Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 22(1): 638, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34479506

RESUMO

BACKGROUND: LncRNAs are extensively involved in plant biological processes. However, the lack of a comprehensive lncRNA landscape in moso bamboo has hindered the molecular study of lncRNAs. Moreover, the role of lncRNAs in secondary cell wall (SCW) biosynthesis of moso bamboo is elusive. RESULTS: For comprehensively identifying lncRNA throughout moso bamboo genome, we collected 231 RNA-Seq datasets, 1 Iso-Seq dataset, and 1 full-length cDNA dataset. We used a machine learning approach to improve the pipeline of lncRNA identification and functional annotation based on previous studies and identified 37,009 lncRNAs in moso bamboo. Then, we established a network of potential lncRNA-coding gene for SCW biosynthesis and identified SCW-related lncRNAs. We also proposed that a mechanism exists in bamboo to direct phenylpropanoid intermediates to lignin or flavonoids biosynthesis through the PAL/4CL/C4H genes. In addition, we identified 4 flavonoids and 1 lignin-preferred genes in the PAL/4CL/C4H gene families, which gained implications in molecular breeding. CONCLUSIONS: We provided a comprehensive landscape of lncRNAs in moso bamboo. Through analyses, we identified SCW-related lncRNAs and improved our understanding of lignin and flavonoids biosynthesis.


Assuntos
Parede Celular , Redes Reguladoras de Genes , Poaceae , RNA Longo não Codificante , Parede Celular/genética , Regulação da Expressão Gênica de Plantas , Poaceae/genética , RNA Longo não Codificante/genética , RNA de Plantas/genética
2.
Nat Commun ; 12(1): 5466, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526499

RESUMO

Moso bamboo (Phyllostachys edulis) is an economically and ecologically important nontimber forestry species. Further development of this species as a sustainable bamboo resource has been hindered by a lack of population genome information. Here, we report a moso bamboo genomic variation atlas of 5.45 million single-nucleotide polymorphisms (SNPs) from whole-genome resequencing of 427 individuals covering 15 representative geographic areas. We uncover low genetic diversity, high genotype heterozygosity, and genes under balancing selection underlying moso bamboo population adaptation. We infer its demographic history with one bottleneck and its recently small population without a rebound. We define five phylogenetic groups and infer that one group probably originated by a single-origin event from East China. Finally, we conduct genome-wide association analysis of nine important property-related traits to identify candidate genes, many of which are involved in cell wall, carbohydrate metabolism, and environmental adaptation. These results provide a foundation and resources for understanding moso bamboo evolution and the genetic mechanisms of agriculturally important traits.

3.
Plant Cell Rep ; 40(7): 1101-1114, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34100122

RESUMO

KEY MESSAGE: PePIP2;7, a leaf-specific aquaporin gene in bamboo, is upregulated under abiotic stresses. Overexpressing PePIP2;7 confers abiotic stresses tolerance in transgenic Arabidopsis plant and yeast. Aquaporins (AQPs) participate in the regulation of water balance in plants. However, the function of AQPs in bamboo remains unclear. Here, PePIP2;7 was identified as a leaf-specific aquaporin gene in moso bamboo based on the expression analysis of transcriptome data and PCR. In situ hybridization further indicated that PePIP2;7 was mainly expressed in mesophyll cells of mature leaves, while in immature leaves it was dominant in blade edge cells followed by mesophyll cells. Interestingly, PePIP2;7 was strongly expressed in the mesophyll cells near bulliform cells of immature leaves, suggesting that PePIP2;7 might function in water transport and contribute to leaf unfolding. The transient expression assay showed that PePIP2;7 was a plasma membrane intrinsic protein. Furthermore, PePIP2;7 was upregulated under abiotic stresses such as high light, drought, and NaCl. Compared with Col-0, transgenic Arabidopsis plants overexpressing PePIP2;7 had better seed germination rate, longer taproot length, higher SOD activity, and lower MDA content under abiotic stresses. Besides, yeasts expressing PePIP2;7 also had higher tolerance to stress compared to the control. Taken together, our results show that PePIP2;7 is leaf-specific and involved in stress response, which provides new insights into aquaporin function in bamboo.


Assuntos
Aquaporinas/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Sasa/genética , Estresse Fisiológico/genética , Antioxidantes/metabolismo , Aquaporinas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Clorofila/genética , Clorofila/metabolismo , Enzimas/metabolismo , Fluorescência , Regulação da Expressão Gênica de Plantas , Germinação/efeitos dos fármacos , Manitol/farmacologia , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase em Tempo Real , Salinidade , Cloreto de Sódio/farmacologia , Estresse Fisiológico/fisiologia
4.
BMC Plant Biol ; 21(1): 76, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546593

RESUMO

BACKGROUND: The subfamily Bambusoideae belongs to the grass family Poaceae and has significant roles in culture, economy, and ecology. However, the phylogenetic relationships based on large-scale chloroplast genomes (CpGenomes) were elusive. Moreover, most of the chloroplast DNA sequencing methods cannot meet the requirements of large-scale CpGenome sequencing, which greatly limits and impedes the in-depth research of plant genetics and evolution. RESULTS: To develop a set of bamboo probes, we used 99 high-quality CpGenomes with 6 bamboo CpGenomes as representative species for the probe design, and assembled 15 M unique sequences as the final pan-chloroplast genome. A total of 180,519 probes for chloroplast DNA fragments were designed and synthesized by a novel hybridization-based targeted enrichment approach. Another 468 CpGenomes were selected as test data to verify the quality of the newly synthesized probes and the efficiency of the probes for chloroplast capture. We then successfully applied the probes to synthesize, enrich, and assemble 358 non-redundant CpGenomes of woody bamboo in China. Evaluation analysis showed the probes may be applicable to chloroplasts in Magnoliales, Pinales, Poales et al. Moreover, we reconstructed a phylogenetic tree of 412 bamboos (358 in-house and 54 published), supporting a non-monophyletic lineage of the genus Phyllostachys. Additionally, we shared our data by uploading a dataset of bamboo CpGenome into CNGB ( https://db.cngb.org/search/project/CNP0000502/ ) to enrich resources and promote the development of bamboo phylogenetics. CONCLUSIONS: The development of the CpGenome enrichment pipeline and its performance on bamboos recommended an inexpensive, high-throughput, time-saving and efficient CpGenome sequencing strategy, which can be applied to facilitate the phylogenetics analysis of most green plants.


Assuntos
Cloroplastos/metabolismo , Sondas de DNA/metabolismo , Filogenia , Poaceae/classificação , Bases de Dados Genéticas , Genoma de Planta , Poaceae/genética , Especificidade da Espécie
5.
Front Genet ; 11: 378, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477399

RESUMO

Rattan is regarded as one of the major non-timber forest products, second only to wood and bamboo, worldwide. Although the published genomes of Calamus simplicifolius and Daemonorops jenkinsiana have facilitated genome-wide gene functional analyses, coexpression networks (CENs) provide more comprehensive and complete annotations of gene function at the transcriptome level. Thus, we analyzed the CENs of the two rattans, C. simplicifolius and D. jenkinsiana, by integrating the genome sequences and analyzing in-house transcriptome data from different development stages of their cirri using a well-developed strategy. A total of 3,504 and 3,027 functional modules were identified in C. simplicifolius and D. jenkinsiana, respectively, based on a combination of CENs, gene family classification, and function enrichment tools. These modules covered the major developmental processes, including photosynthesis, lignin biosynthesis, flavonoid biosynthesis, and phenylpropanoid biosynthesis. Reference annotations were refined using CENs and functional modules. Moreover, we obtained novel insights into the regulation of cirrus growth and development in rattans. Furthermore, Rattan-NET (http://rattan.bamboogdb.org/), an online database with analysis tools for gene set enrichment analysis, module enrichment, network comparison analysis, and cis-element analysis, was constructed for the easy analysis of gene function and regulation modules involved in the growth and development of cirri in rattans.

6.
Mol Biol Rep ; 46(2): 1909-1930, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30721422

RESUMO

Brassinosteroids (BRs) are a group of plant steroid hormones that play crucial roles in a range of plant growth and development processes. BR action includes active BR formation by a complex biosynthesis process and driving BR biological function through signal transduction. Although the characterization of several BR action-related genes has been conducted in a few model plants, systematic information about these genes in bamboo is still lacking. We identified 64 genes related to BR action from the genome of moso bamboo (Phyllostachys edulis), including twenty that participated in BR biosynthesis and forty-four involved in BR signal transduction. The characteristics of all these candidate genes were identified by bioinformatics methods, including the gene structures, basic physical and chemical properties of proteins, conserved domains and evolutionary relationships. Based on the transcriptome data, the candidate genes demonstrated different expression patterns, which were further validated by qRT-PCR using templates from bamboo shoots with different heights. Thirty-four positive and three negative co-expression modules were identified by 44 candidate genes in the newly emerging bamboo shoot. The gene expression patterns and co-expression modules of BR action-related genes in bamboo shoots indicated that they might function to promote bamboo growth through BR biosynthesis and signal transduction processes. This study provides the first step towards the cloning and functional dissection of the role of BR action-related genes in moso bamboo, which also presents an excellent opportunity for genetic engineering using the candidate genes to improve bamboo quantity and quality.


Assuntos
Brassinosteroides/biossíntese , Brassinosteroides/metabolismo , Sasa/genética , Biologia Computacional , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla/métodos , Filogenia , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Ativação Transcricional , Transcriptoma/genética
7.
PeerJ ; 6: e6242, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30648007

RESUMO

The MYB family, one of the largest transcription factor (TF) families in the plant kingdom, plays vital roles in cell formation, morphogenesis and signal transduction, as well as responses to biotic and abiotic stresses. However, the underlying function of bamboo MYB TFs remains unclear. To gain insight into the status of these proteins, a total of 85 PeMYBs, which were further divided into 11 subgroups, were identified in moso bamboo (Phyllostachys edulis) by using a genome-wide search strategy. Gene structure analysis showed that PeMYBs were significantly different, with exon numbers varying from 4 to 13. Phylogenetic analysis indicated that PeMYBs clustered into 27 clades, of which the function of 18 clades has been predicted. In addition, almost all of the PeMYBs were differently expressed in leaves, panicles, rhizomes and shoots based on RNA-seq data. Furthermore, qRT-PCR analysis showed that 12 PeMYBs related to the biosynthesis and deposition of the secondary cell wall (SCW) were constitutively expressed, and their transcript abundance levels have changed significantly with increasing height of the bamboo shoots, for which the degree of lignification continuously increased. This result indicated that these PeMYBs might play fundamental roles in SCW thickening and bamboo shoot lignification. The present comprehensive and systematic study on the members of the MYB family provided a reference and solid foundation for further functional analysis of MYB TFs in moso bamboo.

8.
Front Genet ; 9: 574, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30542370

RESUMO

Bamboo is one of the fastest-growing non-timber forest plants. Moso bamboo (Phyllostachys edulis) is the most economically valuable bamboo in Asia, especially in China. With the release of the whole-genome sequence of moso bamboo, there are increasing demands for refined annotation of bamboo genes. Recently, large amounts of bamboo transcriptome data have become available, including data on the multiple growth stages of tissues. It is now feasible for us to construct co-expression networks to improve bamboo gene annotation and reveal the relationships between gene expression and growth traits. We integrated the genome sequence of moso bamboo and 78 transcriptome data sets to build genome-wide global and conditional co-expression networks. We overlaid the gene expression results onto the network with multiple dimensions (different development stages). Through combining the co-expression network, module classification and function enrichment tools, we identified 1,896 functional modules related to bamboo development, which covered functions such as photosynthesis, hormone biosynthesis, signal transduction, and secondary cell wall biosynthesis. Furthermore, an online database (http://bioinformatics.cau.edu.cn/bamboo) was built for searching the moso bamboo co-expression network and module enrichment analysis. Our database also includes cis-element analysis, gene set enrichment analysis, and other tools. In summary, we integrated public and in-house bamboo transcriptome data sets and carried out co-expression network analysis and functional module identification. Through data mining, we have yielded some novel insights into the regulation of growth and development. Our established online database might be convenient for the bamboo research community to identify functional genes or modules with important traits.

9.
Cells ; 7(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400256

RESUMO

Water supply is essential for maintaining normal physiological function during the rapid growth of bamboo. Aquaporins (AQPs) play crucial roles in water transport for plant growth and development. Although 26 PeAQPs in bamboo have been reported, the aquaporin-led mechanism of maintaining diurnal water balance in bamboo shoots remains unclear. In this study, a total of 63 PeAQPs were identified, based on the updated genome of moso bamboo (Phyllostachys edulis), including 22 PePIPs, 20 PeTIPs, 17 PeNIPs, and 4 PeSIPs. All of the PeAQPs were differently expressed in 26 different tissues of moso bamboo, based on RNA sequencing (RNA-seq) data. The root pressure in shoots showed circadian rhythm changes, with positive values at night and negative values in the daytime. The quantitative real-time PCR (qRT-PCR) result showed that 25 PeAQPs were detected in the base part of the shoots, and most of them demonstrated diurnal rhythm changes. The expression levels of some PeAQPs were significantly correlated with the root pressure. Of the 86 sugar transport genes, 33 had positive co-expression relationships with 27 PeAQPs. Two root pressure-correlated PeAQPs, PeTIP4;1 and PeTIP4;2, were confirmed to be highly expressed in the parenchyma and epidermal cells of bamboo culm, and in the epidermis, pith, and primary xylem of bamboo roots by in situ hybridization. The authors' findings provide new insights and a possible aquaporin-led mechanism for bamboo fast growth.

10.
Gigascience ; 7(10)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30202850

RESUMO

Background: Bamboo is one of the most important nontimber forestry products worldwide. However, a chromosome-level reference genome is lacking, and an evolutionary view of alternative splicing (AS) in bamboo remains unclear despite emerging omics data and improved technologies. Results: Here, we provide a chromosome-level de novo genome assembly of moso bamboo (Phyllostachys edulis) using additional abundance sequencing data and a Hi-C scaffolding strategy. The significantly improved genome is a scaffold N50 of 79.90 Mb, approximately 243 times longer than the previous version. A total of 51,074 high-quality protein-coding loci with intact structures were identified using single-molecule real-time sequencing and manual verification. Moreover, we provide a comprehensive AS profile based on the identification of 266,711 unique AS events in 25,225 AS genes by large-scale transcriptomic sequencing of 26 representative bamboo tissues using both the Illumina and Pacific Biosciences sequencing platforms. Through comparisons with orthologous genes in related plant species, we observed that the AS genes are concentrated among more conserved genes that tend to accumulate higher transcript levels and share less tissue specificity. Furthermore, gene family expansion, abundant AS, and positive selection were identified in crucial genes involved in the lignin biosynthetic pathway of moso bamboo. Conclusions: These fundamental studies provide useful information for future in-depth analyses of comparative genome and AS features. Additionally, our results highlight a global perspective of AS during evolution and diversification in bamboo.


Assuntos
Processamento Alternativo , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Poaceae/genética , Biologia Computacional/métodos , Evolução Molecular , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Lignina/biossíntese , Anotação de Sequência Molecular
11.
Gigascience ; 7(9)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30101322

RESUMO

Background: Calamus simplicifolius and Daemonorops jenkinsiana are two representative rattans, the most significant material sources for the rattan industry. However, the lack of reference genome sequences is a major obstacle for basic and applied biology on rattan. Findings: We produced two chromosome-level genome assemblies of C. simplicifolius and D. jenkinsiana using Illumina, Pacific Biosciences, and Hi-C sequencing data. A total of ∼730 Gb and ∼682 Gb of raw data covered the predicted genome lengths (∼1.98 Gb of C. simplicifolius and ∼1.61 Gb of D. jenkinsiana) to ∼372 × and ∼426 × read depths, respectively. The two de novo genome assemblies, ∼1.94 Gb and ∼1.58 Gb, were generated with scaffold N50s of ∼160 Mb and ∼119 Mb in C. simplicifolius and D. jenkinsiana, respectively. The C. simplicifolius and D. jenkinsiana genomes were predicted to harbor 51,235 and 53,342 intact protein-coding gene models, respectively. Benchmarking Universal Single-Copy Orthologs evaluation demonstrated that genome completeness reached 96.4% and 91.3% in the C. simplicifolius and D. jenkinsiana genomes, respectively. Genome evolution showed that four Arecaceae plants clustered together, and the divergence time between the two rattans was ∼19.3 million years ago. Additionally, we identified 193 and 172 genes involved in the lignin biosynthesis pathway in the C. simplicifolius and D. jenkinsiana genomes, respectively. Conclusions: We present the first de novo assemblies of two rattan genomes (C. simplicifolius and D. jenkinsiana). These data will not only provide a fundamental resource for functional genomics, particularly in promoting germplasm utilization for breeding, but also serve as reference genomes for comparative studies between and among different species.


Assuntos
Calamus/genética , Cromossomos de Plantas/genética , Genoma de Planta
12.
Physiol Plant ; 163(4): 459-471, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29314045

RESUMO

Higher plants have an array of photoprotection mechanisms alleviating the harmful effects of light. Non-photochemical quenching (NPQ) is one of the photoprotective mechanisms, which dissipates the excess of light energy absorbed in the light-harvesting complexes (LHCs) into thermal energy. The photosystem II subunit S (PsbS), a member of the LHC family thought to be present exclusively in higher plants, is supposed to activate NPQ through interactions with antenna proteins. However, the roles of PsbS in bamboo remain unclear. Here, two genes of bamboo (Phyllostachys edulis), PePsbS1 and PePsbS2, are investigated and functionally analyzed. PePsbS1 and PePsbS2 have a similar gene structure with three introns separated by two exons, which encode 269 and 268 amino acid residues, respectively. Tissue-specific analysis showed that PePsbS1 and PePsbS2 are highly expressed in leaf blade. Besides, they are both upregulated in the leaf blade when plantlets are submitted to an increased and prolonged light intensity, suggesting that they are light-induced. Western blot analysis indicated that the accumulation level of total PePsbSs is consistent with what obtained by quantitative real-time polymerase chain reaction for PePsbS1 and PePsbS2. Transgenic Arabidopsis plants overexpressing PePsbS1 and PePsbS2 both displayed an enhanced photoprotection. Moreover, the expression of PePsbS1 and PePsbS2 could both rescue the NPQ of Arabidopsis npq4 mutant, indicating that the PsbSs are functionally conserved between monocots and dicots. These results indicated that both PePsbS1 and PePsbS2 could circumvent photoinhibition and enhance photoprotection, which are key factors for bamboo's adaptation to different light environment.


Assuntos
Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/genética , Poaceae/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Peróxido de Hidrogênio/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Superóxidos/metabolismo
13.
DNA Cell Biol ; 36(9): 747-758, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28686465

RESUMO

Zeaxanthin epoxidase (ZEP) plays important roles in plant response to various environmental stresses by involving in abscisic acid (ABA) biosynthesis and xanthophyll cycle. A full-length cDNA of PeZEP was isolated from moso bamboo (Phyllostachys edulis), which comprised of a 138-bp 5'-untranslated region (UTR), a 381-bp 3'-UTR, and a 2013-bp open reading frame (ORF) encoding a putative protein of 670 amino acids. PeZEP was mainly expressed in leaf blades and leaf sheaths, and less in roots and culms. The transcript level of PeZEP in bamboo leaf was elevated with the increasing light intensity. PeZEP was significantly upregulated in response to high light (HL: 1200 µmol·m-2·s-1) and reached to a higher level after 1 h treatment, and kept higher levels in the following hours. Besides, PeZEP was upregulated under high temperature (42°C), and downregulated under low temperature (4°C) and exogenous ABA treatment. The expression vector of PeZEP driven by CaMV 35S was constructed and transformed into Arabidopsis thaliana. The transgenic plants overexpressing PeZEP were generated and subjected to drought stress for morphological and physiological assays. Compared with Col-0, the transgenic plants demonstrated enhanced tolerance to drought stress, which appeared later wilting and higher survival rate. Moreover, higher value of Fv/Fm, higher activities of superoxide dismutase, peroxidase, and catalase, and lower concentration of malondialdehyde were also observed in transgenic plants. Transcript levels of AtP5CS and AtRD29b related to drought stress were enhanced in transgenic plants. These results indicated that PeZEP might play an important function in response to drought stress in bamboo.


Assuntos
Oxirredutases/genética , Proteínas de Plantas/genética , Poaceae/genética , Arabidopsis/genética , Clorofila/química , Clorofila/metabolismo , Secas , Fluorescência , Regulação da Expressão Gênica de Plantas , Oxirredutases/metabolismo , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Estresse Fisiológico , Tabaco/genética
14.
Gigascience ; 6(7): 1-7, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637269

RESUMO

Bamboo and rattan are widely grown for manufacturing, horticulture, and agroforestry. Bamboo and rattan production might help reduce poverty, boost economic growth, mitigate climate change, and protect the natural environment. Despite progress in research, sufficient molecular and genomic resources to study these species are lacking. We launched the Genome Atlas of Bamboo and Rattan (GABR) project, a comprehensive, coordinated international effort to accelerate understanding of bamboo and rattan genetics through genome analysis. GABR includes 2 core subprojects: Bamboo-T1K (Transcriptomes of 1000 Bamboos) and Rattan-G5 (Genomes of 5 Rattans), and several other subprojects. Here we describe the organization, directions, and status of GABR.


Assuntos
Calamus/genética , Bases de Dados Genéticas , Genoma de Planta , Melhoramento Vegetal , Sasa/genética , Evolução Molecular , Anotação de Sequência Molecular
15.
Sci Rep ; 7: 46107, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28383053

RESUMO

Rattan is an important group of regenerating non-wood climbing palm in tropical forests. The cirrus is an essential climbing organ and provides morphological evidence for evolutionary and taxonomic studies. However, limited data are available on the molecular mechanisms underlying the development of the cirrus. Thus, we performed in-depth transcriptomic sequencing analyses to characterize the cirrus development at different developmental stages of Daemonorops jenkinsiana. The result showed 404,875 transcripts were assembled, including 61,569 high-quality unigenes were identified, of which approximately 76.16% were annotated and classified by seven authorized databases. Moreover, a comprehensive analysis of the gene expression profiles identified differentially expressed genes (DEGs) concentrated in developmental pathways, cell wall metabolism, and hook formation between the different stages of the cirri. Among them, 37 DEGs were validated by qRT-PCR. Furthermore, 14,693 transcriptome-based microsatellites were identified. Of the 168 designed SSR primer pairs, 153 were validated and 16 pairs were utilized for the polymorphic analysis of 25 rattan accessions. These findings can be used to interpret the molecular mechanisms of cirrus development, and the developed microsatellites markers provide valuable data for assisting rattan taxonomy and expanding the understanding of genomic study in rattan.


Assuntos
Arecaceae/anatomia & histologia , Arecaceae/genética , Repetições de Microssatélites/genética , Transcriptoma/genética , Sequência de Bases , Biomarcadores/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Anotação de Sequência Molecular , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA
16.
Plant Cell Rep ; 36(4): 597-609, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28168515

RESUMO

KEY MESSAGE: PeTIP4;1-1, an aquaporin gene involved in bamboo shoot growth, is regulated by abiotic stresses. Overexpression of PeTIP4;1-1 confers drought and salinity tolerance in transgenic Arabidopsis. Aquaporins play a central role in numerous physiological processes throughout plant growth and development. PeTIP4;1-1, an aquaporin gene isolated from moso bamboo (Phyllostachys edulis), comprises an open reading frame (ORF) of 756 bp encoding a peptide of 251 amino acids. The genomic sequence corresponding to the ORF of PeTIP4;1-1 was 1777 bp and contained three exons separated by two introns. PeTIP4;1-1 was constitutively expressed at the highest level in culms, and the expression level was elevated with increasing height of the bamboo shoot. PeTIP4;1-1 was significantly up-regulated in response to drought and salinity stresses in bamboo roots and leaves. To investigate the role of PeTIP4;1-1 in response to drought and salinity stresses, transgenic Arabidopsis plants overexpressing PeTIP4;1-1 under the control of CaMV 35S promoter were generated and subjected to morphological and physiological assays. Compared with Col-0, the transgenic plants showed enhanced tolerance to drought and salinity stresses and produced longer taproots, which had more green leaves, higher F v/F m and NPQ values, higher activities of SOD, POD and CAT, lower MDA concentration and higher water content. Transcript levels of three stress-related genes (AtP5CS, AtNHX1 and AtLEA) were enhanced. These results indicated that PeTIP4;1-1 might play an important function in response to drought and salinity stresses, and is a candidate gene for breeding of stress tolerance in other crops through genetic engineering.


Assuntos
Aquaporinas/genética , Aquaporinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Poaceae/genética
17.
DNA Cell Biol ; 35(11): 706-714, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27525704

RESUMO

UDP-galactose-4-epimerase (UGE) is a key enzyme involved in galactose metabolism by catalyzing the interconversion of UDP-glucose to UDP-galactose. The cDNA encoding UGE was isolated from Phyllostachys edulis by reverse transcription-polymerase chain reaction and by 5' and 3' rapid amplification of cDNA ends, and was designated as PeUGE. The full-length cDNA of PeUGE was 1778 bp, which contained an open reading frame (ORF) encoding a peptide of 420 amino acids, with a calculated molecular mass of 46.58 kDa and a theoretic isoelectric point of 9.07. The genomic sequence corresponding to the ORF of PeUGE was 2656 bp containing 10 exons separated by nine introns. Tissue-specific analysis showed that PeUGE was constitutively expressed with the highest level in shoots, which had an increasing trend with the growth of shoots. PeUGE was induced by abiotic stresses such as drought, salinity, and water stresses. Moreover, chlorophyll fluorescence parameters and lateral roots analysis of transgenic Arabidopsis thaliana plants overexpressing PeUGE systematically confirmed the crucial role of PeUGE in improving the tolerance to abiotic stresses. These results indicated that PeUGE might be one of the key genes involved in the biosynthesis of cell wall polysaccharides during the growth and development of bamboo and in response to stresses, which provided a candidate gene for molecular engineering to improve the quality of bamboo products.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Poaceae/genética , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos/genética , Clonagem Molecular , DNA Complementar/genética , Íntrons , Fases de Leitura Aberta/genética , Folhas de Planta/genética
18.
Sci Rep ; 6: 27640, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27325361

RESUMO

GRAS family is one of plant specific transcription factors and plays diverse roles in the regulation of plant growth and development as well as in the plant disease resistance and abiotic stress responses. However, the investigation of GRAS family and multi-tissue gene expression profiles still remains unavailable in bamboo (Phyllostachys edulis). Here, we applied RNA-Seq analysis to monitor global transcriptional changes and investigate expression patterns in the five tissues of Ph. edulis, and analyzed a large-scale transcriptional events and patterns. Moreover, the tissue-specific genes and DEGs in different tissues were detected. For example, DEGs in panicle and leaf tissues were abundant in photosynthesis, glutathione, porphyrin and chlorophyll metabolism, whereas those in shoot and rhizome were majority in glycerophospholipid metabolism. In the portion of Ph. edulis GRAS (PeGRAS) analyses, we performed the analysis of phylogenetic, gene structure, conserved motifs, and analyzed the expression profiles of PeGRASs in response to high light and made a co-expression analysis. Additionally, the expression profiles of PeGRASs were validated using quantitative real-time PCR. Thus, PeGRASs based on dynamics profiles of gene expression is helpful in uncovering the specific biological functions which might be of critical values for bioengineering to improve bamboo breeding in future.


Assuntos
Proteínas de Plantas/biossíntese , Sasa/genética , Fatores de Transcrição/biossíntese , Transcriptoma/genética , Sequência de Bases , Cruzamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica/genética , Especificidade de Órgãos/genética , Fotossíntese/genética , Proteínas de Plantas/genética , Sasa/crescimento & desenvolvimento , Distribuição Tecidual/genética , Fatores de Transcrição/genética
19.
Mol Biol Rep ; 43(5): 437-50, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26993482

RESUMO

Aquaporins (AQPs) are known to play a major role in maintaining water and hydraulic conductivity balance in the plant system. Numerous studies have showed AQPs execute multi-function throughout plant growth and development, including water transport, nitrogen, carbon, and micronutrient acquisition etc. However, little information on AQPs is known in bamboo. In this study, we present the first genome-wide identification and characterization of AQP genes in moso bamboo (Phyllostachys edulis) using bioinformatics. In total, 26 AQP genes were identified by homologous analysis, which were divided into four groups (PIPs, TIPs, NIPs, and SIPs) based on the phylogenetic analysis. All the genes were located on 26 different scaffolds respectively on basis of the gene mapped to bamboo genome. Evolutionary analysis indicated that Ph. edulis was more close to Oryza sativa than Zea mays in the genetic relationship. Besides, qRT-PCR was used to analyze gene expression profiles, which revealed that AQP genes were expressed constitutively in all the detected tissues, and were all responsive to the environmental cues such as drought, water, and NaCl stresses. This data suggested that AQPs may play fundamental roles in maintaining normal growth and development of bamboo, which would contribute to better understanding for the complex regulation mechanism involved in the fast-growing process of bamboo. Furthermore, the result could provide valuable information for further research on bamboo functional genomics.


Assuntos
Aquaporinas/genética , Genoma de Planta , Proteínas de Plantas/genética , Poaceae/genética , Perfilação da Expressão Gênica , Genes de Plantas , Família Multigênica
20.
Plant Cell Rep ; 35(6): 1371-83, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27021381

RESUMO

KEY MESSAGE: PeSNAC1 , a stress-related NAC1 from Phyllostachys edulis , was characterized. Ectopic expression in Arabidopsis indicated that PeSNAC1 together with ped -miR164b participated in the regulation of organ boundaries and stress tolerance. NAC (NAM, ATAF1/2 and CUC2) participates in many different processes regulating plant growth, development, and stress response. A total of 125 NAC genes have been predicted in moso bamboo (Phyllostachys edulis), but their roles are poorly understood. PeSNAC1 targeted by ped-miR164b was focused for further study. The cleavage of PeSNAC1 mRNA guided by ped-miR164b was validated using RLM-5' RACE. Tissue-specific expression analysis demonstrated that ped-miR164b had a declining trend from root, sheath, leaf, to that of stem, which was opposite to that of PeSNAC1. Transgenic Arabidopsis plants overexpressing either PeSNAC1 (OX-PeSNAC1) or, ped-miR164b (OX-ped-miR164b) driven by the CaMV35S promoter were generated. OX-ped-miR164b plants showed similar phenotype of cuc2 mutants whose growth was seriously suppressed. Compared with Col-0, sense OX-PeSNAC1 plants grew rapidly and flowered earlier, whereas antisense plants grew slowly and exhibited delayed flowering. Sense OX-PeSNAC1 plants had the greatest number of lateral roots, while antisense OX-PeSNAC1 and OX-ped-miR164b plants had fewer lateral roots than Col-0. Under NaCl and PEG6000 stresses, survival rates were higher and F v/F m values declined more slowly in sense OX-PeSNAC1 plants than in Col-0, with lower survival rates and a more rapid decrease in F v/F m values conversely observed in antisense OX-PeSNAC1 and OX-ped-miR164b plants. These findings indicated that ped-miR164b-targeted PeSNAC1 may play key roles in plant development and tolerance to salinity and drought stresses.


Assuntos
Genes de Plantas/fisiologia , Sasa/genética , Arabidopsis/genética , Desidratação/genética , Desidratação/fisiopatologia , Expressão Ectópica do Gene/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , MicroRNAs/genética , MicroRNAs/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Sasa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...