Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Artigo em Inglês | MEDLINE | ID: mdl-32057232


Layered lithium-rich transition-metal oxides (LRMs) have been considered as the most promising next-generation cathode materials for lithium-ion batteries. However, capacity fading, poor rate performance, and large voltage decays during cycles hinder their commercial application. Herein, a spinel membrane (SM) was first in situ constructed on the surface of the octahedral single crystal Li1.22Mn0.55Ni0.115Co0.115O2 (O-LRM) to form the O-LRM@SM composite with superior structural stability. The synergetic effects between the single crystal and spinel membrane are the origins of the enhancement of performance. On the one hand, the single crystal avoids the generation of inactive Li2MnO3-like phase domains, which is the main reason for capacity fading. On the other hand, the spinel membrane not only prevents the side reactions between the electrolyte and cathode materials but also increases the diffusion kinetics of lithium ions and inhibits the phase transformation on the electrode surface. Based on the beneficial structure, the O-LRM@SM electrode delivers a high discharge specific capacity and energy density (245.6 mA h g-1 and 852.1 W h kg-1 at 0.5 C), low voltage decay (0.38 V for 200 cycle), excellent rate performance, and cycle stability.

Dalton Trans ; 48(34): 12832-12838, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31418005


MoO3-x nanobelts with different concentrations of oxygen vacancies were synthesized by a one-step hydrothermal process. XPS test results show that oxygen vacancies are distributed from the exterior to the interior of the MoO3-x nanobelts. As an anode material for lithium-ion batteries, MoO3-x-10 releases excellent rate capacitance. It can maintain a high specific capacitance of about 500 mA h·g-1 at a high current density of 1000 mA·g-1. In the aspect of cycling stability, MoO3-x-10 can retain a high specific capacity of 641 mA h·g-1 after cycling for 50 times at 100 mA·g-1 and 420 mA h·g-1 after cycling for 100 times at 500 mA·g-1. The coexistence of oxygen vacancies and low-valence Mo ions is conducive to the intercalation/de-intercalation of Li ions and to promoting redox reactions. It has been proved to be a significantly effective way in which oxygen vacancies can improve the integrated performance of MoO3-x nanobelts as anode materials.

Dalton Trans ; 47(35): 12337-12344, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30117509


Based on the existing calculation reports, sulfur doping is an effective approach to alleviate the structure collapse of Li2MnSiO4 during cycling. Herein, we investigate the feasibility and limitations of S doping in Li2MnSiO4 by experiment. In our work, the solid solubility of S is confirmed and exceeding the threshold results in MnS impurity. The existence state and site of the S element in a Li2MnSiO4 crystal structure is also confirmed. It is found that S doping significantly improves the structural reversibility and cycling stability. Compared with a pristine sample, a 1mol% S doped sample exhibits a much higher initial coulombic efficiency (88.3%), excellent capacity retention (98% at 10th cycles for instance) and enhanced rate performance. Moreover, the 1mol% S doped sample can retain a discharge capacity of 137 mA h g-1 after 30 cycles while the pristine sample only has 61.6 mA h g-1. This study confirms the effectivity of S doping in suppressing the structural distortion in Li2MnSiO4.

Dalton Trans ; 46(15): 5017-5024, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28350023


Novel BaTiO3 hierarchical porous microspheres were achieved by using H2Ti2O5·H2O (HTO) hierarchical microspheres as a precursor template via a facile solvothermal method. Interestingly, the BaTiO3 microspheres were constructed with two-dimensional (2D) nanosheets, which were composed of many order nanocrystals with crystal-axis-orientation. The special hierarchical structure, which is both macroporous and mesoporous, exhibits a large specific surface area and a high total pore volume. The photocatalytic performance of BaTiO3 hierarchical microspheres for degradation of methyl orange (MO) under UV-light irradiation was tested, its apparent rate being up to 0.10183 min-1, almost 23 times higher than that for nanoscale BaTiO3 particles. The attractive photocatalytic properties are considered to benefit from the effective features of hierarchical BaTiO3 microspheres, such as the ultrathin thickness of nanosheets and their ordered interconnected macro-mesoporous structure and intrinsic photocatalytic activity. This study offers an in situ topochemical conversion route to synthesis of other titanium-based perovskite hierarchical nanostructures, and thus opening the door for the synthesis of other titanium-based functional materials and expanding their potential application.

Ying Yong Sheng Tai Xue Bao ; 21(1): 203-8, 2010 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-20387444


By using synergist bioassay and biochemical analysis, this paper approached the resistance mechanisms of Spodoptera exigua (Hübner) to fenvalerate and alpha-cypermethrin. The synergistic ratios of piperonyl butoxide (PBO), o, o-diethyl-o-phenyl-thiophosphate (SV1), triphenyl phosphate (TPP), and diethyl maleate (DEM) between fenvalerate-resistant strain (Fen-R) and susceptible strain were 10.2, 7.8, 12.5, and 1.1, and those between alpha-cypermethrin resistant strain (Cyp-R) and susceptible strain were 21.6, 15.5, 8.6, and 1.2, respectively. Significant synergisms of PBO, SV1, and TPP to fenvalerate and alpha-cypermethrin were observed, implying that multifunctional oxidase and carboxylesterase were involved in the resistance to fenvalerate and alpha-cypermethrin. The carboxylesterase activities in the fourth instar larvae of Cyp-R and Fen-R strains were 1.9 and 2.2 folds of the corresponding susceptible strains, respectively, but no differences were found in the glutathione-S-transferase activities between the resistant and susceptible strains, which indicated that carboxylesterase played an important role in the resistance of S. exigua to fenvalerate and alpha-cypermethrin, while glutathione-S-transferase contributed little to the resistance. There were no significant differences in the Na-K-ATPase activities between the resistant and susceptible strains, but the inhibition of fenvalerate and alpha-cypermethrin on Na-K-ATPase was higher in the susceptible strains than in the resistant strains, indicating the decreased sensitivity of Na-K-ATPase in resistant strains.

Resistência a Inseticidas/efeitos dos fármacos , Lepidópteros/efeitos dos fármacos , Nitrilos/farmacologia , Butóxido de Piperonila/farmacologia , Piretrinas/farmacologia , Animais , Resistência a Inseticidas/fisiologia , Inseticidas/farmacologia , Lepidópteros/fisiologia , Organofosfatos/farmacologia