Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35160886

RESUMO

A Zn-3Mg-1Ti alloy was fabricated by ultrasonic treatment of Zn-Mg alloy melt using a Ti ultrasonic radiation rod. The microstructure, phase structure, mechanical properties, degradation property, and in vitro cytotoxicity were investigated systematically. The obtained Zn-3Mg-1Ti alloy is composed of the Zn, Mg2Zn11, and TiZn16. Owing to the grain refinement and second phase reinforcement, the mechanical properties of Zn-3Mg-1Ti alloy is improved. In addition, the Zn-3Mg-1Ti alloy exhibits minimal cytotoxicity compared to pure Zn and Zn-1Ti alloy. Electrochemical tests show that the Zn-3Mg-1Ti alloy has an appropriate degradation rate in Hank's solution.

2.
J Am Chem Soc ; 144(4): 1700-1708, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35041406

RESUMO

The benefits of excess PbI2 on perovskite crystal nucleation and growth are countered by the photoinstability of interfacial PbI2 in perovskite solar cells (PSCs). Here we report a simple chemical polishing strategy to rip PbI2 crystals off the perovskite surface to decouple these two opposing effects. The chemical polishing results in a favorable perovskite surface exhibiting enhanced luminescence, prolonged carrier lifetimes, suppressed ion migration, and better energy level alignment. These desired benefits translate into increased photovoltages and fill factors, leading to high-performance mesostructured formamidinium lead iodide-based PSCs with a champion efficiency of 24.50%. As the interfacial ion migration paths and photodegradation triggers, dominated by PbI2 crystals, were eliminated, the hysteresis of the PSCs was suppressed and the device stability under illumination or humidity stress was significantly improved. Moreover, this new surface polishing strategy can be universally applicable to other typical perovskite compositions.

3.
Materials (Basel) ; 15(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35057126

RESUMO

The mechanical properties of iron-rich Al-Si alloy is limited by the existence of plenty of the iron-rich phase (ß-Al5FeSi), whose unfavorable morphology not only splits the matrix but also causes both stress concentration and interface mismatch with the Al matrix. The effect of the cooling rate on the tensile properties of Fe-rich Al-Si alloy was studied by the melt spinning method at different rotating speeds. At the traditional casting cooling rate of ~10 K/s, the size of the needle-like ß-Al5FeSi phase is about 80 µm. In contrast, the size of the ß-Al5FeSi phase is reduced to 500 nm and the morphology changes to a granular morphology with the high cooling rate of ~104 K/s. With the increase of the cooling rate, the morphology of the ß-Al5FeSi phase is optimized, meanwhile the tensile properties of Fe-rich Al-Si alloy are greatly improved. The improved tensile properties of the Fe-rich Al-Si alloy is attributed to the combination of Fe-rich reinforced particles and the granular silicon phase provided by the high cooling rate of the melt spinning method.

4.
Adv Mater ; 34(6): e2107420, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34845763

RESUMO

A prerequisite for commercializing perovskite photovoltaics is to develop a swift and eco-friendly synthesis route, which guarantees the mass production of halide perovskites in the industry. Herein, a green-solvent-assisted mechanochemical strategy is developed for fast synthesizing a stoichiometric δ-phase formamidinium lead iodide (δ-FAPbI3 ) powder, which serves as a high-purity precursor for perovskite film deposition with low defects. The presynthesized δ-FAPbI3 precursor possesses high concentration of micrometer-sized colloids, which are in favor of preferable crystallization by spontaneous nucleation. The resultant perovskite films own preferred crystal orientations of cubic (100) plane, which is beneficial for superior carrier transport compared to that of the films with isotropic crystal orientations using "mixture of PbI2 and FAI" as precursors. As a result, high-performance perovskite solar cells with a maximum power conversion efficiency of 24.2% are obtained. Moreover, the δ-FAPbI3 powder shows superior storage stability for more than 10 months in ambient environment (40 ± 10% relative humidity), being conducive to a facile and practical storage for further commercialization.

5.
Phys Rev E ; 104(2-1): 024215, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525585

RESUMO

The dynamics of Fermi-Pasta-Ulam (FPU) recurrence in a Manakov system is studied analytically. Exact Akhmediev breather (AB) solutions for this system are found that cannot be reduced to the ABs of a single-component nonlinear Schrödinger equation. Expansion-contraction cycle of the corresponding spectra with an infinite number of sidebands is calculated analytically using a residue theorem. A distinctive feature of these spectra is the asymmetry between positive and negative spectral modes. A practically important consequence of the spectral asymmetry is a nearly complete energy transfer from the central mode to one of the lowest-order (left or right) sidebands. Numerical simulations started with modulation instability of plane waves confirm the findings based on the exact solutions. It is also shown that the full growth-decay cycle of the AB leads to the nonlinear phase shift between the initial and final states in both components of the Manakov system. This finding shows that the final state of the FPU recurrence described by the vector ABs is not quite the same as the initial state. Our results are applicable and can be observed in a wide range of two-component physical systems such as two-component waves in optical fibers, two-directional waves in crossing seas, and two-component Bose-Einstein condensates.

6.
Phys Rev E ; 104(1-1): 014201, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412198

RESUMO

We obtain multivalley dark soliton solutions with asymmetric or symmetric profiles in multicomponent repulsive Bose-Einstein condensates by developing the Darboux transformation method. We demonstrate that the width-dependent parameters of solitons significantly affect the velocity ranges and phase jump regions of multivalley dark solitons, in sharp contrast to scalar dark solitons. For double-valley dark solitons, we find that the phase jump is in the range [0,2π], which is quite different from that of the usual single-valley dark soliton. Based on our results, we argue that the phase jump of an n-valley dark soliton could be in the range [0,nπ], supported by our analysis extending up to five-component condensates. The interaction between a double-valley dark soliton and a single-valley dark soliton is further investigated, and we reveal a striking collision process in which the double-valley dark soliton is transformed into a breather after colliding with the single-valley dark soliton. Our analyses suggest that this breather transition exists widely in the collision processes involving multivalley dark solitons. The possibilities for observing these multivalley dark solitons in related Bose-Einstein condensates experiments are discussed.

7.
ACS Appl Mater Interfaces ; 13(27): 32495-32502, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34185990

RESUMO

Recently, the two-dimensional material Ti3C2Tx MXene has attracted interest from researchers in perovskite solar cells (PSCs) with its great advantages in terms of high transmittance, high conductivity, tunable work function, and solution processability. However, the MXene-based PSC performance has still been inferior to that of the traditional TiO2- or SnO2-based counterpart up until now. Some critical issues regarding to the MXene/perovskite interface still have not been well addressed. Herein, we used the Ti3C2Tx MXene as electron transport layer in PSCs via a room-temperature solution process followed by oxygen plasma treatment. Various characterization techniques were taken to establish the correlation between the surface properties and termination groups of MXene. We showed that oxygen plasma treatment could break parts of Ti-C bonds and generate abundant Ti-O bonds randomly distributed on MXene. The surface modification resulted in tunable work functions of MXene, as well as reduced trap states and improved electron transport close to the interface. In addition, the surface tension of MXene and corresponding perovskite morphology were thoroughly investigated by the contact angle and topography measurements. High-resolution XPS spectra indicated the Pb-O interactions between perovskite and MXene, which contributed to the device stability improvement.

8.
Adv Mater ; 33(7): e2006435, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33393159

RESUMO

Understanding the fundamental properties of buried interfaces in perovskite photovoltaics is of paramount importance to the enhancement of device efficiency and stability. Nevertheless, accessing buried interfaces poses a sizeable challenge because of their non-exposed feature. Herein, the mystery of the buried interface in full device stacks is deciphered by combining advanced in situ spectroscopy techniques with a facile lift-off strategy. By establishing the microstructure-property relations, the basic losses at the contact interfaces are systematically presented, and it is found that the buried interface losses induced by both the sub-microscale extended imperfections and lead-halide inhomogeneities are major roadblocks toward improvement of device performance. The losses can be considerably mitigated by the use of a passivation-molecule-assisted microstructural reconstruction, which unlocks the full potential for improving device performance. The findings open a new avenue to understanding performance losses and thus the design of new passivation strategies to remove imperfections at the top surfaces and buried interfaces of perovskite photovoltaics, resulting in substantial enhancement in device performance.

9.
Phys Rev E ; 102(2-1): 022207, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32942418

RESUMO

We develop linear stability analysis (LSA) to quantitatively predict the dynamics of a perturbed plane wave in nonlinear systems. We take a nonintegrable fiber model with purely fourth-order dispersion as an example to demonstrate this method's effectiveness. For a Gaussian-type initial perturbation with cosine-type modulation on a plane wave, its propagation velocities, periodicity, and localization are predicted successfully, and the range of application is discussed. Importantly, the modulation-instability-induced growth of localized perturbation is proved different from the one of purely periodic perturbation and requires the modification of gain value for more accurate prediction. The method offers a needful supplement and improvement for LSA and paves a way to study the dynamics of a perturbed plane wave in more practical nonlinear systems.

10.
Adv Mater ; 32(39): e2002585, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32830374

RESUMO

Lead halide perovskite films have witnessed rapid progress in optoelectronic devices, whereas polycrystalline heterogeneities and serious native defects in films are still responsible for undesired recombination pathways, causing insufficient utilization of photon-generated charge carriers. Here, radiation-enhanced polycrystalline perovskite films with ultralong carrier lifetimes exceeding 6 µs and single-crystal-like electron-hole diffusion lengths of more than 5 µm are achieved. Prolongation of charge-carrier activities is attributed to the electronic structure regulation and the defect elimination at crystal boundaries in the perovskite with the introduction of phenylmethylammonium iodide. The introduced electron-rich anchor molecules around the host crystals prefer to fill the halide/organic vacancies at the boundaries, rather than form low-dimensional phases or be inserted into the original lattice. The weakening of the electron-phonon coupling and the excitonic features of the photogenerated carriers in the optimized films, which together contribute to the enhancement of carrier separation and transportation, are further confirmed. Finally the resultant perovskite films in fully operating solar cells with champion efficiency of 23.32% are validated and a minimum voltage deficit of 0.39 V is realized.

11.
Opt Lett ; 45(8): 2399-2402, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287243

RESUMO

Peregrine rogue wave excitation has applications in gaining high-intensity pulses, etc., and a high-order rogue wave exhibits higher intensity. An exact solution and collision between breathers are two existing ways to excite high-order ones. Here we numerically report a new, to the best of our knowledge, possible method, which is by multi-Gaussian perturbations on a continuous wave. The order and maximal intensity of rogue waves can be adjusted by the number of perturbations. The maximal intensity approaches 63.8 times that of the power of the initial background wave, and it retains a large value under the influence of fiber loss and noise. Our results provide guidance in gaining high-intensity pulses in experiment and understanding the universality of rogue wave generation.

12.
Sensors (Basel) ; 19(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703444

RESUMO

Aiming at the problem of indoor environment, signal non-line-of-sight propagation and other factors affect the accuracy of indoor locating, an algorithm of indoor fingerprint localization based on the eight-neighborhood template is proposed. Based on the analysis of the signal strength of adjacent reference points in the fingerprint database, the methods for the eight-neighborhood template matching and generation were studied. In this study, the indoor environment was divided into four quadrants for each access point and the expected values of the received signal strength indication (RSSI) difference between the center points and their eight-neighborhoods in different quadrants were chosen as the generation parameters. Then different templates were generated for different access points, and the unknown point was located by the Euclidean distance for the correlation of RSSI between each template and its coverage area in the fingerprint database. With the spatial correlation of fingerprint data taken into account, the influence of abnormal fingerprint on locating accuracy is reduced. The experimental results show that the locating error is 1.0 m, which is about 0.2 m less than both K-nearest neighbor (KNN) and weighted K-nearest neighbor (WKNN) algorithms.

13.
Phys Rev E ; 100(2-1): 022212, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574652

RESUMO

We investigate nondegenerate bound-state solitons systematically in multicomponent Bose-Einstein condensates, through developing the Darboux transformation method to derive exact soliton solutions analytically. In particular, we show that bright solitons with nodes correspond to the excited bound states in effective quantum wells, in sharp contrast to the bright solitons and dark solitons reported before (which usually correspond to ground state and free state, respectively). We further demonstrate that bound-state solitons with nodes are induced by incoherent superposition of solitons in different components. Moreover, we reveal that the interactions between these bound-state solitons are usually inelastic, caused by the incoherent interactions between solitons in different components and the coherent interactions between solitons in the same component. Additionally, the detailed spectral stability analysis demonstrates the stability of nondegenerate bound-state solitons. The bound-state solitons can be used to study many different physical problems, such as beating dynamics, spin-orbit coupling effects, quantum fluctuations, and even quantum entanglement states.

14.
Chaos ; 29(8): 083112, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472492

RESUMO

We study numerically the evolutions of perturbations at critical points between modulational instability and stability regimes. It is demonstrated that W-shaped solitons and rogue waves can be both excited from weak resonant perturbations at the critical points. The rogue wave excitation at the critical points indicates that rogue wave comes from modulation instability with resonant perturbations, even when the baseband modulational instability is absent. The perturbation differences for generating W-shaped solitons and rogue waves are discussed in detail. These results can be used to generate W-shaped solitons and rogue waves controllably from weak perturbations.

15.
Adv Mater ; 30(49): e1805085, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30294817

RESUMO

Metal halide perovskite films are endowed with the nature of ions and polycrystallinity. Formamidinium iodide (FAI)-based perovskite films, which include large cations (FA) incorporated into the crystal lattice, are most likely to induce local defects due to the presence of the unreacted FAI species. Here, a diboron-assisted strategy is demonstrated to control the defects induced by the unreacted FAI both inside the grain boundaries and at the surface regions. The diboron compound (C12 H10 B2 O4 ) can selectively react with unreacted FAI, leading to reduced defect densities. Nonradiative recombination between a perovskite film and a hole-extraction layer is mitigated considerably after the introduction of the proposed approach and charge-carrier extraction is improved as well. A champion power conversion efficiency of 21.11% is therefore obtained with a stabilized power output of 20.83% at the maximum power point for planar perovskite solar cells. The optimized device also delivers negligible hysteresis effect under various scanning conditions. This approach paves a new way for mitigating defects and improving device performance.

16.
Phys Rev E ; 97(6-1): 062201, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011505

RESUMO

We study the beating effects of solitons in multicomponent coupled Bose-Einstein condensate systems. Our analysis indicates that the period of beating behavior is determined by the energy eigenvalue difference in the effective quantum well induced by solitons, and the beating pattern is determined by the eigenstates of a quantum well, which are involved in the beating behavior. We show that the beating solitons correspond to linear superpositions of eigenstates in some quantum wells, and the correspondence relations are identical for solitons in both an attractive interaction and a repulsive interaction condensate. This provides a possible way to understand the beating effects of solitons for attractive and repulsive interaction cases in a unified way, based on the knowledge of quantum eigenstates. Moreover, our results demonstrate many different beating patterns for solitons in multicomponent coupled condensates, in sharp contrast to the beating dark soliton reported before. The beating behavior can be used to test the eigenvalue differences in certain quantum wells, and more abundant beating patterns are expected to exist in more component-coupled systems.

17.
Science ; 360(6396): 1442-1446, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29954975

RESUMO

The highest power conversion efficiencies (PCEs) reported for perovskite solar cells (PSCs) with inverted planar structures are still inferior to those of PSCs with regular structures, mainly because of lower open-circuit voltages (Voc). Here we report a strategy to reduce nonradiative recombination for the inverted devices, based on a simple solution-processed secondary growth technique. This approach produces a wider bandgap top layer and a more n-type perovskite film, which mitigates nonradiative recombination, leading to an increase in Voc by up to 100 millivolts. We achieved a high Voc of 1.21 volts without sacrificing photocurrent, corresponding to a voltage deficit of 0.41 volts at a bandgap of 1.62 electron volts. This improvement led to a stabilized power output approaching 21% at the maximum power point.

18.
Phys Rev E ; 97(2-1): 022218, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29548215

RESUMO

We discuss how to understand the dynamical process of Kuznetsov-Ma breather, based on some basic physical mechanisms. It is shown that the dynamical process of Kuznetsov-Ma breather involves at least two distinctive mechanisms: modulational instability and the interference effects between a bright soliton and a plane-wave background. Our analysis indicates that modulational instability plays dominant roles in the mechanism of Kuznetsov-Ma breather admitting weak perturbations, and the interference effect plays a dominant role for the Kuznetsov-Ma breather admitting strong perturbations. For intermediate cases, the two mechanisms are both greatly involved. These characters provide a possible way to understand the evolution of strong perturbations on a plane-wave background.

19.
Chaos ; 28(1): 013111, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29390636

RESUMO

We investigate linear interference effects between a nonlinear plane wave and bright solitons, which are admitted by a pair-transition coupled two-component Bose-Einstein condensate. We demonstrate that the interference effects can induce several localized waves possessing distinctive wave structures, mainly including anti-dark solitons, W-shaped solitons, multi-peak solitons, Kuznetsov-Ma like breathers, and multi-peak breathers. Specifically, the explicit conditions for them are clarified by a phase diagram based on the linear interference properties. Furthermore, the interactions between these localized waves are discussed. The detailed analysis indicates that the soliton-soliton interaction induced phase shift brings the collision between these localized waves which can be inelastic for solitons involving collision and can be elastic for breathers. These characters come from the fact that the profile of solitons depends on the relative phase between bright solitons and a plane wave, and the profile of breathers does not depend on the relative phase. These results would motivate more discussions on linear interference between other nonlinear waves. Specifically, the solitons or breathers obtained here are not related to modulational instability. The underlying reasons are discussed in detail. In addition, possibilities to observe these localized waves are discussed in a two species Bose-Einstein condensate.

20.
Materials (Basel) ; 10(12)2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29189720

RESUMO

Magnesium-based bulk metallic glass matrix composites (BMGMCs) have better plasticity than the corresponding bulk metallic glasses (BMGs); however, their strength and density are often compromised due to the fact that the effective reinforcement phase is mostly plastic heavy metal. For lightweight SiC-particle reinforced BMGMCs, interface wettability and the sharpness of the particles often reduce the strengthening effect. In this work, SiC particles were coated with a thin Cu coating by electroless plating, and added to Mg54Cu26.5Ag8.5Gd11 melt in an amount of 5 wt % to prepare a BMGMC. The microstructure of the interface, mechanical behavior and fracture morphology of the BMGMC were studied by scanning electron microscopy and quasi-static compression testing. The results showed that the Cu coating improved the wettability between SiC and the matrix alloy without obvious interfacial reactions, leading to the dispersion of SiC particles in the matrix. The addition of Cu-coated SiC particles improved the plastic deformation ability of Mg54Cu26.5Ag8.5Gd11 BMG, proving that electroless plating was an effective method for controlling the interface microstructure and mechanical behavior of BMGMCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...