Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 18(1): 170, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31771591

RESUMO

BACKGROUND: The gene encoding the E3 ubiquitin ligase substrate-binding adaptor SPOP is frequently mutated in primary prostate cancer, but how SPOP mutations contribute to prostate cancer pathogenesis remains poorly understood. Stress granules (SG) assembly is an evolutionarily conserved strategy for survival of cells under stress, and often upregulated in human cancers. We investigated the role of SPOP mutations in aberrant activation of the SG in prostate cancer and explored the relevanve of the mechanism in therapy resistance. METHODS: We identified SG nucleating protein Caprin1 as a SPOP interactor by using the yeast two hybrid methods. A series of functional analyses in cell lines, patient samples, and xenograft models were performed to investigate the biological significance and clinical relevance of SPOP regulation of SG signaling in prostate cancer. RESULTS: The cytoplasmic form of wild-type (WT) SPOP recognizes and triggers ubiquitin-dependent degradation of Caprin1. Caprin1 abundance is elevated in SPOP-mutant expressing prostate cancer cell lines and patient specimens. SPOP WT suppresses SG assembly, while the prostate cancer-associated mutants enhance SG assembly in a Caprin1-dependent manner. Knockout of SPOP or expression of prostate cancer-associated SPOP mutants conferred resistance to death caused by SG inducers (e.g. docetaxel, sodium arsenite and H2O2) in prostate cancer cells. CONCLUSIONS: SG assembly is aberrantly elevated in SPOP-mutated prostate cancer. SPOP mutations cause resistance to cellular stress induced by chemtherapeutic drug such as docetaxel in prostate cancer.

2.
Leukemia ; 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776466

RESUMO

Recurrent oncogenic mutations of MyD88 have been identified in a variety of lymphoid malignancies. Gain-of-function mutations of MyD88 constitutively activate downstream NF-κB signaling pathways, resulting in increased cellular proliferation and survival. However, whether MyD88 activity can be aberrantly regulated in MyD88-wild-type lymphoid malignancies remains poorly understood. SPOP is an adaptor protein of CUL3-based E3 ubiquitin ligase complex and frequently mutated genes in prostate and endometrial cancers. In this study, we reveal that SPOP binds to and induces the nondegradative ubiquitination of MyD88 by recognizing an atypical SPOP-binding motif in MyD88. This modification blocks Myddosome assembly and downstream NF-κB activation. SPOP is mutated in a subset of lymphoid malignancies, including diffuse large B-cell lymphoma (DLBCL). Lymphoid malignancies-associated SPOP mutants exhibited impaired binding to MyD88 and suppression of NF-κB activation. The DLBCL-associated, SPOP-binding defective mutants of MyD88 escaped from SPOP-mediated ubiquitination, and their effect on NF-κB activation is stronger than that of wild-type MyD88. Moreover, SPOP suppresses DLBCL cell growth in vitro and tumor xenograft in vivo by inhibiting the MyD88/NF-κB signaling. Therefore, SPOP acts as a tumor suppressor in DLBCL. Mutations in the SPOP-MyD88 binding interface may disrupt the SPOP-MyD88 regulatory axis and promote aberrant MyD88/NF-κB activation and cell growth in DLCBL.

3.
PLoS One ; 9(10): e110119, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25330231

RESUMO

The sphingosine-1-phosphate (S1P) transporter Spns2 regulates myocardial precursor migration in zebrafish and lymphocyte trafficking in mice. However, its function in cancer has not been investigated. We show here that ectopic Spns2 expression induced apoptosis and its knockdown enhanced cell migration in non-small cell lung cancer (NSCLC) cells. Metabolically, Spns2 expression increased the extracellular S1P level while its knockdown the intracellular. Pharmacological inhibition of S1P synthesis abolished the augmented cell migration mediated by Spns2 knockdown, indicating that intracellular S1P plays a key role in this process. Cell signaling studies indicated that Spns2 expression impaired GSK-3ß and Stat3 mediated pro-survival pathways. Conversely, these pathways were activated by Spns2 knockdown, which explains the increased cell migration since they are also crucial for migration. Alterations of Spns2 were found to affect several enzymes involved in S1P metabolism, including sphingosine kinases, S1P phosphatases, and S1P lyase 1. Genetically, Spns2 mRNA level was found to be reduced in advanced lung cancer (LC) patients as quantified by using a small scale qPCR array. These data show for the first time that Spns2 plays key roles in regulating the cellular functions in NSCLC cells, and that its down-regulation is a potential risk factor for LC.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular , Neoplasias Pulmonares/patologia , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Animais , Proteínas de Transporte de Ânions/deficiência , Proteínas de Transporte de Ânions/genética , Apoptose , Transporte Biológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Espaço Intracelular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/metabolismo
4.
J Cell Commun Signal ; 8(4): 353-62, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25280831

RESUMO

Stress adaptation effect provides cell protection against ischemia induced apoptosis. Whether this mechanism prevents other types of cell death in stroke is not well studied. This is an important question for regenerative medicine to treat stroke since other types of cell death such as necrosis are also prominent in the stroke brain apart from apoptosis. We report here that treatment with 17-N-Allylamino-17-demethoxygeldanamycin (17AAG), an Hsp90 inhibitor, protected neural progenitor cells (NPCs) against oxygen glucose deprivation (OGD) induced cell death in a dose dependent fashion. Cell death assays indicated that 17AAG not only ameliorated apoptosis, but also necrosis mediated by OGD. This NPC protection was confirmed by exposing cells to oxidative stress, a major stress signal prevalent in the stroke brain. Mechanistic studies demonstrated that 17AAG activated PI3K/Akt and MAPK cell protective pathways. More interestingly, these two pathways were activated in vivo by 17AAG and 17AAG treatment reduced infarct volume in a middle cerebral artery occlusion (MCAO) stroke model. These data suggest that 17AAG protects cells against major cell death pathways and thus might be used as a pharmacological conditioning agent for regenerative medicine for stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA