Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.787
Filtrar
1.
Nucleic Acids Res ; 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35580044

RESUMO

The visualization of biological sequences with various functional elements is fundamental for the publication of scientific achievements in the field of molecular and cellular biology. However, due to the limitations of the currently used applications, there are still considerable challenges in the preparation of biological schematic diagrams. Here, we present a professional tool called IBS 2.0 for illustrating the organization of both protein and nucleotide sequences. With the abundant graphical elements provided in IBS 2.0, biological sequences can be easily represented in a concise and clear way. Moreover, we implemented a database visualization module in IBS 2.0, enabling batch visualization of biological sequences from the UniProt and the NCBI RefSeq databases. Furthermore, to increase the design efficiency, a resource platform that allows uploading, retrieval, and browsing of existing biological sequence diagrams has been integrated into IBS 2.0. In addition, a lightweight JS library was developed in IBS 2.0 to assist the visualization of biological sequences in customized web services. To obtain the latest version of IBS 2.0, please visit https://ibs.renlab.org.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35564888

RESUMO

The increasing concerns on resource and energy recovery call for the modification of the current wastewater treatment strategy. This study synthetically evaluates the feasibility of the short sludge retention time approach to improve the energy recovery potential, but keeping steady biological phosphorus removal and system stability simultaneously. SBRS-SRT and SBRcontrol that simulated the short sludge retention time and conventional biological phosphorus removal processes, respectively, were set up to treat real domestic sewage for 120 d. SBRS-SRT achieved an efficient COD (91.5 ± 3.5%), PO43--P (95.4 ± 3.8%), and TP (93.5 ± 3.7%) removal and maintained the settling volume index around 50 mL/gSS when the sludge retention time was 3 d, indicating steady operational stability. The poor ammonia removal performance (15.7 ± 7.7%) and a few sequences detected in samples collected in SBRS-SRT indicated the washout of nitrifiers. The dominant phosphorus accumulating organisms Tetrasphaera and Hydrogenophaga, which were enriched with the shortened sludge retention time, was in line with the excellent phosphorus performance of SBRS-SRT. The calculated methanogenic efficiency of SBRS-SRT increased significantly, which was in line with the higher sludge yield. This study proved that the short sludge retention time is a promising and practical approach to integrate biological phosphorus removal in A-stage when re-engineering a biological nutrient removal process.

3.
Hum Genomics ; 16(1): 15, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568907

RESUMO

BACKGROUND: Obesity is a complex, multifactorial condition in which genetic play an important role. Most of the systematic studies currently focuses on individual omics aspect and provide insightful yet limited knowledge about the comprehensive and complex crosstalk between various omics levels. SUBJECTS AND METHODS: Therefore, we performed a most comprehensive trans-omics study with various omics data from 104 subjects, to identify interactions/networks and particularly causal regulatory relationships within and especially those between omic molecules with the purpose to discover molecular genetic mechanisms underlying obesity etiology in vivo in humans. RESULTS: By applying differentially analysis, we identified 8 differentially expressed hub genes (DEHGs), 14 differentially methylated regions (DMRs) and 12 differentially accumulated metabolites (DAMs) for obesity individually. By integrating those multi-omics biomarkers using Mendelian Randomization (MR) and network MR analyses, we identified 18 causal pathways with mediation effect. For the 20 biomarkers involved in those 18 pairs, 17 biomarkers were implicated in the pathophysiology of obesity or related diseases. CONCLUSIONS: The integration of trans-omics and MR analyses may provide us a holistic understanding of the underlying functional mechanisms, molecular regulatory information flow and the interactive molecular systems among different omic molecules for obesity risk and other complex diseases/traits.

4.
Regen Biomater ; 9: rbac023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529048

RESUMO

Successful wound healing depends on the reconstruction of proper tissue homeostasis, particularly in the posttraumatic inflammatory tissue microenvironment. Diabetes jeopardizes tissues' immune homeostasis in cutaneous wounds, causing persistent chronic inflammation and cytokine dysfunction. Previously, we developed an autologous regeneration factor (ARF) technology to extract the cytokine composite from autologous tissue to restore immune homeostasis and promote wound healing. However, treatment efficacy was significantly compromised in diabetic conditions. Therefore, we proposed that a combination of melatonin and ARF, which is beneficial for proper immune homeostasis reconstruction, could be an effective treatment for diabetic wounds. Our research showed that the utilization of melatonin-mediated ARF biogel (AM gel) promoted diabetic wound regeneration at a more rapid healing rate. RNA-Seq analysis showed that AM gel treatment could restore more favorable immune tissue homeostasis with unique inflammatory patterning as a result of the diminished intensity of acute and chronic inflammation. Currently, AM gel could be a novel and promising therapeutic strategy for diabetic wounds in clinical practice through favorable immune homeostatic reconstructions in the tissue microenvironment and proper posttraumatic inflammation patterning.

5.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(2): 338-347, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35538772

RESUMO

Programmed necrosis,a mode of cell death independent of Caspase,is mainly mediated by receptor-interacting protein kinase-1 (RIPK1),receptor-interacting protein kinase-3 (RIPK3),and mixed lineage kinase domain-like protein (MLKL).Studies have demonstrated that programmed necrosis has the dual role of promoting and inhibiting tumor growth and thus we can control the development of tumor by regulating programmed necrosis.The drugs capable of inducing programmed necrosis show potential anti-tumor activity.In addition,inducing programmed necrosis is an effective way to overcome tumor resistance to apoptosis.This paper summarized the mechanisms of programmed necrosis and its relationship with tumors.We focused on the antitumor activity of programmed necrosis inducers including natural products,chemotherapeutic drugs,death receptor ligands,kinase inhibitors,inorganic salts,metal complexes,and metal nanoparticles.These agents will provide new therapeutic candidates for the treatment of tumors,especially the tumors acquiring resistance to apoptosis.


Assuntos
Neoplasias , Proteínas Quinases , Apoptose , Morte Celular , Humanos , Necrose/metabolismo , Necrose/patologia , Neoplasias/tratamento farmacológico , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-35538833

RESUMO

BACKGROUND: Currently, there are no effective differentiation-inducing agents for gliomas. Drug repositioning is a time-saving, low-risk, and low-cost drug development strategy. In this study, drugs that could induce the differentiation of glioma cells were searched for using a drug repositioning strategy. METHOD: Data mining was used to screen for differentially expressed genes (DEGs). The STRING 11.0 database was used for enrichment analysis. The Connectivity Map database was used for drug screening. The ChEMBL and STITCH databases were used to search for drug targets. The SwissDock database was used for molecular docking. RESULTS: A total of 45 DEGs were identified. The biological processes in which the DEGs were enriched mainly involved nervous system development and the regulation of biological processes. The enriched molecular functions mainly involved transcription-related molecular binding. The enriched cellular components mainly involved membrane-bound organelles and cellular protrusions. The enriched local network clusters mainly involved autophagy, the retinoic acid signalling pathway, and DNA methylation. The drug screening results showed that the drug with the highest score was acenocoumarol. A total of 12 acenocoumarol targets were obtained, among which histone deacetylase 1 (HDAC1) was the target with the highest degree value; the lowest ΔG value for acenocoumarol docked with HDAC1 was -7.52 kcal/mol, which was between those of the HDAC1 inhibitors romidepsin and vorinostat. CONCLUSION: Acenocoumarol may be a potential differentiation-inducing agent for glioma cells.

7.
Front Neurol ; 13: 876165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547384

RESUMO

Background: Observational studies have suggested that hearing impairment (HI) was associated with the risk of falls, but it remains unclear if this association is of causal nature. Methods: A two-sample Mendelian randomization (MR) study was conducted to investigate the causal association between HI and falls in individuals of European descent. Summary data on the association of single nucleotide polymorphisms (SNPs) with HI were obtained from the hitherto largest genome-wide association study (GWAS) (n = 323,978), and statistics on the association of SNPs with falls were extracted from another recently published GWAS (n = 461,725). MR Steiger filtering method was applied to determine the causal direction between HI and falls. Inverse-variance weighted (IVW) method was employed as the main approach to analyze the causal association between HI and falls, whereas weighted median, simple mode, weighted mode, and MR-Egger methods were used as complementary analyses. The MR-Egger intercept test, the MR-PRESSO test, and Cochran's Q statistic were performed to detect the potential directional pleiotropy and heterogeneity, respectively. The odds ratio (OR) with 95% confidence intervals (CIs) was used to evaluate this association. Results: A total of 18 SNPs were identified as valid instrumental variables in our two-sample MR analysis. The positive causality between HI and risk of falls was indicated by IVW [OR 1.108 (95% CI 1.028, 1.194), p = 0.007]. The sensitivity analyses yielded comparable results. The "leave-one-out" analysis proved that lack of a single SNP did not affect the robustness of our results. The MR-Egger intercept test exhibited that genetic pleiotropy did not bias the results [intercept = -2.4E-04, SE = 0.001, p = 0.832]. Cochran's Q test revealed no heterogeneity. Conclusion: Our MR study revealed a causal association between genetically predicted HI and falls. These results provide further evidence supporting the need to effectively manage HI to minimize fall risks and improve quality of life.

8.
Front Cell Dev Biol ; 10: 843297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547819

RESUMO

Background: Chronic neuropathic pain is commonly associated with memory loss, which increases the risk of dementia, lowers life quality and spending. On the other hand, the molecular processes are unknown, and effective therapies have yet to be discovered. Long non-coding RNAs (lncRNAs) are emerging potential therapeutic targets for chronic pain, but their role in chronic pain-induced memory impairment is unknown. Methods: We established a CCI-induced memory impairment rat model. To investigate and validate the gene expression alterations in the hippocampus of CCI-induced memory impairment, we used RNA-Seq, bioinformatics analysis, qRT-PCR, western blot, immunostaining, Nissl staining, and Diaminobenzidine-enhanced Perls' stain. Results: CCI rats displayed long-term memory deficits in the Y maze and novel objective recognition tests, and chronic mechanical and thermal pain hypersensitivity in the hind paws. We found a total of 179 differentially expressed mRNAs (DEmRNAs) (81 downregulated and 98 upregulated) and 191 differentially expressed long noncoding RNAs (DElncRNAs) (87 downregulated and 105 upregulated) between the hippocampus CA1 of CCI-induced memory impairment model and the sham control, using RNA-Seq expression profiles. The most enriched pathways involving oxidation and iron metabolism were explored using a route and function pathway analysis of DEmRNAs and DElncRNAs. We also discovered that ATF3 was considerably overexpressed in the hippocampal CA1 area, and gene markers of ferroptosis, such as GPX4, SLC7A11, SLC1A5, and PTGS2, were dysregulated in the CCI-induced memory impairment paradigm. Furthermore, in the hippocampus CA1 of CCI-induced memory impairment, lipid peroxidation and iron overload were considerably enhanced. Fer-1 treatment reversed ferroptosis damage of CCI with memory impairment model. Finally, in CCI-induced memory impairment, a competing RNA network analysis of DElncRNAs and DEmRNAs was performed to investigate the putative regulatory link of DElncRNAs on DEmRNAs via miRNA sponging. Conclusion: Using RNA-Seq, we created a genome-wide profile of the whole hippocampus of a rat model of CCI-induced memory impairment. In the hippocampus, pathways and function analyses revealed numerous intriguing genes and pathways involved in ferroptosis and memory impairment in response to chronic pain stress. As a result, our research may aid in the identification of potential and effective treatments for CCI-induced memory impairment.

9.
Lancet Planet Health ; 6(5): e410-e421, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35550080

RESUMO

BACKGROUND: Increased mortality risk is associated with short-term temperature variability. However, to our knowledge, there has been no comprehensive assessment of the temperature variability-related mortality burden worldwide. In this study, using data from the MCC Collaborative Research Network, we first explored the association between temperature variability and mortality across 43 countries or regions. Then, to provide a more comprehensive picture of the global burden of mortality associated with temperature variability, global gridded temperature data with a resolution of 0·5°â€ˆ× 0·5° were used to assess the temperature variability-related mortality burden at the global, regional, and national levels. Furthermore, temporal trends in temperature variability-related mortality burden were also explored from 2000-19. METHODS: In this modelling study, we applied a three-stage meta-analytical approach to assess the global temperature variability-related mortality burden at a spatial resolution of 0·5°â€ˆ× 0·5° from 2000-19. Temperature variability was calculated as the SD of the average of the same and previous days' minimum and maximum temperatures. We first obtained location-specific temperature variability related-mortality associations based on a daily time series of 750 locations from the Multi-country Multi-city Collaborative Research Network. We subsequently constructed a multivariable meta-regression model with five predictors to estimate grid-specific temperature variability related-mortality associations across the globe. Finally, percentage excess in mortality and excess mortality rate were calculated to quantify the temperature variability-related mortality burden and to further explore its temporal trend over two decades. FINDINGS: An increasing trend in temperature variability was identified at the global level from 2000 to 2019. Globally, 1 753 392 deaths (95% CI 1 159 901-2 357 718) were associated with temperature variability per year, accounting for 3·4% (2·2-4·6) of all deaths. Most of Asia, Australia, and New Zealand were observed to have a higher percentage excess in mortality than the global mean. Globally, the percentage excess in mortality increased by about 4·6% (3·7-5·3) per decade. The largest increase occurred in Australia and New Zealand (7·3%, 95% CI 4·3-10·4), followed by Europe (4·4%, 2·2-5·6) and Africa (3·3, 1·9-4·6). INTERPRETATION: Globally, a substantial mortality burden was associated with temperature variability, showing geographical heterogeneity and a slightly increasing temporal trend. Our findings could assist in raising public awareness and improving the understanding of the health impacts of temperature variability. FUNDING: Australian Research Council, Australian National Health & Medical Research Council.

10.
J Gastrointest Oncol ; 13(2): 792-801, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35557582

RESUMO

Background: Early recurrence (ER) after radical resection of hepatocellular carcinoma (HCC) affects the prognosis of patients. Gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) can improve the detection rate of small HCC. This study innovatively introduces a new quantitative index combined with qualitative index to compare the differences in clinical and imaging characteristics between ER and non-ER groups and evaluate the feasibility of Gd-EOB-DTPA-enhanced MRI in predicting ER. Methods: A total of 68 patients with HCC confirmed by operation and pathology in the Shandong Cancer Hospital and Institute were included retrospectively. All participants were examined by Gd-EOB-DTPA-enhanced MRI within 3 weeks before surgery. Regular follow-up was performed every 2 months within 1 year after operation. Among them, 18 cases with new lesions were in ER group, and 50 cases without new lesions were in non-ER group. The clinical and imaging data of the 2 groups were collected, and the differences of clinical data and preoperative MRI signs between the ER group and non-ER group were compared. The predictive factors of ER after HCC were analyzed by multivariate logistic regression. Results: The quantitative parameter lesion-to-liver contrast enhancement ratio (LLCER) can predict the pathological grade of HCC (P=0.023). The results of univariate analysis between the ER group and non-ER group showed that there were significant differences in pathological grade (P=0.008), lesion morphology (P=0.011), peritumoral low signal intensity in hepatobiliary phase (HBP) (P<0.001), satellite nodules (P<0.001), and LLCER (P<0.001) between the 2 groups. Multivariate logistic regression analysis showed that HBP peritumoral low signal intensity [odds ratio (OR) =7.214, 95% confidence interval (CI): 1.230-42.312, P=0.029], satellite nodules (OR =9.198, 95% CI: 1.402-60.339, P=0.021), and parameter LLCER value (OR =0.906, 95% CI: 0.826-0.995, P=0.039) were independent predictors of ER of HCC after resection. Conclusions: Preoperative Gd-EOB-DTPA enhanced MRI has important predictive value for early recurrence after radical resection of hepatocellular carcinoma.

11.
Front Oncol ; 12: 817916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574327

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a malignant tumor developing from the esophageal squamous epithelium, and is the most common histological subtype of esophageal cancer (EC). EC ranks 10th in morbidity and sixth in mortality worldwide. The morbidity and mortality rates in China are both higher than the world average. Current treatments of ESCC are surgical treatment, radiotherapy, and chemotherapy. Neoadjuvant chemoradiotherapy plus surgical resection is recommended for advanced patients. However, it does not work in the significant promotion of overall survival (OS) after such therapy. Research on targeted therapy in ESCC mainly focus on EGFR and PD-1, but neither of the targeted drugs can significantly improve the 3-year and 5-year survival rates of disease. Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is an important survival pathway in tumor cells, associated with its aggressive growth and malignant progression. Specifically, proliferation, apoptosis, autophagy, and so on. Related genetic alterations of this pathway have been investigated in ESCC, such as PI3K, AKT and mTOR-rpS6K. Therefore, the PI3K/AKT/mTOR pathway seems to have the capability to serve as research hotspot in the future. Currently, various inhibitors are being tested in cells, animals, and clinical trials, which targeting at different parts of this pathway. In this work, we reviewed the research progress on the PI3K/AKT/mTOR pathway how to influence biological behaviors in ESCC, and discussed the interaction between signals downstream of this pathway, especially eukaryotic translation initiation factors (eIFs) and the development and progression of ESCC, to provide reference for the identification of new therapeutic targets in ESCC.

13.
Front Immunol ; 13: 878740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35514980

RESUMO

Lung cancer remains one of the most common malignancies in the world. Nowadays, the most common lung cancer is non-small cell lung cancer (NSCLC), namely, adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Epigenetic alterations that refer to DNA methylation, histone modifications, and noncoding RNA expression, are now suggested to drive the genesis and development of NSCLC. Additionally, inflammation-related tumorigenesis also plays a vital role in cancer research and efforts have been attempted to reverse such condition. During the occurrence and development of inflammatory diseases, the immune component of inflammation may cause epigenetic changes, but it is not always certain whether the immune component itself or the stimulated host cells cause epigenetic changes. Moreover, the links between epigenetic alterations and cancer-related inflammation and their influences on the human cancer are not clear so far. Therefore, the connection between epigenetic drivers, inflammation, and NSCLC will be summarized. Investigation on such topic is most likely to shed light on the molecular and immunological mechanisms of epigenetic and inflammatory factors and promote the application of epigenetics in the innovative diagnostic and therapeutic strategies for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/terapia , Epigênese Genética , Epigenômica , Humanos , Inflamação/genética , Neoplasias Pulmonares/patologia
14.
Chem Sci ; 13(11): 3140-3146, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35414888

RESUMO

γ-Al2O3 nanoparticles promote pyrolytic carbon deposition of CH4 at temperatures higher than 800 °C to give single-walled nanoporous graphene (NPG) materials without the need for transition metals as reaction centers. To accelerate the development of efficient reactions for NPG synthesis, we have investigated early-stage CH4 activation for NPG formation on γ-Al2O3 nanoparticles via reaction kinetics and surface analysis. The formation of NPG was promoted at oxygen vacancies on (100) surfaces of γ-Al2O3 nanoparticles following surface activation by CH4. The kinetic analysis was well corroborated by a computational study using density functional theory. Surface defects generated as a result of surface activation by CH4 make it kinetically feasible to obtain single-layered NPG, demonstrating the importance of precise control of oxygen vacancies for carbon growth.

15.
Nat Commun ; 13(1): 2335, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484150

RESUMO

A modular and efficient method for constructing angular tri-carbocyclic architectures containing quaternary carbon center(s) from 1,3-dicycloalkylidenyl ketones is established, which involves an unconventional synergistic cascade of a Nazarov cyclization and two ring expansions. It features high selectivity, mild conditions and convenient operation, wide scope and easy availability of substrate. Substitution with R1 and R2 at the 4πe-system with electron-donating group favors this reaction, while that with electron-withdrawing group or proton disfavors. The electron-donating group as R1 directs the initial ring expansion at its own site, while the p-π- or n-π- associated substituent as R2 favors selectively the later ring expansion near its location because of the beneficial maintenance of an original conjugated system. The stereoselectivity has proved to be governed by either the steric effect of R3 and R4 at the expanded rings, or the migration ability of the migrating atom. Density Functional Theory calculation suggests the initial Nazarov cyclization would be the rate-determining step. A racemic total synthesis of the natural (±)-waihoensene is realized in 18 steps by use of this methodology.

16.
Front Med (Lausanne) ; 9: 880326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479936

RESUMO

Background: Melanoma is a highly aggressive skin cancer with a poor prognosis and mortality. Immune checkpoint blockade (ICB) therapy (e.g., anti-PD-1 therapy) has opened a new horizon in melanoma treatment, but some patients present a non-responsive state. Cancer-associated fibroblasts (CAFs) make up the majority of stromal cells in the tumor microenvironment (TME) and have an important impact on the response to immunotherapy. There is still a lack of identification of CAFs-related predictors for anti-PD-1 therapy, although the establishment of immunotherapy biomarkers is well underway. This study aims to explore the potential CAFs-related gene panel for predicting the response to anti-PD-1 therapy in melanoma patients and elucidating their potential effect on TME. Methods: Three gene expression datasets from melanoma patients without anti-PD-1 treatment, in a total of 87 samples, were downloaded from Gene Expression Omnibus (GEO) as the discovery sets (GSE91061) and validation sets (GSE78220 and GSE122220). The CAFs-related module genes were identified from the discovery sets by weighted gene co-expression network analysis (WGCNA). Concurrently, we utilized differential gene analysis on the discovery set to obtain differentially expressed genes (DEGs). Then, CAFs-related key genes were screened with the intersection of CAFs-related module genes and DEGs, succeeded by supervised machine learning-based identification. As a consequence of expression analysis, gene set enrichment analysis, survival analysis, staging analysis, TME analysis, and correlation analysis, the multidimensional systematic characterizations of the key genes were uncovered. The diagnostic performance of the CAFs-related gene panel was assessed by receiver operating characteristic (ROC) curves in the validation sets. Eventually, the CAFs-related gene panel was verified by the expression from the single-cell analysis. Results: The six-gene panel associated with CAFs were finally identified for predicting the response to anti-PD-1 therapy, including CDK14, SYNPO2, TCF4, GJA1, CPXM1, and TFPI. The multigene panel demonstrated excellent combined diagnostic performance with the area under the curve of ROC reaching 90.5 and 75.4% ~100% in the discovery and validation sets, respectively. Conclusion: Confirmed by clinical treatment outcomes, the identified CAFs-related genes can be used as a promising biomarker panel for prediction to anti-PD-1 therapy response, which may serve as new immunotherapeutic targets to improve survival outcomes of melanoma patients.

17.
Sci Rep ; 12(1): 6698, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461367

RESUMO

Radiotherapy is an important treatment modality for lower-grade gliomas (LGGs) patients. This analysis was conducted to develop an immune-related radiosensitivity gene signature to predict the survival of LGGs patients who received radiotherapy. The clinical and RNA sequencing data of LGGs were obtained from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). Lasso regression analyses were used to construct a 21-gene signature to identify the LGGs patients who could benefit from radiotherapy. Based on this radiosensitivity signature, patients were classified into a radiosensitive (RS) group and a radioresistant (RR) group. According to the Kaplan-Meier analysis results of the TCGA dataset and the two CGGA validation datasets, the RS group had a higher overall survival rate than that of the RR group. This gene signature was RT-specific and an independent prognostic indicator. The nomogram model performed well in predicting 3-, and 5-year survival of LGGs patients after radiotherapy by this gene signature and other clinical factors (age, sex, grade, IDH mutations, 1p/19q codeletion). In summary, this signature is a powerful supplement to the prognostic factors of LGGs patients with radiotherapy and may provide an opportunity to incorporate individual tumor biology into clinical decision making in radiation oncology.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Glioma/genética , Glioma/radioterapia , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Tolerância a Radiação/genética
18.
ACS Omega ; 7(12): 10187-10195, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382326

RESUMO

Under the hydrothermal condition, a new type of two-dimensional coordination polymer ([Cd(D-Cam)(3-bpdb)]n, Cd-CP) has been constructed. It is composed of D-(+)-Camphoric-Cd(II) (D-cam-Cd(II)) one-dimensional chain and bridging 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene (3-bpdb) ligands. Cd-CP has a good removal effect for Hg(II) and Pb(II), and the maximum adsorption capacity is 545 and 450 mg/g, respectively. Interestingly, thermodynamic studies have shown that the adsorption processes of Hg(II) and Pb(II) on Cd-CP use completely different thermodynamic mechanisms, in which the adsorption of Hg(II) is due to a strong electrostatic interaction with Cd-CP, while that of Pb(II) is through a weak coordination with Cd-CP. Moreover, Cd-CP has a higher affinity for Hg(II), and when Hg(II) and Pb(II) coexist, Cd-CP preferentially adsorbs Hg(II).

19.
Front Pharmacol ; 13: 806300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387325

RESUMO

Background: Traditional Chinese medicine (TCM) is the health care system developed with the help of clinical trials that are based ideally on the scientific model of regulation. Objective: This systematic health care system relies on some specific unique theories and practical experiences to treat and cure diseases, thus enhancing the public's health. Review Methodology: The current review covers the available literature from 2000 to 2021. The data was collected from journals research articles, published books, thesis, and electronic databases, search engines such as Google Scholar, Elsevier, EBSCO, PMC, PubMed, ScienceDirect, Willey Online Library, Springer Link, and CNKI) searching key terms, cardiovascular disease, traditional Chinese medicines, natural products, and bioactive compounds. Full-length articles and abstracts were screened for the collection of information included in the paper. Results: Clinical trials on the TCM and basic research carried out on its mechanism and nature have led to the application and development of the perfect design of the research techniques, for example, twofold striking in acupuncture that aid in overcoming the limitations and resistances in integrating and applicability of these experiences and trials into the pre-existing biomedical models. Furthermore, TCM has also been utilized from ancient times to treat heart diseases in Asia, particularly in China, and is now used by people in many other areas. Cardiovascular disease (CVD) is mainly developed by oxidative stress. Hence antioxidants can be beneficial in treating this particular disease. TCM has a wide variety of antioxidant components. Conclusion: The current review article summarizes the underlying therapeutic property of TCM and its mechanism. It also overviews the evidence of the mechanism of TCM action in CVD prevention by controlling oxidative stress and its signaling pathway.

20.
Bioengineered ; 13(4): 10258-10273, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35435123

RESUMO

Emerging studies show that circRNA catenin beta 1 (circCTNNB1) plays a critical role in cancer. However, the expression and function of circCTNNB1 in cerebral ischemia/reperfusion injury (IRI) have not been reported. The present study discovered that circCTNNB1 and scavenger receptor class B type 1 (SRB1) expression levels were significantly down-regulated in mouse astrocytes (mAS) treated with oxygen glucose deprivation and reperfusion (OGD/R), and similar results were observed in a mouse middle cerebral artery occlusion model. Overexpression of circCTNNB1 alleviated cell apoptosis, oxidative stress and the inflammatory response induced by OGD/R in vitro. Up-regulation of circCTNNB1 increased SRB1 expression levels to protect mAS cells from OGD/R-induced damage. CircCTNNB1 and SRB1 interacted with miR-96-5p, and the overexpression of miR-96-5p efficiently reversed the function of circCTNNB1 in OGD/R-treated mAS cells. CircCTNNB1 protected against cerebral ischemia-reperfusion injury by up-regulating SRB1 in vivo. In conclusion, our findings suggest that circCTNNB1 acts as a competitive endogenous RNA for miR-96-5p to alleviate cerebral IRI, which provides novel evidence that circCTNNB1 and SRB1 may be biomarkers and therapeutic targets for cerebral IRI.


Assuntos
MicroRNAs , Traumatismo por Reperfusão , Animais , Apoptose/genética , Glucose/metabolismo , Infarto da Artéria Cerebral Média/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Oxigênio , RNA Circular/genética , Receptores Depuradores/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Receptores Depuradores Classe B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...