Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 102: 104106, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32739481

RESUMO

Parasitic characteristics, mutations and resistance of influenza A virus make it difficult for current influenza antiviral drugs to maintain long-term effectiveness. Currently, to design non-adamantane compounds targeting the S31N mutant of M2 proton channel is a promising direction for the development of novel anti-influenza drugs. In our previous research, a pinanamine-based antiviral M090 was discovered to target hemagglutinin instead of M2, with its structure being highly similar to reported M2-S31N inhibitors. Herein, a series of pinane oxime derivatives were designed from scratch and evaluated for anti-influenza activity and their cytotoxicity in vitro. Utilizing a combination of structure-activity relationship analysis, electrophysiological assay and molecular docking, the most potent compound 11h, as a M2-S31N blocker, exhibited excellent activity with EC50 value at the low micromolar level against both H3N2 and H1N1. No significant toxicity of 11h was observed. In addition, compound 11h was located tightly in the pore of the drug-binding site with the thiophene moiety facing down toward the C-terminus, and did not adopt a similar position and orientation as the reference inhibitor.

2.
Bioorg Chem ; 101: 104036, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32629283

RESUMO

Oleanolic acid (OA) and its semi-synthetic derivatives have been reported to have a wide range of biological activities. The introduction of electrophilic Michael acceptor group can increase the reactivity of OA to cellular targets and thus improve the anti-tumor activity. In this work, a series of novel α,ß-unsaturated carbonyl derivatives of OA were designed and synthesized. Their in vitro cytotoxic activity against MCF-7, HepG2 and HeLa cells were tested. Most derivatives exhibited improved cell growth inhibitory activity, especially for 3d with an IC50 of 0.77 µM in MCF-7 cells. Moreover, 3d inhibited the migration of MCF-7 and HeLa cells at the concentration of 4 µM. Flow cytometric analysis revealed that 3d induced cell apoptosis and S phase arrest in a concentration-dependent manner. Western blotting experiment demonstrated that 3d inhibited the phosphorylation of AKT and mTOR. These results suggest that this series of OA derivatives bearing exocyclic methylene ketone pharmacophore are promising anticancer agents as potential PI3K/AKT/mTOR pathway inhibitors.

3.
Nano Lett ; 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32543201

RESUMO

Two-dimensional (2D) van der Waals heterostructures have attracted enormous research interests due to their emergent electrical and optical properties. The comprehensive understanding and efficient control of interlayer couplings in such devices are crucial for realizing their functionalities, as well as for improving their performance. Here, we report a successful manipulation of interlayer charge transfer between 2D materials by varying different stacking layers consisting of graphene, hexagonal boron nitride, and tungsten disulfide. Under visible-light excitation, despite being separated by few-layer boron nitride, the graphene and tungsten disulfide exhibit clear modulation of their doping level, i.e., a change of the Fermi level in graphene as large as 120 meV and a net electron accumulation in WS2. By using a combination of micro-Raman and photoluminescence spectroscopy, we demonstrate that the modulation is originated from simultaneous manipulation of charge and/or energy transfer between each of the two adjacent layers.

4.
Chem Commun (Camb) ; 56(53): 7333-7336, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483583

RESUMO

Zinc(ii)-catalyzed intramolecular hydroarylation-redox cross-dehydrogenative coupling of N-propargylanilines with two types of carbon pronucleophiles (nitromethane as a sp3 carbon pronucleophile and phenylacetylenes as sp carbon pronucleophiles) proceeded to give the 2-substituted tetrahydroquinolines in good yields with 100% atomic utilization without any additional external oxidants.

5.
J Transl Med ; 18(1): 221, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32487187

RESUMO

BACKGROUND: During early pregnancy, tolerance of the semi-allogeneic fetus necessitates comprehensive modifications of the maternal immune system. How decidual CD8+T (CD8+dT) cells balance maternal tolerance of the fetus with defense from invading pathogens remains undefined. METHODS: We investigated the distribution patterns of CD8+T cells and their heterogeneity in paired peripheral blood and decidual tissue in the first trimester of pregnancy using flow cytometry and mRNA-Seq. Gene Set Enrichment Analysis was utilized to determine the transcriptional features of CD8+dT cells. Moreover, we examined activation of T cells when they were cocultured with trophoblasts, in addition to the effect of the fetal-maternal environment on peripheral CD8+T (CD8+pT) cells. RESULTS: We found that, compared with CD8+pT cells, CD8+dT cells consisted mainly of effector memory cells (TEM) and terminally differentiated effector memory cells (TEMRA). Both TEM and TEMRA subsets contained increased numbers of CD27+CD28- cells, which have been shown to possess only partial effector functions. In-depth analysis of the gene-expression profiles of CD8+dT cells revealed significant enrichment in T cell exhaustion-related genes and core tissue residency signature genes that have been found recently to be shared by tissue resident memory cells and tumor-infiltrating lymphocytes (TILs). In accordance with gene expression, protein levels of the exhaustion-related molecules PD-1 and CD39 and the tissue resident molecules CD103 and CXCR3 were increased significantly with almost no perforin secretion in CD8+dT cells compared with CD8+pT cells. However, the levels of granzyme B, IFN-γ, and IL-4 in CD8+dT cells were increased significantly compared with those in CD8+pT cells. Both CD8+dT and CD8+pT cells were not activated after being cocultured with autologous trophoblast cells. Moreover, the production of granzyme B in CD103+CD8+dT cells decreased significantly compared with that in their CD103- counterparts. Coculture with decidual stromal cells and trophoblasts upregulated CD103 expression significantly in CD8+pT cells. CONCLUSIONS: Our findings indicate that the selective silencing of effector functions of resident CD8+dT cells may favor maternal-fetal tolerance and that the decidual microenvironment plays an important role in promoting the residency of CD8+T cells and their tolerance-defense balance.

6.
Neurosci Lett ; 731: 135060, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32442477

RESUMO

BACKGROUND: Some long non-coding RNAs (lncRNAs) have been suggested to play critical roles in Parkinson's disease (PD) pathogenesis, including nuclear enriched abundant transcript 1 (NEAT1). The purpose of this study was to further elucidate the molecular mechanism of NEAT1 in PD. METHODS: The expression levels of NEAT1, miR-212-5p and RAB3A-interacting protein (RAB3IP) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were evaluated by Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis, respectively. Western blot analysis was applied to detect the protein expression of IL-1ß, TNF-α and RAB3IP. The LDH activity, ROS generation and SOD activity were measured by Lactate LDH activity assay kit, ROS assay kit, and SOD activity assay kit, respectively. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to verify the relationship between miR-212-5p and NEAT1 or mRNA of RAB3IP. 1-methyl-4-phenylpyridinium ion (MPP+)-treated SK-N-SH cells were used as an in vitro model of PD. RESULTS: NEAT1 and RAB3IP were upregulated while miR-212-5p was downregulated in SK-N-SH cells treated with MPP+. NEAT1 knockdown or miR-212-5p overexpression inhibited MPP+-induced apoptosis, inflammation and cytotoxicity in SK-N-SH cells. Moreover, miR-212-5p was a direct target of NEAT1 and its downregulation reversed the eff ;ects caused by NEAT1 knockdown in MPP+-induced SK-N-SH cells. Furthermore, RAB3IP was a downstream target of miR-212-5p and its overexpression attenuated the effects of miR-212-5p restoration in MPP+-induced SK-N-SH cells. Besides, NEAT1 acted as a molecular sponge of miR-212-5p to regulate RAB3IP expression. CONCLUSION: NEAT1 knockdown suppressed MPP+-induced apoptosis, inflammation and cytotoxicity in SK-N-SH cells through regulating miR-212-5p and RAB3IP expression, providing a possible therapeutic strategy for PD patients.

7.
Food Funct ; 11(4): 3657-3667, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32296804

RESUMO

This study aimed to investigate the effects of conjugated linoleic acid (CLA) on intestinal epithelial barrier function and explore the underlying mechanisms. IPEC-J2 cells and mice were treated with different CLA isomers. The intestinal epithelial barrier function determined by transepithelial electrical resistance (TEER), the expression of tight junction proteins, and the involvement of G-protein coupled receptor 120 (GPR120), intracellular calcium ([Ca2+]i) and myosin light chain kinase (MLCK) were assessed. In vitro, c9, t11-CLA, but not t10, c12-CLA isomer, impaired epithelial barrier function in IPEC-J2 by downregulating the expression of tight junction proteins. Meanwhile, c9, t11-CLA isomer enhanced GPR120 expression, while knockdown of GPR120 eliminated the impaired epithelial barrier function induced by c9, t11-CLA isomer. In addition, c9, t11-CLA isomer increased [Ca2+]i and activated the MLCK signaling pathway in a GPR120-dependent manner. However, chelation of [Ca2+]i reversed c9, t11-CLA isomer-induced MLCK activation and the epithelial barrier function impairment of IPEC-J2. Furthermore, inhibition of MLCK totally abolished the impairment of epithelial barrier function induced by c9, t11-CLA. In vivo, dietary supplementation of c9, t11-CLA rather than t10, c12-CLA isomer decreased the expression of intestinal tight junction proteins and GPR120, increased intestinal permeability, and activated the MLCK signaling pathway in mice. Taken together, our findings showed that c9, t11-CLA, but not t10, c12-CLA isomer, impaired intestinal epithelial barrier function in IPEC-J2 cells and mice through activation of GPR120-[Ca2+]i and the MLCK signaling pathway. These data provided new insight into the regulation of the intestinal epithelial barrier by different CLA isomers and more references for CLA application in humans and animals.

8.
Acta Biochim Pol ; 67(1): 135-141, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32191410

RESUMO

Recently, embryo muscle development, which is crucial for postnatal skeletal muscle growth, has been investigated widely. Nutrients in ovo were suggested to be critical in embryo muscle development since the chick growth mostly relies on nutrients in eggs at the early developmental stage. Phytosterol esters (PE), which are derived from the reactions between phytosterols and fatty acids, were demonstrated to have important effects on lipid and cholesterol metabolism regulation. In order to reveal the effect of maternal lipid metabolism on the deposition of nutrients in eggs and the development of embryonic muscles, broiler hens were fed with a diet supplemented with 5% PE or control diet. Lipid deposition in eggs and growth of the hatched chicks were studied. We found that PE increased bile acid (BA) deposition in the eggs and serum of hens (p=0.02 and p<0.01, respectively), altered insulin and glucose level differentially in female and male offspring, and promoted body weight (p=0.02 for male and female on day 49), muscle fiber density (p=0.02 for female on day 49), and myogenin and myogenic determination factor (myoD) expression (p=0.03 and p=0.02 on day 49) by the activation of BA receptors in female, but not in male, offspring. Our study determined for the first time that PE promoted muscle development of chicks hatching from eggs laid by the hens, through regulating bile acid (BA) deposition and this may be attributed to the activation of BA receptors.

9.
J Anim Physiol Anim Nutr (Berl) ; 104(2): 570-578, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31975464

RESUMO

As one of the key points related to meat quality, skeletal muscle fibre type is determined by energy metabolism and genetic factors, but its transformation could be also greatly influenced by many factors. Thymol, the primary effective ingredients of thyme, is well known for its anti-oxidation and anti-inflammatory, while little is known about its effect on skeletal muscle oxidative metabolism and fibre type switch. Therefore, in order to investigate its effects and possibility to be applied in livestock production, 36 150-day-old fattening Pigs were fed with different diet for six-week experiment. As a result, the drip loss ratio of longissimus dorsi (LD) was significantly reduced (p < .05). Oxidative metabolism-related enzyme activity, the mRNA levels and protein expression of COX5B and PGC1α, mRNA level of myosin heavy chain I (MyHC I) and protein level of MyHC IIa were significantly upregulated (p < .05). While compared with control group, the protein expression of MyHC IIb was significantly decreased (p < .05). The result revealed that thymol could promote the oxidative metabolism in the muscle of pigs and improve the meat quality to a certain extent.

10.
Micromachines (Basel) ; 10(10)2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591365

RESUMO

Hepatology and drug development for liver diseases require in vitro liver models. Typical models include 2D planar primary hepatocytes, hepatocyte spheroids, hepatocyte organoids, and liver-on-a-chip. Liver-on-a-chip has emerged as the mainstream model for drug development because it recapitulates the liver microenvironment and has good assay robustness such as reproducibility. Liver-on-a-chip with human primary cells can potentially correlate clinical testing. Liver-on-a-chip can not only predict drug hepatotoxicity and drug metabolism, but also connect other artificial organs on the chip for a human-on-a-chip, which can reflect the overall effect of a drug. Engineering an effective liver-on-a-chip device requires knowledge of multiple disciplines including chemistry, fluidic mechanics, cell biology, electrics, and optics. This review first introduces the physiological microenvironments in the liver, especially the cell composition and its specialized roles, and then summarizes the strategies to build a liver-on-a-chip via microfluidic technologies and its biomedical applications. In addition, the latest advancements of liver-on-a-chip technologies are discussed, which serve as a basis for further liver-on-a-chip research.

11.
Biochem Biophys Res Commun ; 520(2): 479-485, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31607479

RESUMO

The development of muscle in the embryo, which is crucial for postnatal skeletal muscle growth, has been investigated widely. Much has been learned during the past several decades about the role of maternal nutrition in the outcome of pregnancy. Protein and carbohydrate levels during pregnancy have been shown to be important in the development of offspring, especially muscle development. However, the maternal effects of steroids were still not clear. Phytosterol esters (PEs) are produced by the esterification of phytosterols and fatty acids and have many beneficial functions, such as anti-inflammation and hypolipemic functions. Through the effect of regulation on lipid metabolism, can pregnant mice fed with PEs show any programming effect on the muscle development of offspring? In our study, PEs were supplied to the maternal diet, and changes in maternal lipid metabolism and the development of offspring skeletal muscle were detected. As a result, the amniotic fluid total bile acid (TBA) and total cholesterol (TC) levels were decreased; the growth of offspring was significantly faster than that of the control group until 6 weeks of age. Adult offspring had a higher lean mass index and grip strength. In skeletal muscle, the proportion of myosin heavy chain (MHC) 1 was significantly decreased, while the proportion of MHC 2 b was increased. In conclusion, maternal PEs significantly reduced sterols in the amniotic fluid, while skeletal muscle development was promoted in the offspring.

12.
Brain Behav ; 9(9): e01340, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31392839

RESUMO

INTRODUCTION: Ginseng polysaccharide (GPS, same as Panax polysaccharide) is a kind of polysaccharide extracted from ginseng. It has been reported that GPS has the ability to activate innate immunity, regulates blood sugar balance, and improves antioxidant capacity, but the effect on feeding behavior and its mechanism remains unclear. METHOD: To investigate the possible effect of GPS on feeding behavior of animals, mice were supplied with GPS in water, and food intake, hedonic feeding behavior, anxiety-like behavior, expression of appetite-regulation peptides in the central nervous system and glucose-related hormone levels in the serum of mice were measured. RESULTS: Ginseng polysaccharide significantly increased the average daily food intake in mice and promoted hedonic eating behavior. Meanwhile, the levels of serum glucose and glucagon were significantly reduced by GPS, and GPS promoted hypothalamic neuropeptide Y expression, inhibited proopiomelanocortin (POMC) expression, and reduced dopamine D1 receptor (DRD1) levels in the midbrain. We also found that the anxiety level of mice was significantly lower after GPS intake. In conclusion, oral supplementation with GPS promoted food intake in mice, most likely through the regulation of circulating glucose levels.


Assuntos
Comportamento Alimentar/efeitos dos fármacos , Panax , Polissacarídeos/farmacologia , Animais , Ansiedade , Comportamento Animal/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Suplementos Nutricionais , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Ingestão de Alimentos/efeitos dos fármacos , Glucagon/efeitos dos fármacos , Glucagon/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Insulina/metabolismo , Masculino , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Camundongos , Neuropeptídeo Y/efeitos dos fármacos , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/efeitos dos fármacos , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptores de Dopamina D1/efeitos dos fármacos , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D2/genética
13.
Acta Biochim Biophys Sin (Shanghai) ; 51(9): 908-914, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31411318

RESUMO

Perturbation of the circadian rhythm damages the biological characteristics of cells and leads to their dysfunction. Rev-erbα, an important gene in the transcription-translation loop of circadian rhythm, is involved in regulating the balance between pro-inflammation and anti-inflammation. The disruption of this balance in human endometrial stroma cells (hESCs) destroys their biological behavior function in maintaining the menstrual cycle and embryonic implantation. Whether pharmacological modulation of Rev-erbα affects the inflammation of hESCs remains unclear. In this study, we treated hESCs with lipopolysaccharide (LPS) and found that LPS treatment increased the mRNA levels of pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, IL-8, IL-18, and TNFα, and the secretion of IL-6. SR9009, a Rev-erbα agonist, significantly alleviated the LPS-induced production of pro-inflammatory cytokines in hESCs. Meanwhile, knockdown of Rev-erbα increased the expressions of IL-1ß, IL-6, and IL-8, accompanied by an increased mRNA level of the core clock gene Bmal1. Western blot analysis showed that SR9009 inhibited the expression of toll-like receptor 4 (TLR4) and the activation of NF-κB induced by LPS. All these findings suggested that pharmacological activation of Rev-erbα attenuated the LPS-induced inflammatory response of hESCs by suppressing TLR4-regulated NF-κB activation. This study may provide a strategy for preventing inflammation-related endometrial dysfunction and infertility or recurrent implantation failure.


Assuntos
Citocinas/imunologia , Endometrite/imunologia , Endométrio/imunologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/fisiologia , Células Estromais/imunologia , Endometrite/induzido quimicamente , Endométrio/citologia , Endométrio/patologia , Feminino , Humanos , Lipopolissacarídeos , NF-kappa B/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/agonistas , Células Estromais/citologia , Células Estromais/patologia , Receptor 4 Toll-Like/metabolismo
14.
Bioorg Med Chem Lett ; 29(16): 2327-2331, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31281016

RESUMO

The novel marine pyrrole alkaloid neolamellarin A derived from sponge has been shown to inhibit hypoxia-induced HIF-1 activity. In this work, we designed and synthesized neolamellarin A and its series of derivatives by a convergent synthetic strategy. The HIF-1 inhibitory activity and cytotoxicity of these compounds were evaluated in Hela cells by dual-luciferase reporter gene assay and MTT assay, respectively. The results showed that neolamellarin A 1 (IC50 = 10.8 ±â€¯1.0 µM) and derivative 2b (IC50 = 11.9 ±â€¯3.6 µM) had the best HIF-1 inhibitory activity and low cytotoxicity. Our SAR research focused on the effects of key regions aliphatic carbon chain length, aromatic ring substituents and C-7 substituent on biological activity, providing a basis for the subsequent research on the development of novel pyrrole alkaloids as HIF-1 inhibitors and design of small molecule probes for target protein identification.

15.
Biomed Microdevices ; 21(3): 57, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222452

RESUMO

Non-parenchymal cells play a key role in the occurrence and development of alcoholic liver disease. However, this cellular behaviour has not been fully characterized, and it is inconvenient to observe in traditional in vitro alcoholic liver disease (ALD) models and animal models. Herein we developed a demountable liver-on-chip device for investigation of pathophysiological process of individual non-parenchymal cells in alcohol induced ALD. This liver-device comprised of HepG2, LX-2, EAhy926 and U937 cells, which were ordered in a physiological distribution under perfuse. This device allows improved HepG2 cells activities and maintained high liver functions which including albumin synthesis and urea secretion. This novel liver-device is able to recreate the damage process of hepatic non-parenchymal cell lines induced by alcohol, and to understand the intercellular communication between different types of hepatic cells during ALD by measuring multiple biomarkers of each types of hepatic non-parenchymal cell lines, including Ve-cadherin, eNOS, VEGF and α-SMA. The proposed liver-device is able to further studies of pathological analysis and drug- and toxicity-screening.


Assuntos
Hepatopatias Alcoólicas/patologia , Fígado/patologia , Análise Serial de Tecidos/instrumentação , Biomarcadores/metabolismo , Linhagem Celular , Humanos , Fígado/metabolismo
16.
Biomicrofluidics ; 13(2): 024101, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31040885

RESUMO

The poor metabolic ability of cell lines fails to meet the requirements of an in vitro model for drug interaction testing which is crucial for the development or clinical application of drugs. Herein, we describe a liver sinusoid-on-a-chip device composed of four kinds of transformed cell lines (HepG2 cells, LX-2 cells, EAhy926 cells, and U937 cells) that were ordered in a physiological distribution with artificial liver blood flow and biliary efflux flowing in the opposite direction. This microfluidic device applied three-dimensional culturing of HepG2 cells with high density (107 ml-1), forming a tightly connected monolayer of EAhy926 cells and achieving the active transport of drugs in HepG2 cells. Results showed that the device maintained synthetic and secretory functions, preserved cytochrome P450 1A1/2 and uridine diphosphate glucuronyltransferase enzymatic activities, as well as sensitivity of drug metabolism. The cell lines derived device enables the investigation of a drug-drug interaction study. We used it to test the hepatotoxicity of acetaminophen and the following combinations: "acetaminophen + rifampicin," "acetaminophen + omeprazole," and "acetaminophen + ciprofloxacin." The variations in hepatotoxicity of the combinations compared to acetaminophen alone, which is not found in a 96-well plate model, in the device were -17.15%, 14.88%, and -19.74%. In addition, this result was similar to the one tested by the classical primary hepatocyte plate model (-13.22%, 13.51%, and -15.81%). Thus, this cell lines derived liver model provides an alternative to investigate drug hepatotoxicity, drug-drug interaction.

17.
Biochemistry ; 58(20): 2499-2508, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31037943

RESUMO

Vertebrate lens ß/γ-crystallins share a conserved tertiary structure consisting of four Greek-key motifs divided into two globular domains. Numerous inherited mutations in ß/γ-crystallins have been linked to cataractogenesis. In this research, the folding mechanism underlying cataracts caused by the I21N mutation in ßB2 was investigated by comparing the effect of mutagenesis on the structural features and stability of four ß/γ-crystallins, ßB1, ßB2, γC, and γD. Our results showed that the four ß/γ-crystallins differ greatly in solubility and stability against various stresses. The I21N mutation greatly impaired ßB2 solubility and native structure as well as its stability against denaturation induced by guanidine hydrochloride, heat treatment, and ultraviolet irradiation. However, the deleterious effects were much weaker for mutations at the corresponding sites in ßB1, γC, and γD. Molecular dynamics simulations indicated that the introduction of a nonnative hydrogen bond contributed to twisting Greek-key motif I outward, which might direct the misfolding of the I21N mutant of ßB2. Meanwhile, partial hydration of the hydrophobic interior of the domain induced by the mutation destabilized ßB1, γC, and γD. Our findings highlight the importance of nonnative hydrogen bond formation and hydrophobic core hydration in crystallin misfolding caused by inherited mutations.


Assuntos
beta-Cristalinas/química , gama-Cristalinas/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Mutação , Domínios Proteicos , Estabilidade Proteica , Solubilidade , beta-Cristalinas/genética , gama-Cristalinas/genética
18.
Bioorg Chem ; 85: 357-363, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30658235

RESUMO

In this paper, the mechanism of orobanone analogues formation via aromatization rearrangement of curcumol was minutely explored. Aromatization of curcumol with acetone under acidic condition was selected as the model reaction. The formation of a stable aromatic system was the driving force for this reaction. Based on the model reaction, other four new orobanone analogues were prepared through curcumol reacting with different carbonyl compounds. The results showed that the stability of carbocation, which was generated from the carbonyl compounds, and the steric hindrance were main factors affecting the aromatization. We also synthesized the analogue of aromaticane B using compound 2. In vitro anti-proliferative activity of some derivatives were tested by MTT assay. Two derivatives showed weak anti-tumor effect on two cancer cell lines (HepG2 and MCF7) under normoxia. Four orobanone analogue 2, 5, 6 and 9 significantly inhibited hypoxia-induced HIF-1 luciferase reporter activity in HeLa cells with the IC50 values of 13.6, 6.6, 2.4 and 18.2 µM, respectively.


Assuntos
Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Sesquiterpenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Fator 1 Induzível por Hipóxia/genética , Sesquiterpenos/síntese química , Transcrição Genética/efeitos dos fármacos
19.
Cancer Chemother Pharmacol ; 83(1): 179-189, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30406839

RESUMO

OBJECTIVE: To investigate the potential inhibitory effects of structurally novel steroidal dimer by001 in esophageal cancer in vitro. METHODS: The cytotoxicity of by001 on esophageal, gastric, neuroblastoma and prostate cancer cells was examined MTT assay and colony formation assay. By001 induced apoptosis and production of intracellular reactive oxygen species on esophageal cancer cells Ec109, TE-1 and human normal gastric epithelial cells GES-1 was detected by flow cytometry. The effect of by001 on mitochondrial membrane potential was detected by fluorescence microscope through JC-1 staining. The level of intracellular reactive oxygen species was measured by fluorescence microscope and flow cytometry via DCFH-DA staining. The effect of by001 on members of Bcl-2 family, Fas, LC3, PARP and caspases was determined by Western blot. The effect of by001 on migration was measured by transwell assay. RESULTS: By001 effectively inhibited proliferation of esophageal, gastric, neuroblastoma and prostate cancer cells in a time- and concentration-dependent manner in vitro. By001 reduced the number and the size of colonies at low micromolar concentrations, elevated cellular ROS levels and caused mitochondrial dysfunction in esophageal cancer cells. Molecular mechanistic studies showed that by001 triggered apoptosis through regulating members of Bcl-2 family and Fas. CONCLUSIONS: These findings suggested that by001 may inhibited proliferation of esophageal cancer cells through mitochondria and death receptor-mediated apoptotic pathways, autophagy induction, as well as suppressed migration of esophageal cancer cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Compostos Policíclicos/química , Compostos Policíclicos/farmacologia , Esteroides/química , Apoptose , Neoplasias Esofágicas/patologia , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
20.
Micromachines (Basel) ; 9(9)2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30424403

RESUMO

Carcinoembryonic antigen (CEA) is a broad-spectrum tumor marker used in clinical applications. The primarily clinical method for measuring CEA is based on chemiluminescence in serum during enzyme-linked immunosorbent assays (ELISA) in 96-well plates. However, this multi-step process requires large and expensive instruments, and takes a long time. In this study, a high-throughput centrifugal microfluidic device was developed for detecting CEA in serum without the need for cumbersome washing steps normally used in immunoreactions. This centrifugal microdevice contains 14 identical pencil-like units, and the CEA molecules are separated from the bulk serum for subsequent immunofluorescence detection using density gradient centrifugation in each unit simultaneously. To determine the optimal conditions for CEA detection in serum, the effects of the density of the medium, rotation speed, and spin duration were investigated. The measured values from 34 clinical serum samples using this high-throughput centrifugal microfluidic device showed good agreement with the known values (average relative error = 9.22%). These results indicate that the high-throughput centrifugal microfluidic device could provide an alternative approach for replacing the classical method for CEA detection in clinical serum samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA