Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISA Trans ; 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31796209

RESUMO

In this technical note, we present an adaptive fuzzy hierarchical sliding mode control method to deal with the control problem of under-actuated switched nonlinear systems. For the system under consideration, both the issues of unknown uncertain functions and aperiodically updating input are taken into account, which are of practical importance. A bounded time-varying function is employed to make a linear transformation of the control input, leading to a transformed system that can be applied to the control design. By introducing the so-called hierarchical structure, a top layer hierarchical sliding surface containing all the system states' information is obtained. Furthermore, by carrying out fuzzy logic systems' universal approximation, the problem caused by unknown system uncertainties is tackled. The approximation errors together with the measurement error resulted from the effects of the triggering event are lumped into a function, and its upper bound is estimated on-line. Based on these, the boundedness of all the signals are verified by combining the Lyapunov theory and projection algorithm. To testify the validity of our control scheme, a simulation example is carried out.

2.
Nat Commun ; 10(1): 5525, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797925

RESUMO

CRISPR-Cas9 is a widely-used genome editing tool, but its off-target effect and on-target complex mutations remain a concern, especially in view of future clinical applications. Non-human primates (NHPs) share close genetic and physiological similarities with humans, making them an ideal preclinical model for developing Cas9-based therapies. However, to our knowledge no comprehensive in vivo off-target and on-target assessment has been conducted in NHPs. Here, we perform whole genome trio sequencing of Cas9-treated rhesus monkeys. We only find a small number of de novo mutations that can be explained by expected spontaneous mutations, and no unexpected off-target mutations (OTMs) were detected. Furthermore, the long-read sequencing data does not detect large structural variants in the target region.

3.
J Inorg Biochem ; 203: 110909, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31689591

RESUMO

Glioma stem cells (GSCs) are thought to be responsible for the recurrence and invasion of glioblastoma multiform (GBM), which have been evaluated and exploited as the therapeutic target for GBM. Cyclometalated iridium(III) complexes have been demonstrated as the potential anticancer agents, however, their antitumor efficacies against GSCs are still unknown. Herein, we investigated the antitumor activity of two cyclometalated iridium(III) complexes [Ir(ppy)2L](PF6) (Ir1) and [Ir(thpy)2L](PF6) (Ir2) (ppy = 2-phenylpyridine, thpy = 2-(2-thienyl)pyridine and L = 4,4'-Bis(hydroxymethyl)-2,2'-bipyridine) against GSCs. The results clearly indicate that Ir1 and Ir2 kill GSCs selectively with IC50 values ranging from 5.26-9.05 µM. Further mechanism research display that Ir1 and Ir2 can suppress the proliferation of GSCs, penetrate into GSCs efficiently, localize to mitochondria, and induce mitochondria-mediated apoptosis, including the loss of mitochondrial membrane (MMP), elevation of intracellular reactive oxygen species (ROS) and caspases activation. Moreover, Ir1 and Ir2 can destroy the GSCs self-renewal and unlimited proliferation capacity by affecting the GSCs colony formation. According our knowledge, this is the first study to investigate the anti-GSCs properties of cyclometalated iridium(III) complexes.

4.
Endocr Relat Cancer ; 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693489

RESUMO

Papillary thyroid carcinoma (PTC) is one of the most prevalent tumors in endocrine system. CircRNAs (circular RNAs) are widely known as critical regulators in tumorigenesis of papillary thyroid carcinoma (PTC). The present study focused on the functional investigation and potential molecular mechanism toward circ_0005273 in PTC progression. Gene Expression Omnibus datasets (GSE93522) and qRT-PCR (quantitative real-time polymerase chain reaction) analyses showed that circ_0005273 were up-regulated in PTC tissues and cell lines. Moreover, circ_0005273 was located in the cytoplasm of PTC cells, and suggested poor prognosis in PTC patients. In vivo and in vitro functional assays indicated that knockdown of circ_0005273 inhibited PTC tumor growth and progression, respectively. Mechanistically, miR-1183 was identified as functional target of circ_0005273, and circ_0005273 could directly bind to miR-1138 and relieve inhibition of SRY (sex determining region Y)-box 2 (SOX2). Data from Cell Counting Kit-8, colony formation assays and transwell assays revealed that the oncogenic role of circ_0005273 on PTC progression dependent on miR-1183-mediated SOX2 expression. In conclusion, circ_0005273 functioned as a tumor promoter of PTC via circ_0005273/miR-1183/SOX2 axis, suggesting a novel biomarker and therapeutic target for PTC.

5.
BMC Cancer ; 19(1): 1093, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718618

RESUMO

BACKGROUND: Anaplastic thyroid cancer (ATC) is considered to be a rare type of thyroid cancer but takes up the most important proportion of thyroid cancer-related deaths. Therefore, the development of molecular targeted therapy is an exciting strategy in the management of ATC. METHODS: miR-155 and SOCS1 expression were measured by qRT-PCR as well as western blot analysis. 8305c and FRO cells were transfected and cultured for apoptosis assays, transwell, MTT on miR-155 or SOCS1 suppression and overexpression. Dual-luciferase reporter assays and SOCS1 restoration experimentswas implemented for define the relation between SOCS1 and miR-155. In addition, the correlation between miR-155 expression and patients' clinicopathological features were also explored. RESULTS: Aberrant miR-155 and SOCS1 expression and inverse correlation were found in ATC samples. In addition, it indicated that miR-155 expression correlated with cervical metastasis as well as extrathyroidal invasion. Moreover, we demonstrated that miR-155 inhibited 8305c and FRO cells apoptosis, promoted proliferation, invasion and migration. Furthermore, miR-155 inhibition was associated with a significant overexpression of SOCS1. Additionally, luciferase reporter assays presented that miR-155 could bind to SOCS1 3'-UTR, influencing its stability negatively and finally lowering SOCS1 levels. Moreover, it was illustrated that the impacts of miR-155 suppression were reversed by the inhibition of SOCS1 on cell proliferation, apoptosis as well as invasion. CONCLUSIONS: Aberrant miR-155/SOCS1 expression has been included in ATC progression: miR-155 overexpression leads to SOCS1 suppression and develops ATC progression. Thus, miR-155 has been considered to be an underlying therapeutic target for ATC.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31758525

RESUMO

The ordinal position effect refers to a phenomenon in which items positioned early in an ordinal sequence receive a faster response with the left key than with the right key, and the opposite response pattern occurs when items are positioned later in an ordinal sequence. Previous studies have suggested that ordinal symbols are spatially represented from left to right, thus leading to the ordinal position effect; however, the spatial coding mechanism of ordinal symbols remains unclear. Therefore, the present study explored the ordinal position effect as an index to judge the spatial coding of ordinal symbols, and three experiments were performed to investigate the spatial coding mechanism of ordinal symbols. In particular, a novel transitory ordinal sequence was induced by presenting successive dots of different colors centrally (Experiment 1), from left to right or from right to left (Experiments 2 and 3), and participants were asked to memorize the successive dots in the correct order. Then, the participants were asked to press a key to provide a response corresponding to a probe dot's ordinal position (Experiments 1 and 2) or its spatial location (Experiment 3). The following results were identified: (1) The ordinal position effect occurred when responses were based on the ordinal position regardless of the presentation direction, and (2) the ordinal position effect was overridden when responses were based on the spatial locations of the ordinal symbols. From these results, we concluded that the spatial coding of ordinal symbols is flexible and that ordinal symbols are encoded depending on the specific experimental context.

7.
J Neurooncol ; 145(2): 211-222, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31605296

RESUMO

PURPOSE: Glioma is one of the lethal cancers which needs effective therapeutic target. TRIM44 has been found playing a carcinogenic role in human tumors such as breast cancer and ovarian cancer. However, the pathophysiological significance of TRIM44 in glioma is still unclear. METHODS: Quantitative-PCR and western blot were used to assess the expression of TRIM44 in glioma cells. For cell proliferation, Brdu incorporation and colony formation assays were performed. By Caspase 3 staining and FACS analysis, we revealed that TRIM44 knockdown induced glioma cell apoptosis. A BALB/c nude mouse xenograft model and following immunohistochemical (IHC) staining enables us to explore the effect of TRIM44 deletion on glioma growth in vivo. Western blot of p21, p27 and AKT indicated the possible role of TRIM44 in regulation AKT pathway in glioma. RESULTS: TRIM44 was significantly elevated in glioma cells, and high expression of TRIM44 is related to poor prognostic of glioma patients. TRIM44 knockdown by shRNAs inhibit glioma cell proliferation, migration, induced cell cycle disruption and further cellular apoptosis in vitro. As well, TRIM44 inactivation obviously inhibit tumor growth in xenograft model. Furthermore, the negative cell cycle regulators p21/p27 are significantly upregulated, while AKT which is known as the main regulator of p21/p27 is inactivated in TRIM44-dificient cells. These results suggested that TRIM44 inactivation disrupted cell cycle progression and inhibit cell proliferation through AKT/p21/p27 pathway in glioma. CONCLUSION: TRIM44 was associated with oncogenic potential of glioma. Targeting TRIM44 might be beneficial for glioma therapy.

9.
Front Psychol ; 10: 1902, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649570

RESUMO

Background: Although empathy has always been considered to be impaired in individuals with autism spectrum conditions (ASCs), the relevant findings have been inconsistent. The present meta-analysis aims to determine which empathy components are impaired and how culture, gender, and age moderate such empathy impairment. Methods: By using "Autism," "Asperger Syndrome," "Empathy," and related Chinese synonyms as keywords, we searched the databases of Weipu, Wanfang, CNKI, Web of Science, Science Direct, SpringerLink, and Elsevier through "subject" and "keyword" searches. We also conducted a manual search according to the references. In total, 51 studies from Eastern and Western countries were included in this meta-analysis, which comprised 144 independent effects, 2,095 individuals with ASCs and 2,869 controls without ASCs. For the retrieved data, Hedge's g was taken as the quantitative measure of effect, and CMA V2.0 software was used for publication bias tests (by using Rosenthal's Classic Failsafe-N and Egger's methods), heterogeneity tests (by using a Q-test, I 2-test, and H-test) and a moderating effect test (by using a univariate regression model). Results: The results showed that the empathy impairment evident in individuals with ASCs is component specific; that is, trait-cognitive empathy, trait-empathic concern, state-cognitive empathy, and state-empathic concern are impaired, whereas state-empathic accuracy remains intact, and trait-empathic accuracy is superior to the trait-empathic accuracy in neurotypical individuals. The univariate regression model showed that gender moderates the impairment of the trait-empathic concern, trait-empathic accuracy, and state-cognitive empathy in autistic individuals and that age moderates the impairment of the trait-cognitive empathy, trait-empathic accuracy, state-empathic concern, and state-empathic accuracy in autistic individuals. However, culture does not moderate any empathy components (trait-cognitive empathy, trait-empathic concern, or state-cognitive empathy) involved in the present meta-analysis. Conclusions: These findings contribute to ending the controversy over the empathic integrity of individuals with ASCs and shed some light on future research about the empathy impairment of autistic individuals. More specifically, subsequent studies should distinguish specific empathy components and consider the role of gender and age when demonstrating empathy impairment in individuals with ASCs. Moreover, related studies based on Asian collectivist cultural samples and female samples should be further enriched.

10.
Chin J Nat Med ; 17(9): 698-706, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31526505

RESUMO

Seven new isoquinoline alkaloids, 9-(2'-formyl-5', 6'-dimethoxyphenoxy)-1, 2, 3, 10-tetramethoxy dehydroaporphine (1), 9-(2'-formyl-5', 6'-dimethoxyphenoxy)-1, 2, 3, 10-tetramethoxy oxoaporphine (2), 3-methoxy-2'-formyl oxohernandalin (3), (-)-9-(2'-methoxycarbonyl-5', 6'-dimethoxyphenoxy)-1, 2, 3, 10-tetramethoxy aporphine (4), (-)-2'-methoxycarbonyl thaliadin (5), (-)-9-(2'-methoxyethyl-5', 6'-dimethoxyphenoxy)-1, 2, 3, 10-tetramethoxy aporphine (6), (-)-3-methoxy hydroxyhernandalinol (7), together with six known isoquinoline alkaloids (8-13) were isolated from the roots of Thalictrum foetidum. Their structures were elucidated by extensive spectroscopic measurements. Compounds 1 and 2 showed significant selective cytotoxicity against glioma stem cells (GSC-3# and GSC-18#) with IC50 values ranging from 2.36 to 5.37 µg·mL-1.

11.
Cancer Immunol Res ; 7(11): 1813-1823, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31484657

RESUMO

Despite the great success of chimeric antigen receptor T (CAR-T)-cell therapy in the treatment of hematologic malignancies, CAR-T-cell therapy is limited in solid tumors, including hepatocellular carcinoma (HCC). NK group 2 member D (NKG2D) ligands (NKG2DL) are generally absent on the surface of normal cells but are overexpressed on malignant cells, offering good targets for CAR-T therapy. Indeed, analysis of The Cancer Genome Atlas and HCC tumor samples showed that the expression of most NKG2DLs was elevated in tumors compared with normal tissues. Thus, we designed a novel NKG2D-based CAR comprising the extracellular domain of human NKG2D, 4-1BB, and CD3ζ signaling domains (BBz). NKG2D-BBz CAR-T cells efficiently killed the HCC cell lines SMMC-7721 and MHCC97H in vitro, which express high levels of NKG2DLs, whereas they less efficiently killed NKG2DL-silenced SMMC-7721 cells or NKG2DL-negative Hep3B cells. Overexpression of MICA or ULBP2 in Hep3B improved the killing capacity of NKG2D-BBz CAR-T cells. T cells expressing the NKG2D-BBz CAR effectively eradicated SMMC-7721 HCC xenografts. Collectively, these results suggested that NKG2D-BBz CAR-T cells could potently eliminate NKG2DL-high HCC cells both in vitro and in vivo, thereby providing a promising therapeutic intervention for patients with NKG2DL-positive HCC.

12.
Neuroimage ; 203: 116163, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31494249

RESUMO

PURPOSE: Positron emission tomography (PET) is a non-invasive imaging tool for the evaluation of brain function and neuronal activity in normal and diseased conditions with high sensitivity. The macaque monkey serves as a valuable model system in the field of translational medicine, for its phylogenetic proximity to man. To translation of non-human primate neuro-PET studies, an effective and objective data analysis platform for neuro-PET studies is needed. MATERIALS AND METHODS: A set of stereotaxic templates of macaque brain, namely the Institute of High Energy Physics & Jinan University Macaque Template (HJT), was constructed by iteratively registration and averaging, based on 30 healthy rhesus monkeys. A brain atlas image was created in HJT space by combining sub-anatomical regions and defining new 88 bilateral functional regions, in which a unique integer was assigned for each sub-anatomical region. RESULTS: The HJT comprised a structural MRI T1 weighted image (T1WI) template image, a functional FDG-PET template image, intracranial tissue segmentations accompanied with a digital macaque brain atlas image. It is compatible with various commercially available software tools, such as SPM and PMOD. Data analysis was performed on a stroke model compared with a group of healthy controls to demonstrate the usage of HJT. CONCLUSION: We have constructed a stereotaxic template set of macaque brain named HJT, which standardizes macaque neuroimaging data analysis, supports novel radiotracer development and facilitates translational neuro-disorders research.

13.
Inorg Chem ; 58(19): 12724-12732, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31508949

RESUMO

Designing electrode materials with engineered exposed facets provides a novel strategy to improve their electrochemical properties. However, the controllability of the exposed facet remains a daunting challenge, and a deep understanding of the correlation between exposed facet and Li+-transfer behavior has been rarely reported. In this work, single-crystal α-Fe2O3 hexagonal nanosheets with an exposed (001) facet are prepared with the assistance of aluminum ions through a one-step hydrothermal process, and structural characterizations reveal an Al3+-concentration-dependent-growth mechanism for the α-Fe2O3 nanosheets. Furthermore, such α-Fe2O3 nanosheets, when used as lithium-ion battery anodes, exhibit high specific capacity (1261.3 mAh g-1 at 200 mA g-1), high rate capability (with a reversible capacity of approximately 605 mAh g-1 at 10 A g-1), and excellent cyclic stability (with a capacity of over 900 mAh g-1 during 500 cycles). The superior electrochemical performance of α-Fe2O3 nanosheets is attributed to the pseudocapacitive behavior, Al-doping in the α-Fe2O3 structure, and improved Li+-transfer property across the (001) facet, as elucidated by first-principles calculations based on density functional theory. These results reveal the underlying mechanism of Li+ transfer across different facets and thus provide insights into the understanding of the excellent electrochemical performance.

14.
Front Psychol ; 10: 1921, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496978

RESUMO

Background: Empathy is an important element of the physician-patient relationship and is a critical personality trait for medical students. However, research has shown that it declines during undergraduate medical education. It is still unclear how empathy interrelates with the psychological elements of medical students, in particular, self-esteem. This study examined the relationship between empathy and self-esteem to explore other possible methods to improve medical students' empathy. Methods: A stratified sampling strategy was used to select 1690 medical students from 3 medical institutions in Shanghai as study participants. The questionnaires used to collect data included the Jefferson Scale of Physician Empathy-Student Version (JSPE-S), the Rosenberg Self-esteem Scale (RSES), and a self-made inventory on personal information. Descriptive analysis, independent t-test, One-Way ANOVA, and linear regression were used to analyze the data. Results: The mean empathy score among medical students was 102.73 with SD = 12.64. Multiple regression analysis revealed that, "age," "perception of the importance of empathy," "academic pressure," "desire to be a doctor after graduation," and "self-esteem" were significant predictors of empathy (P < 0.05) and the adjusted R 2 was 0.462. The correlation matrix between empathy and self-esteem was significant (r = 0.510, P < 0.01). Self-esteem explained 15.5% of the variation of empathy in the final regression model. Conclusion: There was a positive association between self-esteem and empathy. Self-esteem is one of many factors which contribute to medical students' empathy. Age, academic pressure, attitude toward empathy and future career also play a critical role in medical student empathy. Enhancing medical students' self-esteem may be an efficacious way to improve medical students' empathy.

15.
ACS Omega ; 4(4): 7822-7828, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459871

RESUMO

Batteries based on multivalent ion (such as Al3+, Ca2+, and Mg2+) intercalation materials have attracted extensive research interest due to their impressive capacity improvement and cost reduction compared with Li-ion batteries. However, the materials for state-of-the-art multivalent ion batteries still suffer from drawbacks such as sluggish ion mobility, poor rate performance, and low cyclic stability, bringing challenges for the design and investigation of new materials. Layered cathode materials are widely applied in current commercial batteries due to their outstanding ionic conductivity and structural stability, which may also hold the key for the cathodes of multivalent batteries. Therefore, combining database screening and density functional theory computations, we evaluated the layered compounds in Materials Project database by theoretical capacity, thermodynamic stability, experimental availability, voltage, volume variation, electronic conductivity, and ionic migration barrier and achieved over 20 kinds of layered cathode materials for multivalent batteries. Through Mg ion substitution for Ca sites, we further achieved several kinds of cathode materials for Mg-ion batteries with ideal stability, voltage, and ion diffusion barriers. We hope the methodology and screened materials could promote the development of multivalent ion batteries.

16.
J Colloid Interface Sci ; 555: 714-721, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31416026

RESUMO

High-efficiency separation of niacin (NIA) and nicotinamide (NIC) still faces large challenge up to date. In this work, a stable zirconium-based metal-organic framework (DUT-67) was used to adsorb and separate NIA and NIC in aqueous solutions. The adsorption capacities for NIA and NIC at the concentration ratio of 1:1 were 110.2 mg g-1 and 11.2 mg g-1, respectively. Further study indicates that low ratio of NIA/ NIC is in favor of the separation. High temperature can restrain the adsorptions of NIA and NIC but promote the separation. Besides, DUT-67 can be well regenerated via a simple method. Mechanism analysis indicates that electrostatic interaction plays a critical role in the separation of these vitamins.

17.
Adv Sci (Weinh) ; 6(13): 1900649, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31380194

RESUMO

In this paper, the synthesis of ultrasmall Na2FePO4F nanoparticles (≈3.8 nm) delicately embedded in porous N-doped carbon nanofibers (denoted as Na2FePO4F@C) by electrospinning is reported. The as-prepared Na2FePO4F@C fiber film tightly adherent on aluminum foil features great flexibility and is directly used as binder-free cathode for sodium-ion batteries, exhibiting admirable electrochemical performance with high reversible capacity (117.8 mAh g-1 at 0.1 C), outstanding rate capability (46.4 mAh g-1 at 20 C), and unprecedentedly high cyclic stability (85% capacity retention after 2000 cycles). The reaction kinetics and mechanism are explored by a combination study of cyclic voltammetry, ex situ structure/valence analyses, and first-principles computations, revealing the highly reversible phase transformation of Na2FeIIPO4F ↔ NaFeIIIPO4F, the facilitated Na+ diffusion dynamics with low energy barriers, and the desirable pseudocapacitive behavior for fast charge storage. Pouch-type Na-ion full batteries are also assembled employing the Na2FePO4F@C nanofibers cathode and the carbon nanofibers anode, demonstrating a promising energy density of 135.8 Wh kg-1 and a high capacity retention of 84.5% over 200 cycles. The distinctive network architecture of ultrafine active materials encapsulated into interlinked carbon nanofibers offers an ideal platform for enhancing the electrochemical reactivity, electronic/ionic transmittability, and structural stability of Na-storage electrodes.

18.
IEEE Trans Cybern ; 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31329569

RESUMO

We study the exponential stability of discrete-time neural networks (NNs) with a time-varying delay which contains a few intermittent large delays (LDs). By modeling the considered discrete-time NN as a discrete-time switched NN which contains two subsystems and one of them may be unstable over the LD periods (LDPs), switching techniques are employed to analyze the problem. Delay-dependent exponential stability conditions to check the frequency and the length of the LDs allowed for guaranteeing the exponential stability are proposed by applying a novel Lyapunov-Krasovskii functional (LKF) with LDP-based terms, Wirtinger-based summation inequality, and reciprocally convex combination technique. Based on these conditions, associated evaluation algorithms are developed. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed method.

19.
Materials (Basel) ; 12(14)2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31336614

RESUMO

In order to improve the absorption performance of the aluminum sheet for solar application, the nanoporous alumina sheets with the pore diameters of 30 nm and 400 nm were prepared by the anodic oxidation method. The absorption properties of the nanoporous alumina sheets under different solar radiation intensity were studied and compared with the conventional polished aluminum sheet. The results showed that the average absorptivity of the aluminum sheets decreased with the increase of the radiation intensity. When the radiation intensity was 100 W/m2, the nanoporous alumina sheet with the 30 nm pore diameter had the highest average solar absorptivity of 0.39, which was 18% higher than that of the nanoporous alumina sheet with 400 nm pore diameter, and 50% higher than that of the polished aluminum sheet. The maximum instantaneous absorption efficiency of the nanoporous alumina sheet with 30 nm pore diameter was found at 0.92 when the radiation intensity was 100 W/m2. The testing results indicated that the nanoporous alumina sheet with the 30 nm pore diameter performed the best compared with the other two aluminum sheets. By error propagation analysis, the relative error of the average amount of heat absorption and the average absorptivity were acceptable.

20.
J Cell Biochem ; 120(12): 19832-19840, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31310372

RESUMO

Larynx squamous cell carcinoma (LSCC) is the second most aggressive head and neck squamous cell carcinoma. Numerous genes have been identified to be aberrantly expressed during the development of LSCC. However, currently, researchers focus more on the individual molecule and downstream genes, leaving the coexpression among genes and key upstream disease driver genes unexploited. In this study, we applied weighted gene coexpression analysis (WGCNA) to decipher potential hub genes driving the development of LSCC. After downloading of LSCC microarray profile from gene expression omnibus, different expression analysis was performed, which was used to conduct functional enrichment analysis. Then, we applied WGCNA to highlight the hub genes which were relevant to the carcinogenesis and progression. A total of 2858 differentially expressed genes were identified in LSCC samples compared with adjacent non-neoplastic tissues. WGCNA revealed three LSCC set-specific modules having significant Kyoto Encyclopedia of Genes and Genomes enrichment effect, including pink, cyan, and black module. Nine hub genes were identified to be crucial in LSCC onset and progression, which may assist clinical decisions and serve as potential targets for LSCC treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA