Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Sci Rep ; 9(1): 11836, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31413264


Skeletal muscle architecture significantly influences the performance capacity of a muscle. A DTI-based method has been recently considered as a new reference standard to validate measurement of muscle structure in vivo. This study sought to quantify muscle architecture parameters such as fascicle length (FL), pennation angle (PA) and muscle thickness (tm) in post-stroke patients using diffusion tensor imaging (DTI) and to quantitatively compare the differences with 2D ultrasonography (US) and DTI. Muscle fascicles were reconstructed to examine the anatomy of the medial gastrocnemius, posterior soleus and tibialis anterior in seven stroke survivors using US- and DTI-based techniques, respectively. By aligning the US and DTI coordinate system, DTI reconstructed muscle fascicles at the same scanning plane of the US data can be identified. The architecture parameters estimated based on two imaging modalities were further compared. Significant differences were observed for PA and tm between two methods. Although mean FL was not significantly different, there were considerable intra-individual differences in FL and PA. On the individual level, parameters measured by US agreed poorly with those from DTI in both deep and superficial muscles. The significant differences in muscle parameters we observed suggested that the DTI-based method seems to be a better method to quantify muscle architecture parameters which can provide important information for treatment planning and to personalize a computational muscle model.

Imagem de Tensor de Difusão , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Acidente Vascular Cerebral/diagnóstico por imagem , Sobreviventes , Ultrassonografia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
Artigo em Inglês | MEDLINE | ID: mdl-25881344


To simplify the medical ultrasound system and reduce the cost, several techniques have been proposed to reduce the interconnections between the ultrasound probe and the back-end console. Among them, subaperture processing (SAP) is the most straightforward approach and is widely used in commercial products. This paper reviews the most important error sources of SAP, such as static focusing, delay quantization, linear delay profile, and coarse apodization, and the impacts introduced by these errors are shown. We propose to use main lobe coherence loss as a simple classification of the quality of the beam profile for a given design. This figure-ofmerit (FoM) is evaluated by simulations with a 1-D ultrasound subaperture array setup. The analytical expressions and the coherence loss can work as a quick guideline in subaperture design by equalizing the merit degradations from different error sources, as well as minimizing the average or maximum loss over ranges. For the evaluated 1-D array example, a good balance between errors and cost was achieved using a subaperture size of 5 elements, focus at 40 mm range, and a delay quantization step corresponding to a phase of π/4.