Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(15): e2122793119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385356

RESUMO

Crystallography is the standard for determining the atomic structure of molecules. Unfortunately, many interesting molecules, including an extensive array of biological macromolecules, do not form crystals. While ultrashort and intense X-ray pulses from free-electron lasers are promising for imaging single isolated molecules with the so-called "diffraction before destruction" technique, nanocrystals are still needed for producing sufficient scattering signal for structure retrieval as implemented in serial femtosecond crystallography. Here, we show that a femtosecond laser pulse train may be used to align an ensemble of isolated molecules to a high level transiently, such that the diffraction pattern from the highly aligned molecules resembles that of a single molecule, allowing one to retrieve its atomic structure with a coherent diffraction imaging technique. In our experiment with CO2 molecules, a high degree of alignment is maintained for about 100 fs, and a precisely timed ultrashort relativistic electron beam from a table-top instrument is used to record the diffraction pattern within that duration. The diffraction pattern is further used to reconstruct the distribution of CO2 molecules with atomic resolution. Our results mark a significant step toward imaging noncrystallized molecules with atomic resolution and open opportunities in the study and control of dynamics in the molecular frame that provide information inaccessible with randomly oriented molecules.

2.
Nat Commun ; 13(1): 963, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181649

RESUMO

In low-dimensional systems with strong electronic correlations, the application of an ultrashort laser pulse often yields novel phases that are otherwise inaccessible. The central challenge in understanding such phenomena is to determine how dimensionality and many-body correlations together govern the pathway of a non-adiabatic transition. To this end, we examine a layered compound, 1T-TiSe2, whose three-dimensional charge-density-wave (3D CDW) state also features exciton condensation due to strong electron-hole interactions. We find that photoexcitation suppresses the equilibrium 3D CDW while creating a nonequilibrium 2D CDW. Remarkably, the dimension reduction does not occur unless bound electron-hole pairs are broken. This relation suggests that excitonic correlations maintain the out-of-plane CDW coherence, settling a long-standing debate over their role in the CDW transition. Our findings demonstrate how optical manipulation of electronic interaction enables one to control the dimensionality of a broken-symmetry order, paving the way for realizing other emergent states in strongly correlated systems.

3.
Proc Natl Acad Sci U S A ; 119(4)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074922

RESUMO

Under the irradiation of an ultrafast intense laser, solid materials can be driven into nonequilibrium states undergoing an ultrafast solid-liquid phase transition. Understanding such nonequilibrium states is essential for scientific research and industrial applications because they exist in various processes including laser fusion and laser machining yet challenging in the sense that high resolution and single-shot capability are required for the measurements. Herein, an ultrafast diffraction technique with megaelectron-volt (MeV) electrons is used to resolve the atomic pathway over the entire laser-induced ultrafast melting process, from the initial loss of long-range order and the formation of high-density liquid to the progressive evolution of short-range order and relaxation into the metastable low-density liquid state. High-resolution measurements using electron pulse compression and a time-stamping technique reveal a coherent breathing motion of polyhedral clusters in transient liquid aluminum during the ultrafast melting process, as indicated by the oscillation of the interatomic distance between the center atom and atoms in the nearest-neighbor shell. Furthermore, contraction of interatomic distance was observed in a superheated liquid state with temperatures up to 6,000 K. The results provide an atomic view of melting accompanied with internal pressure relaxation and are critical for understanding the structures and properties of matter under extreme conditions.

4.
Struct Dyn ; 8(4): 044303, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34327258

RESUMO

We demonstrate a noninvasive time-sorting method for ultrafast electron diffraction (UED) experiments with radio frequency (rf)-compressed electron beams. We show that electron beam energy and arrival time at the sample after the rf compression are strongly correlated, such that the arrival time jitter may be corrected through the measurement of the beam energy. The method requires minimal change to the infrastructure of most of the UED machines and is applicable to both keV and MeV UED. In our experiment with ∼3 MeV beam, the timing jitter after the rf compression is corrected with a 35-fs root mean square (rms) accuracy, limited by the 3 × 10 - 4 energy stability. For keV UED with a high energy stability, sub-10 fs accuracy in time-sorting should be readily achievable. This time-sorting technique allows us to retrieve the 2.5 THz oscillation related to coherent A1g phonon in the laser-excited Bismuth film and extends the temporal resolution of UED to a regime far beyond the 100-200 fs rms jitter limitation.

5.
Phys Rev Lett ; 127(7): 074801, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34459641

RESUMO

Particle accelerators that use electromagnetic fields to increase a charged particle's energy have greatly advanced the development of science and industry since invention. However, the enormous cost and size of conventional radio-frequency accelerators have limited their accessibility. Here, we demonstrate a miniaccelerator powered by terahertz pulses with wavelengths 100 times shorter than radio-frequency pulses. By injecting a short relativistic electron bunch to a 30-mm-long dielectric-lined waveguide and tuning the frequency of a 20-period terahertz pulse to the phase-velocity-matched value, precise and sustained acceleration for nearly 100% of the electrons is achieved with the beam energy spread essentially unchanged. Furthermore, by accurately controlling the phase of two terahertz pulses, the beam is stably accelerated successively in two dielectric waveguides with close to 100% charge coupling efficiency. Our results demonstrate stable and scalable beam acceleration in a multistage miniaccelerator and pave the way for functioning terahertz-driven high-energy accelerators.

6.
Phys Rev Lett ; 124(13): 134803, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302182

RESUMO

We propose and demonstrate a novel scheme to produce ultrashort and ultrastable MeV electron beam. In this scheme, the electron beam produced in a photocathode radio frequency (rf) gun first expands under its own Coulomb force with which a positive energy chirp is imprinted in the beam longitudinal phase space. The beam is then sent through a double bend achromat with positive longitudinal dispersion where electrons at the bunch tail with lower energies follow shorter paths and thus catch up with the bunch head, leading to longitudinal bunch compression. We show that with optimized parameter sets, the whole beam path from the electron source to the compression point can be made isochronous such that the time of flight for the electron beam is immune to the fluctuations of rf amplitude. With a laser-driven THz deflector, the bunch length and arrival time jitter for a 20 fC beam after bunch compression are measured to be about 29 fs (FWHM) and 22 fs (FWHM), respectively. Such an ultrashort and ultrastable electron beam allows us to achieve 50 femtosecond (FWHM) resolution in MeV ultrafast electron diffraction where lattice oscillation at 2.6 THz corresponding to Bismuth A_{1g} mode is clearly observed without correcting both the short-term timing jitter and long-term timing drift. Furthermore, oscillating weak diffuse scattering signal related to phonon coupling and decay is also clearly resolved thanks to the improved temporal resolution and increased electron flux. We expect that this technique will have a strong impact in emerging ultrashort electron beam based facilities and applications.

7.
Phys Rev Lett ; 124(5): 054802, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083891

RESUMO

We propose and demonstrate a method to reduce the pulse width and timing jitter of a relativistic electron beam through THz driven beam compression. In this method the longitudinal phase space of a relativistic electron beam is manipulated by a linearly polarized THz pulse copropagating in a dielectric tube such that the bunch tail has a higher velocity than the bunch head, which allows simultaneous reduction of both pulse width and timing jitter after passing through a drift. In this experiment, the beam is compressed by more than a factor of 4 from 130 fs to 28 fs with the arrival time jitter also reduced from 97 fs to 36 fs, opening up new opportunities in using pulsed electron beams for studies of ultrafast dynamics. This technique provides an effective way to manipulate beam longitudinal phase space with a THz pulse and may have a strong impact in accelerator and ultrafast science facilities that require femtosecond electron beams with tight synchronization to external lasers.

8.
Phys Rev Lett ; 122(14): 144801, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31050450

RESUMO

We propose and demonstrate a terahertz (THz) oscilloscope for recording time information of an ultrashort electron beam. By injecting a laser-driven THz pulse with circular polarization into a dielectric tube, the electron beam is swept helically such that the time information is uniformly encoded into the angular distribution that allows one to characterize both the temporal profile and timing jitter of an electron beam. The dynamic range of the measurement in such a configuration is significantly increased compared to deflection with a linearly polarized THz pulse. With this THz oscilloscope, nearly 50-fold longitudinal compression of a relativistic electron beam to about 15 fs (rms) is directly visualized with its arrival time determined with 3 fs accuracy. This technique bridges the gap between streaking of photoelectrons with optical lasers and deflection of relativistic electron beams with radio-frequency deflectors, and should have wide applications in many ultrashort electron-beam-based facilities.

9.
Nat Commun ; 9(1): 1826, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739941

RESUMO

Coherent diffractive imaging (CDI) has been widely applied in the physical and biological sciences using synchrotron radiation, X-ray free-electron laser, high harmonic generation, electrons, and optical lasers. One of CDI's important applications is to probe dynamic phenomena with high spatiotemporal resolution. Here, we report the development of a general in situ CDI method for real-time imaging of dynamic processes in solution. By introducing a time-invariant overlapping region as real-space constraint, we simultaneously reconstructed a time series of complex exit wave of dynamic processes with robust and fast convergence. We validated this method using optical laser experiments and numerical simulations with coherent X-rays. Our numerical simulations further indicated that in situ CDI can potentially reduce radiation dose by more than an order of magnitude relative to conventional CDI. With further development, we envision in situ CDI could be applied to probe a range of dynamic phenomena in the future.

10.
Phys Rev Lett ; 120(4): 044801, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29437447

RESUMO

Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

11.
Sci Rep ; 7(1): 4757, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684732

RESUMO

Precise localization of nanoparticles within a cell is crucial to the understanding of cell-particle interactions and has broad applications in nanomedicine. Here, we report a proof-of-principle experiment for imaging individual functionalized nanoparticles within a mammalian cell by correlative microscopy. Using a chemically-fixed HeLa cell labeled with fluorescent core-shell nanoparticles as a model system, we implemented a graphene-oxide layer as a substrate to significantly reduce background scattering. We identified cellular features of interest by fluorescence microscopy, followed by scanning transmission X-ray tomography to localize the particles in 3D, and ptychographic coherent diffractive imaging of the fine features in the region at high resolution. By tuning the X-ray energy to the Fe L-edge, we demonstrated sensitive detection of nanoparticles composed of a 22 nm magnetic Fe3O4 core encased by a 25-nm-thick fluorescent silica (SiO2) shell. These fluorescent core-shell nanoparticles act as landmarks and offer clarity in a cellular context. Our correlative microscopy results confirmed a subset of particles to be fully internalized, and high-contrast ptychographic images showed two oxidation states of individual nanoparticles with a resolution of ~16.5 nm. The ability to precisely localize individual fluorescent nanoparticles within mammalian cells will expand our understanding of the structure/function relationships for functionalized nanoparticles.


Assuntos
Óxido Ferroso-Férrico/química , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Nanopartículas/química , Tomografia Computadorizada por Raios X/métodos , Células Imobilizadas , Fluorescência , Grafite/química , Células HeLa , Humanos , Microscopia de Fluorescência/instrumentação , Imagem Molecular/instrumentação , Nanopartículas/ultraestrutura , Oxirredução , Óxidos/química , Dióxido de Silício/química , Tomografia Computadorizada por Raios X/instrumentação
12.
Phys Rev Lett ; 114(11): 114801, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25839281

RESUMO

High quality electron beams with flat distributions in both energy and current are critical for many accelerator-based scientific facilities such as free-electron lasers and MeV ultrafast electron diffraction and microscopes. In this Letter, we report on using corrugated structures to compensate for the beam nonlinear energy chirp imprinted by the curvature of the radio-frequency field, leading to a significant reduction in beam energy spread. By using a pair of corrugated structures with orthogonal orientations, we show that the quadrupole wakefields, which, otherwise, increase beam emittance, can be effectively canceled. This work also extends the applications of corrugated structures to the low beam charge (a few pC) and low beam energy (a few MeV) regime and may have a strong impact in many accelerator-based facilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...