RESUMO

Despite the importance of dynamic behaviors of dental and periodontal structures to clinics, the biomechanical roles of anatomic sophistication and material properties in quantification of vibratory characteristics remain under-studied. This paper aimed to generate an anatomically accurate and structurally detailed 3D finite element (FE) maxilla model and explore the dynamic behaviors of human teeth through characterizing the natural frequencies (NFs) and mode shapes. The FE models with different levels of structural integrities and material properties were established to quantify the effects of modeling techniques on the computation of vibratory characteristics. The results showed that the integrity of computational model considerably influences the characterization of vibratory behaviors, as evidenced by declined NFs and perceptibly altered mode shapes resulting from the models with higher degrees of completeness and accuracy. A primary NF of 889Hz and the corresponding mode shape featuring linguo-buccal vibration of maxillary right 2nd molar were obtained based on the complete maxilla model. It was found that the periodontal ligament (PDL), a connective soft tissue, plays an important role in quantifying NFs. It was also revealed that damping and heterogeneity of materials contribute to the quantification of vibratory characteristics. The study provided important biomechanical insights and clinical references for future studies on dynamic behaviors of dental and periodontal structures.


Assuntos
Dente/fisiologia , Fenômenos Biomecânicos , Simulação por Computador , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional , Maxila/anatomia & histologia , Maxila/fisiologia , Modelos Anatômicos , Ligamento Periodontal , Dente/anatomia & histologia , Vibração
18.
Biomed Mater Eng ; 26 Suppl 1: S19-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26405963

RESUMO

Minimization of the peak stresses and fracture incidence induced by mastication function is considered critical in design of all-ceramic dental restorations, especially for cantilever fixed partial dentures (FPDs). The focus of this study is on developing a mechanically-sound optimal design for all-ceramic cantilever dental bridge in a posterior region. The topology optimization procedure in association with Extended Finite Element Method (XFEM) is implemented here to search for the best possible distribution of porcelain and zirconia materials in the bridge structure. The designs with different volume fractions of zirconia are considered. The results show that this new methodology is capable of improving FPD design by minimizing incidence of crack in comparison with the initial design. Potentially, it provides dental technicians with a new design tool to develop mechanically sound cantilever fixed partial dentures for more complicated clinical situation.


Assuntos
Cerâmica/química , Desenho Assistido por Computador , Materiais Dentários/química , Prótese Parcial Fixa , Modelos Teóricos , Zircônio/química , Força Compressiva , Simulação por Computador , Planejamento de Prótese Dentária , Análise do Estresse Dentário , Módulo de Elasticidade , Dureza , Humanos , Teste de Materiais , Desenho de Prótese , Estresse Mecânico , Resistência à Tração
19.
Acta Biomater ; 9(9): 8394-402, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23684764

RESUMO

Effective and reliable clinical uses of dental ceramics necessitate an insightful analysis of the fracture behaviour under critical conditions. To better understand failure characteristics of porcelain veneered to zirconia core ceramic structures, thermally induced cracking during the cooling phase of fabrication is studied here by using the extended finite element method (XFEM). In this study, a transient thermal analysis of cooling is conducted first to determine the temperature distributions. The time-dependent temperature field is then imported to the XFEM model for viscoelastic thermomechanical analysis, which predicts thermally induced damage and cracking at different time steps. Temperature-dependent material properties are used in both transient thermal and thermomechanical analyses. Three typical ceramic structures are considered in this paper, namely bi-layered spheres, squat cylinders and dental crowns with thickness ratios of either 1:2 or 1:1. The XFEM fracture patterns exhibit good agreement with clinical observation and the in vitro experimental results obtained from scanning electron microscopy characterization. The study reveals that fast cooling can lead to thermal fracture of these different bi-layered ceramic structures, and cooling rate (in terms of heat transfer coefficient) plays a critical role in crack initiation and propagation. By exploring different cooling rates, the heat transfer coefficient thresholds of fracture are determined for different structures, which are of clear clinical implication.


Assuntos
Cerâmica/química , Porcelana Dentária/química , Facetas Dentárias , Modelos Químicos , Modelos Moleculares , Zircônio/química , Simulação por Computador , Análise de Elementos Finitos , Dureza , Teste de Materiais , Propriedades de Superfície , Temperatura , Resistência à Tração
20.
Dent Mater ; 28(2): e6-14, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22169069

RESUMO

OBJECTIVES: The reliability and longevity of ceramic prostheses have become a major concern. The existing studies have focused on some critical issues from clinical perspectives, but more researches are needed to address fundamental sciences and fabrication issues to ensure the longevity and durability of ceramic prostheses. The aim of this paper was to explore how "sensitive" the thermal and mechanical responses, in terms of changes in temperature and thermal residual stress of the bi-layered ceramic systems and crown models will be with respect to the perturbation of the design variables chosen (e.g. layer thickness and heat transfer coefficient) in a quantitative way. METHODS: In this study, three bi-layered ceramic models with different geometries are considered: (i) a simple bi-layered plate, (ii) a simple bi-layer triangle, and (iii) an axisymmetric bi-layered crown. RESULTS: The layer thickness and convective heat transfer coefficient (or cooling rate) seem to be more sensitive for the porcelain fused on zirconia substrate models. SIGNIFICANCE: The resultant sensitivities indicate a critical importance of the heat transfer coefficient and thickness ratio of core to veneer on the temperature distributions and residual stresses in each model. The findings provide a quantitative basis for assessing the effects of fabrication uncertainties and optimizing the design of ceramic prostheses.


Assuntos
Porcelana Dentária/química , Planejamento de Prótese Dentária , Algoritmos , Óxido de Alumínio/química , Silicatos de Alumínio/química , Cerâmica/química , Coroas , Facetas Dentárias , Módulo de Elasticidade , Transferência de Energia , Análise de Elementos Finitos , Temperatura Alta , Humanos , Teste de Materiais , Fenômenos Mecânicos , Compostos de Potássio/química , Resistência ao Cisalhamento , Estresse Mecânico , Propriedades de Superfície , Temperatura , Resistência à Tração , Condutividade Térmica , Termodinâmica , Ítrio/química , Zircônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA