Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Mol Divers ; 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34661800

RESUMO

A new series of ocotillol-derived lactone derivatives were designed and synthesized to consider their antibacterial activity, structure-activity relationships (SARs), antibacterial mechanism and in vivo antibacterial efficacy. Compound 6d, which exhibited broad antibacterial spectrum, was found to be the most active with minimum inhibitory concentrations (MICs) of 1-2 µg/mL against Gram-positive bacteria and 8-16 µg/mL against Gram-negative bacteria. The subsequent synergistic antibacterial tests displayed that 6d had the ability to improve the susceptibility of MRSA USA300, B. subtilis 168, and E. coli DH5α to kanamycin and chloramphenicol. This active molecule 6d also induced bacterial resistance more slowly than norfloxacin and kanamycin. Furthermore, compound 6d was membrane active and low toxic against mammalian cells, and it could rapidly inhibit the growth of MRSA and E. coli and did not obviously trigger bacterial resistance. Compound 6d also displayed strong in vivo antibacterial activity against S. aureus RN4220 in murine corneal infection models. Additionally, absorption, distribution, metabolism, and excretion properties of this type of compounds have shown drug-likeness with good oral absorption and moderate blood-brain barrier permeability. The obtained results demonstrated that ocotillol-derived compounds are a promising class of antibacterial agents worthy of further study.

2.
BMC Med ; 19(1): 241, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34620173

RESUMO

BACKGROUND: Women with a history of gestational diabetes mellitus (GDM) have a 7-fold higher risk of developing type 2 diabetes (T2D). It is estimated that 20-50% of women with GDM history will progress to T2D within 10 years after delivery. Intensive lactation could be negatively associated with this risk, but the mechanisms behind a protective effect remain unknown. METHODS: In this study, we utilized a prospective GDM cohort of 1010 women without T2D at 6-9 weeks postpartum (study baseline) and tested for T2D onset up to 8 years post-baseline (n=980). Targeted metabolic profiling was performed on fasting plasma samples collected at both baseline and follow-up (1-2 years post-baseline) during research exams in a subset of 350 women (216 intensive breastfeeding, IBF vs. 134 intensive formula feeding or mixed feeding, IFF/Mixed). The relationship between lactation intensity and circulating metabolites at both baseline and follow-up were evaluated to discover underlying metabolic responses of lactation and to explore the link between these metabolites and T2D risk. RESULTS: We observed that lactation intensity was strongly associated with decreased glycerolipids (TAGs/DAGs) and increased phospholipids/sphingolipids at baseline. This lipid profile suggested decreased lipogenesis caused by a shift away from the glycerolipid metabolism pathway towards the phospholipid/sphingolipid metabolism pathway as a component of the mechanism underlying the benefits of lactation. Longitudinal analysis demonstrated that this favorable lipid profile was transient and diminished at 1-2 years postpartum, coinciding with the cessation of lactation. Importantly, when stratifying these 350 women by future T2D status during the follow-up (171 future T2D vs. 179 no T2D), we discovered that lactation induced robust lipid changes only in women who did not develop incident T2D. Subsequently, we identified a cluster of metabolites that strongly associated with future T2D risk from which we developed a predictive metabolic signature with a discriminating power (AUC) of 0.78, superior to common clinical variables (i.e., fasting glucose, AUC 0.56 or 2-h glucose, AUC 0.62). CONCLUSIONS: In this study, we show that intensive lactation significantly alters the circulating lipid profile at early postpartum and that women who do not respond metabolically to lactation are more likely to develop T2D. We also discovered a 10-analyte metabolic signature capable of predicting future onset of T2D in IBF women. Our findings provide novel insight into how lactation affects maternal metabolism and its link to future diabetes onset. TRIAL REGISTRATION: ClinicalTrials.gov NCT01967030 .

3.
Mitochondrial DNA B Resour ; 6(11): 3109-3111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621991

RESUMO

The Lonchodinae (Phasmatodea: Phasmatidae) is rich in insect species with more than 330 species of 40 genera. The phylogenetic relationships within Lonchodinae have been under debate. We successfully sequenced the complete mitogenome of Eurycantha calcarata Lucas, 1869 (Phasmatodea: Lonchodinae) with a length of 16,280 bp, which had the same genes and gene arrangements as those of various published papers on stick insects. The whole mitogenome and control region of E. calcarata had a high AT content of 78.2 and 85.9%, respectively. All PCGs used ATN as the start codon, and most PCGs used TAA/TAG as the stop codons excluding COX2 (T), COX3 (TA), and ND5 (TA). To discuss the phylogeny of Lonchodinae, we reconstructed the phylogenetic relationships of 27 species of Phasmatodea including E. calcarata and two species of Embioptera used as outgroups. In BI and ML trees, the monophyly of Lonchodinae and Necrosciinae was well supported, whereas the monophyly of Clitumninae was not recovered. These results indicated that Lonchodinae was a sister clade to Phylliinae and E. calcarata was a sister clade to Phraortes genus.

4.
Front Oncol ; 11: 719863, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490118

RESUMO

Objective: As a result of the inconsistency between reports, a meta-analysis was designed to appraise the clinical implications of long non-coding RNAs (lncRNAs) in exosomes for the diagnosis of bladder cancer. Methods: The PubMed, EMBASE, and Cochrane library databases were searched to identify the relevant literature on lncRNAs in exosomes for bladder cancer diagnosis from database inception to May 2021. The literature was screened according to the inclusion and exclusion criteria, and the Quality Assessment of Diagnostic Accuracy Studies-2 entry tool was applied to evaluate the quality of the literature, and the sources of heterogeneity were explored using meta-regression and subgroup analysis. Stata 14.0 and RevMan 5.3 software were used for statistical analysis. Results: A total of 23 studies described in 10 articles were included, with a total of 1883 patients with bladder cancer and 1721 patients in the non-cancerous control group. The exosome-derived lncRNAs performed better in the diagnosis of bladder cancer with a pooled sensitivity of 0.74 (95% CI, 0.69-0.77), specificity of 0.76 (95% CI, 0.72-0.80), and area under the curve of 0.83. The heterogeneity between studies was partly as a result of differences in specimen type, number of lncRNAs, lncRNA expression form, and reference gene type. Subgroup analysis showed that the detection efficacy based on the combination of multiple lncRNAs (0.86, 95% CI, 0.82-0.88) was higher than that based on a single lncRNA (0.81, 95% CI, 0.78-0.85), and exosomal lncRNAs with blood as the detection sample had a high diagnostic efficacy (0.86, 95% CI, 0.82-0.86). Conclusions: Exosome-derived lncRNAs hold great promise as non-invasive diagnostic biomarkers of bladder cancer. However, their clinical value needs to be examined in further comprehensive prospective studies.

5.
J Antibiot (Tokyo) ; 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34522024

RESUMO

Antimicrobials have paved the way for medical and social development over the last century and are indispensable for treating infections in humans and animals. The dramatic spread and diversity of antibiotic-resistant pathogens have significantly reduced the efficacy of essentially all antibiotic classes and is a global problem affecting human and animal health. Antimicrobial resistance is influenced by complex factors such as resistance genes and dosing, which are highly nonlinear, time-lagged and multivariate coupled, and the amount of resistance data is large and redundant, making it difficult to predict and analyze. Based on machine learning methods and data mining techniques, this paper reviews (1) antimicrobial resistance data storage and analysis techniques, (2) antimicrobial resistance assessment methods and the associated risk assessment methods for antimicrobial resistance, and (3) antimicrobial resistance prediction methods. Finally, the current research results on antimicrobial resistance and the development trend are summarized to provide a systematic and comprehensive reference for the research on antimicrobial resistance.

6.
Biomed Opt Express ; 12(8): 4680-4688, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34513217

RESUMO

In this study, we investigated the correlation of the blood optical attenuation coefficient (OAC) and the blood glucose concentration (BGC). The blood OAC was measured in mouse retina in vivo by analyzing the depth attenuation of backscattered light under the guidance of OCT angiography (OCTA) vascular mapping, and then its correlation to the BGC was further investigated. The optical attenuation of the blood components presented a more reliable correlation to BGC than that of the background tissues. The arteries and veins presented a blood OAC change of ∼0.05-0.07 mm-1 per 10 mg/dl and a significant (P < 0.001) elevation of blood OAC in diabetic mice was observed. Furthermore, different kinds of vessels also presented different performances. The veins had a higher correlation coefficient (R=0.86) between the measured blood OAC and BGC than that of the arteries (R=0.73). Besides, the blood OAC changes of the specific vessels occur without any obvious change in the vascular morphology in the retina. The blood OAC-BGC correlation suggests a concept of non-invasive OCTA-based glucometry, allowing a fast assessment of the blood glucose of specific vessels with superior motion immunity. A direct glucometry of the retina would be helpful for accurately monitoring the progression of diabetic retinopathy.

7.
Insects ; 12(9)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34564235

RESUMO

The order Microcoryphia, commonly known as bristletails, is considered as the most primitive one among living insects. Within this order, two species, Coreamachilis coreanus and C. songi (Machilidae: Machilinae), display the following contrasting reproductive strategies: parthenogenesis occurs in C. coreanus, whereas sexual reproduction is found in C. songi. In the present study, the complete mitogenomes of C. coreanus and C. songi were sequenced to compare their mitogenome structure, analyze relationships within the Microcoryphia, and assess adaptive evolution. The length of the mitogenomes of C. coreanus and C. songi were 15,578 bp and 15,570 bp, respectively, and the gene orders were those of typical insects. A long hairpin structure was found between the ND1 and 16S rRNA genes of both species that seem to be characteristic of Machilinae and Petrobiinae species. Phylogenetic assessment of Coreamachilis was conducted using BI and ML analyses with concatenated nucleotide sequences of the 13 protein-coding genes. The results showed that the monophyly of Machilidae, Machilinae, and Petrobiinae was not supported. The genus Coreamachilis (C. coreanus and C. songi) was a sister clade to Allopsontus helanensis, and then the clade of ((C. coreanus + C. songi) + A. helanensis) was a sister clade to A. baii, which suggests that the monophyly of Allopsontus was not supported. Positive selection analysis of the 13 protein-coding genes failed to reveal any positive selection in C. coreanus or C. songi. The long hairpin structures found in Machilinae and Petrobiinae were highly consistent with the phylogenetic results and could potentially be used as an additional molecular characteristic to further discuss relationships within the Microcoryphia.

8.
Medicine (Baltimore) ; 100(38): e27328, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559152

RESUMO

ABSTRACT: This study compares the efficacy of retroperitoneoscopic ureterolithotomy (RPUL) and ureteroscopic lithotripsy (URL) in the treatment of upper ureteral calculi.The clinical data of 150 patients with upper ureteral calculi who underwent RPUL and 136 patients who underwent URL between January 2014 and October 2019 were retrospectively analyzed. The operation time, postoperative hospital stay, operation success rate, stone clearance rate, and surgical complications were evaluated between the two groups.For the RPUL and URL groups, respectively, the average operation time was 74.5 ±â€Š24.6 minutes and 54.5 ±â€Š13.2 minutes; the postoperative hospital stay was 5.8 ±â€Š1.4 days and 3.2 ±â€Š1.2 days; the operation success rate was 96.0% (144/150) and 85.3% (116/136); the incidence rate of complications was 3.5% (5/144) and 17.5% (18/103); and the stone clearance rate was 100% (144/144) and 88.8% (103/116), which were all statistically significant (P < .05).Both RPUL and URL had the advantages of low trauma and fast recovery rate for patients with upper ureteral calculi. However, patients who underwent RPUL showed higher success and fewer complication rate. RPUL might be a safe and effective laparoscopic method for the treatment of patients with upper ureteral calculi.


Assuntos
Laparoscopia/estatística & dados numéricos , Litotripsia a Laser/estatística & dados numéricos , Ureterolitíase/cirurgia , Ureteroscopia/estatística & dados numéricos , Adulto , Idoso , Feminino , Humanos , Laparoscopia/métodos , Lasers de Estado Sólido/uso terapêutico , Masculino , Pessoa de Meia-Idade , Espaço Retroperitoneal/cirurgia , Estudos Retrospectivos , Ureteroscopia/métodos
9.
Int. braz. j. urol ; 47(4): 843-855, Jul.-Aug. 2021. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1286781

RESUMO

ABSTRACT Objective: Interstitial cystitis (IC)/bladder pain syndrome (BPS) is a chronic inflammatory disease that can cause bladder pain and accompanying symptoms, such as long-term urinary frequency and urgency. IC/BPS can be ulcerative or non-ulcerative. The aim of this study was to explore the core genes involved in the pathogenesis of ulcerative IC, and thus the potential biomarkers for clinical treatment. Materials and Methods: First, the gene expression dataset GSE11783 was downloaded using the Gene Expression Omnibus (GEO) database and analyzed using the limma package in R to identify differentially expressed genes (DEGs). Then, the Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for Gene Ontology (GO) functional analysis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for pathway enrichment analysis. Finally, the protein-protein interaction (PPI) network was constructed, and key modules and hub genes were determined using the STRING and Cytoscape software. The resulting key modules were then analyzed for tissue-specific gene expression using BioGPS. Results: A total of 216 up-regulated DEGs and 267 down-regulated genes were identified, and three key modules and nine hub genes were obtained. Conclusion: The core genes (CXCL8, CXCL1, IL6) obtained in this study may be potential biomarkers of interstitial cystitis with guiding significance for clinical treatment.

10.
Science ; 373(6552): 337-342, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34437153

RESUMO

Piezoelectric biomaterials are intrinsically suitable for coupling mechanical and electrical energy in biological systems to achieve in vivo real-time sensing, actuation, and electricity generation. However, the inability to synthesize and align the piezoelectric phase at a large scale remains a roadblock toward practical applications. We present a wafer-scale approach to creating piezoelectric biomaterial thin films based on γ-glycine crystals. The thin film has a sandwich structure, where a crystalline glycine layer self-assembles and automatically aligns between two polyvinyl alcohol (PVA) thin films. The heterostructured glycine-PVA films exhibit piezoelectric coefficients of 5.3 picocoulombs per newton or 157.5 × 10-3 volt meters per newton and nearly an order of magnitude enhancement of the mechanical flexibility compared with pure glycine crystals. With its natural compatibility and degradability in physiological environments, glycine-PVA films may enable the development of transient implantable electromechanical devices.


Assuntos
Materiais Biocompatíveis/química , Eletricidade , Glicina/química , Álcool de Polivinil/química , Animais , Sobrevivência Celular , Células Cultivadas , Cristalização , Teoria da Densidade Funcional , Elasticidade , Humanos , Ligação de Hidrogênio , Próteses e Implantes , Ratos , Ratos Sprague-Dawley , Estresse Mecânico
11.
Insects ; 12(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34357316

RESUMO

We determined 15 complete and two nearly complete mitogenomes of Heptageniidae belonging to three subfamilies (Heptageniinae, Rhithrogeninae, and Ecdyonurinae) and six genera (Afronurus, Epeorus, Leucrocuta, Maccaffertium, Stenacron, and Stenonema). Species of Rhithrogeninae and Ecdyonurinae had the same gene rearrangement of CR-I-M-Q-M-ND2, whereas a novel gene rearrangement of CR-I-M-Q-NCR-ND2 was found in Heptageniinae. Non-coding regions (NCRs) of 25-47 bp located between trnA and trnR were observed in all mayflies of Heptageniidae, which may be a synapomorphy for Heptageniidae. Both the BI and ML phylogenetic analyses supported the monophyly of Heptageniidae and its subfamilies (Heptageniinae, Rhithrogeninae, and Ecdyonurinae). The phylogenetic results combined with gene rearrangements and NCR locations confirmed the relationship of the subfamilies as (Heptageniinae + (Rhithrogeninae + Ecdyonurinae)). To assess the effects of low-temperature stress on Heptageniidae species from Ottawa, Canada, we found 27 positive selection sites in eight protein-coding genes (PCGs) using the branch-site model. The selection pressure analyses suggested that mitochondrial PCGs underwent positive selection to meet the energy requirements under low-temperature stress.

12.
J Agric Food Chem ; 69(32): 9313-9325, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34370469

RESUMO

PSPP-1 was obtained from purple sweet potato, and the effects of PSPP-1 on the immune modulation on macrophage cells were investigated for the first time. PSPP-1 promoted RAW264.7 proliferation and increased the total cell percentage in DNA synthesis and mitosis phases, and the cell morphology changed in volume and appearance. Additionally, the RAW264.7 immune functions of phagocytic activity and nitric oxide, reactive oxygen species, and cytokine production were improved by PSPP-1. The western blot experiment showed that PSPP-1 could activate toll-like receptor 2 and toll-like receptor 4-mediated pathways, and the expressions of proteins in MyD88-dependent, mitogen-activated protein kinase (MAPK)-signaling, NF-κB-signaling, AP-1 signaling, and TRIF-dependent pathways were improved markedly. Molecular docking and Biolayer Interferometry study further indicated that PSPP-1 could recognize and bind TLR2 and TLR4 by targeting the binding sites with a strong affinity. It suggested that PSPP-1 could enhance immunity via TLR2- and TLR4-mediated pathways, and it could be explored as an immunomodulatory agent.


Assuntos
Ipomoea batatas , Receptor 2 Toll-Like , Animais , Glucanos , Macrófagos , Camundongos , Simulação de Acoplamento Molecular , NF-kappa B/genética , Células RAW 264.7 , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
13.
Antibiotics (Basel) ; 10(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207795

RESUMO

There is an increasing drug resistance of animal-derived pathogens, seriously posing a huge threat to the health of animals and humans. Traditional drug resistance testing methods are expensive, have low efficiency, and are time-consuming, making it difficult to evaluate overall drug resistance. To develop a better approach to detect drug resistance, a small sample of Escherichia coli resistance data from 2003 to 2014 in Chengdu, Sichuan Province was used, and multiple regression interpolation was applied to impute missing data based on the time series. Next, cluster analysis was used to classify anti-E. coli drugs. According to the classification results, a GM(1,1)-BP model was selected to analyze the changes in the drug resistance of E. coli, and a drug resistance prediction system was constructed based on the GM(1,1)-BP Neural Network model. The GM(1,1)-BP Neural Network model showed a good prediction effect using a small sample of drug resistance data, with a determination coefficient R2 of 0.7830 and an RMSE of only 0.0527. This model can be applied for the prediction of drug resistance trends of other animal-derived pathogenic bacteria, and provides the scientific and technical means for the effective assessment of bacterial resistance.

14.
Gene ; 800: 145833, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34274477

RESUMO

As one of the most common benthic invertebrates in freshwater, mayflies are very sensitive to changes in water quality and have high requirements for the water environment to allow their nymphs to successfully live and grow. Neonicotinoids, such as imidacloprid, can enter fresh water and pollute the aquatic environment. The present study had two goals: (1) investigate imidacloprid effects on mayfly larvae Choroterpes (Euthralus) yixingensis, and (2) contribute to the phylogenetic status of Ephemeroptera that has always been controversial. Nymphs were collected from Jinhua, China and exposed to different concentrations imidacloprid (5, 10, 20, and 40 µg/L) in the laboratory. Survival of C. yixingensis nymphs decreased as a function of time and imidacloprid concentration with only ~ 55% survival after 72 h exposure to 40 µg/L imidacloprid. After culture under 40 µg/L imidacloprid for 24 h, the steady state transcript levels of mitochondrial COX3, ND4 and ND4L genes were reduced to just 0.07 ± 0.11, 0.30 ± 0.16, and 0.28 ± 0.13 as compared with respective control values (P < 0.01). Steady state transcript levels of ND4 and ND4L were also significantly reduced in a dose-dependent manner (P < 0.05), suggesting that the steady state transcript pattern of these genes in mayfly nymphs can change in response to different levels of environmental contamination. Hence, the mitochondrial protein-coding genes of mayflies could potentially be developed as biomarkers for water ecotoxicity monitoring in the future. In addition, we used the mitochondrial genome sequence of C. yixingensis for an assessment of the phylogenetic tree of Ephemeroptera. The monophyly of Leptophlebiidae was supported and showed that Leptophlebiidae was a sister group to the clade (Baetidae + Caenidae).


Assuntos
Ephemeroptera/genética , Expressão Gênica/efeitos dos fármacos , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Animais , Ephemeroptera/efeitos dos fármacos , Genoma de Inseto , Genoma Mitocondrial , Proteínas de Insetos/genética , Inseticidas/farmacologia , Ninfa/efeitos dos fármacos , Ninfa/genética , Filogenia
15.
Insects ; 12(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069253

RESUMO

We determined the mitochondrial gene sequence of Monochamus alternatus and three other mitogenomes of Lamiinae (Insect: Coleoptera: Cerambycidae) belonging to three genera (Aulaconotus, Apriona and Paraglenea) to enrich the mitochondrial genome database of Lamiinae and further explore the phylogenetic relationships within the subfamily. Phylogenetic trees of the Lamiinae were built using the Bayesian inference (BI) and maximum likelihood (ML) methods and the monophyly of Monochamus, Anoplophora, and Batocera genera was supported. Anoplophora chinensis, An. glabripennis and Aristobia reticulator were closely related, suggesting they may also be potential vectors for the transmission of the pine wood pathogenic nematode (Bursaphelenchus xylophilus) in addition to M. alternatus, a well-known vector of pine wilt disease. There is a special symbiotic relationship between M. alternatus and Bursaphelenchus xylophilus. As the native sympatric sibling species of B. xylophilus, B. mucronatus also has a specific relationship that is often overlooked. The analysis of mitochondrial gene expression aimed to explore the effect of B. mucronatus on the energy metabolism of the respiratory chain of M. alternatus adults. Using RT-qPCR, we determined and analyzed the expression of eight mitochondrial protein-coding genes (COI, COII, COIII, ND1, ND4, ND5, ATP6, and Cty b) between M. alternatus infected by B. mucronatus and M. alternatus without the nematode. Expression of all the eight mitochondrial genes were up-regulated, particularly the ND4 and ND5 gene, which were up-regulated by 4-5-fold (p < 0.01). Since longicorn beetles have immune responses to nematodes, we believe that their relationship should not be viewed as symbiotic, but classed as parasitic.

16.
Mitochondrial DNA B Resour ; 6(7): 1944-1946, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34179475

RESUMO

The first complete mitochondrial genome of Euroleon coreanus (Okamoto, 1926) was 15,797 bp in length, and contained 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs, and the control region. Compared to the classic insect mitochondrial genome, E. coreanus showed a gene rearrangement of ND2-C-W-Y-COX1. The overall AT content of the mitochondrial genome was 75.5%. The monophyly of Ascalaphidae, Myrmeleontidae, Nemopteridae, Nymphidae, and Psychopsidae was supported in both BI and ML trees. And E. coreanus was a sister clade to the clade of genus Myrmeleon.

17.
Int J Biol Macromol ; 185: 403-411, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34166699

RESUMO

Gene rearrangements have been found in several mitochondrial genomes of Mantodea, located in the gene blocks CR-I-Q-M-ND2, COX1-K-D-ATP8 and ND3-A-R-N-S-E-F-ND5. We have sequenced one mitogenome of Amelidae (Yersinia mexicana) and six mitogenomes of Mantidae to discuss the mitochondrial gene rearrangement and the phylogenetic relationship within Mantidae. These mitogenomes showed rearrangements of tRNA genes except for Asiadodis yunnanensis and Hierodula zhangi. These novel gene rearrangements of Mantidae were primarily concentrated in the region of CR-I-Q-M-ND2, including gene translocation, duplication and pseudogenization. For the occurrences of these rearrangements, the tandem duplication-random loss (TDRL) model and slipped-strand mispairing model were suitable to explain. Large non-coding regions (LNCRs) located in the region of CR-I-Q-M-ND2 were detected in most Mantidae species, whereas some LNCRs had high similarity to the control region (CR). Both BI and ML phylogenetic analyses supported the monophyly of Mantidae and the paraphyly of Mantinae. The phylogenetic results with the gene order and the location of NCRs acted as forceful evidence that specific gene rearrangements and special LNCRs may be synapomorphies for several groups of mantises.


Assuntos
Rearranjo Gênico , Mantódeos/genética , Mitocôndrias/genética , RNA de Transferência/genética , Animais , Evolução Molecular , Duplicação Gênica , Ordem dos Genes , Genoma Mitocondrial , Conformação de Ácido Nucleico , Filogenia , Pseudogenes , RNA de Plantas/genética , RNA de Transferência/química , Análise de Sequência de DNA , Translocação Genética
18.
Bioengineered ; 12(1): 1725-1738, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33955803

RESUMO

Bladder cancer is one of the most common malignant tumors worldwide. Accordingly, its incidence and mortality are high. One of the characteristics of cancer is genomic instability. New studies suggest that long non-coding RNAs (lncRNAs) play an important role in maintaining genomic instability. This study aimed to identify a genomic instability-associated lncRNA signature to predict the outcome of patients with bladder cancer. We downloaded data for bladder cancer patients from The Cancer Genome Atlas database to obtain lncRNA expression profiles as well as somatic mutation profiles. Using the lncRNA computational framework, a genomic instability-related lncRNA signature (GIlncSig) was established and the prognostic value of this signature was assessed and validated. A five-lncRNA signature based on genomic instability (CFAP58-DT, MIR100HG, LINC02446, AC078880.3, and LINC01833) was obtained from 58 differentially expressed lncRNAs. Patients were divided into high-risk and low-risk groups, with the high-risk group having a substantially worse prognosis than the low-risk group. Univariate and multivariate Cox analyses indicated that GIlncSig may be an independent prognostic factor; this finding was subsequently validated. In addition, enrichment analysis indicated that GIlncSig is associated with genomic instability in bladder cancer. GIlncSig has a predictive value for the prognosis of bladder cancer patients and provides guidance for the clinical treatment of these patients.

19.
Bioengineered ; 12(1): 1939-1951, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34002664

RESUMO

Testicular cancer is the most common malignant tumor in young men, and its incidence has increased in recent years. The tumor microenvironment (TME) plays a crucial role in the development and progression of tumors; however, the TME of testicular germ cell tumor (TGCT) is poorly understood. In this study, we downloaded information for 156 TGCT cases from The Cancer Genome Atlas (TCGA) database, used the ESTIMATE method to determine immune and stromal scores, and used CIBERSORT to calculate the proportion of tumor-infiltrating immune cells (TICs). The differentially expressed genes were subjected to a COX regression analysis and used for the construction of a protein-protein interaction (PPI) network. Toll-like receptor 2 (TLR2) was identified as a predictive marker by combining the results of the Cox regression analysis and PPI network. A survival analysis showed that TLR2 was positively correlated with TGCT survival. A gene set enrichment analysis indicated that genes in the high TLR2 expression group were enriched for cell adhesion molecules (CAMs) and the chemokine signaling pathway, and genes in the low TLR2 expression group were mainly enriched in the spliceosome. Regarding proportions of TICs, naive B cells and follicular helper T cells were negatively correlated with the expression of TLR2. This suggests that as TLR2 expression increases, the immunocompetence of the TME decreases. The expression of TLR2 may affect the prognosis of TGCT, suggesting that this locus can be used as a prognostic factor for TGCT.

20.
J Nutr ; 151(7): 1791-1801, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33982120

RESUMO

BACKGROUND: Selenium (Se) status is closely related to skeletal muscle physiological status. However, its influence on skeletal muscle growth has not been well studied. OBJECTIVES: This study aimed to analyze the impacts of overall Se status (deficient, adequate, and high) on skeletal muscle growth using a growing zebrafish model. METHODS: Zebrafish (1.5-mo-old) were fed graded levels of Se (deficient: 0.10 mg Se/kg; marginally deficient: 0.22 mg Se/kg; adequate: 0.34 mg Se/kg; high: 0.44, 0.57, and 0.69 mg Se/kg) as Se-enriched yeast for 30 d. Zebrafish growth, and Se accumulation, selenoenzyme activity, selenotranscriptome profiles, and oxidative status in the whole body, and selenotranscriptome profiles, histological characteristics, biochemicals, and gene and protein expression profiles related to muscle growth in the skeletal muscle were analyzed by model fitting and/or 1-factor ANOVA. RESULTS: Se status biomarkers within the whole body and skeletal muscle indicated that 0.34 mg Se/kg was adequate for growing zebrafish. For biomarkers related to skeletal muscle growth, compared with 0.34 mg Se/kg, 0.10 mg Se/kg decreased the white muscle cross-sectional area (WMCSA) and the mean diameter of white muscle fibers (MDWMF) by 14.4%-15.1%, inhibited protein kinase B-target of rapamycin complex 1 signaling by 63.7%-68.5%, and stimulated the autophagy-lysosome pathway by 1.07 times and the ubiquitin-proteasome pathway (UPP) by 96.0% (P < 0.05), whereas 0.22 mg Se/kg only decreased the WMCSA by 7.8% (P < 0.05); furthermore, 0.44 mg Se/kg had no clear effects on skeletal muscle biomarkers, whereas 0.57-0.69 mg Se/kg decreased the WMCSA and MDWMF by 6.3%-25.9% and 5.1%-21.3%, respectively, and stimulated the UPP by 2.23 times (P < 0.05). CONCLUSIONS: A level of 0.34 mg Se/kg is adequate for the growth of zebrafish skeletal muscle, whereas ≤0.10 and ≥0.57 mg Se/kg are too low or too high, respectively, for maintaining efficient protein accretion and normal hypertrophic growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...