Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Biol Sci ; 17(11): 2703-2717, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345202

RESUMO

Rationale: Colorectal cancer (CRC) is a common malignant tumor of the digestive system. However, the efficacy of surgery and chemotherapy is limited. Ferroptosis is an iron- and reactive oxygen species (ROS)-dependent form of regulated cell death (RCD) and plays a vital role in tumor suppression. Ferroptosis inducing agents have been studied extensively as a novel promising way to fight against therapy resistant cancers. The aim of this study is to investigate the mechanism of action of tagitinin C (TC), a natural product, as a novel ferroptosis inducer in tumor suppression. Methods: The response of CRC cells to tagitinin C was assessed by cell viability assay, clonogenic assay, transwell migration assay, cell cycle assay and apoptosis assay. Molecular approaches including Western blot, RNA sequencing, quantitative real-time PCR and immunofluorescence were employed as well. Results: Tagitinin C, a sesquiterpene lactone isolated from Tithonia diversifolia, inhibits the growth of colorectal cancer cells including HCT116 cells, and induced an oxidative cellular microenvironment resulting in ferroptosis of HCT116 cells. Tagitinin C-induced ferroptosis was accompanied with the attenuation of glutathione (GSH) levels and increased in lipid peroxidation. Mechanistically, tagitinin C induced endoplasmic reticulum (ER) stress and oxidative stress, thus activating nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). As a downstream gene (effector) of Nrf2, heme oxygenase-1 (HO-1) expression increased significantly with the treatment of tagitinin C. Upregulated HO-1 led to the increase in the labile iron pool, which promoted lipid peroxidation, meanwhile tagitinin C showed synergistic anti-tumor effect together with erastin. Conclusion: In summary, we provided the evidence that tagitinin C induces ferroptosis in colorectal cancer cells and has synergistic effect together with erastin. Mechanistically, tagitinin C induces ferroptosis through ER stress-mediated activation of PERK-Nrf2-HO-1 signaling pathway. Tagitinin C, identified as a novel ferroptosis inducer, may be effective chemosensitizer that can expand the efficacy and range of chemotherapeutic agents.

2.
Nutrients ; 13(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206641

RESUMO

Previous studies have reported the therapeutic effects of oleuropein (OP) consumption on the early stage of type 2 diabetes. However, the efficacy of OP on the advanced stage of type 2 diabetes has not been investigated, and the relationship between OP and intestinal flora has not been studied. Therefore, in this study, to explore the relieving effects of OP intake on the advanced stage of type 2 diabetes and the regulatory effects of OP on intestinal microbes, diabetic db/db mice (17-week-old) were treated with OP at the dose of 200 mg/kg for 15 weeks. We found that OP has a significant effect in decreasing fasting blood glucose levels, improving glucose tolerance, lowering the homeostasis model assessment-insulin resistance index, restoring histopathological features of tissues, and promoting hepatic protein kinase B activation in db/db mice. Notably, OP modulates gut microbiota at phylum level, increases the relative abundance of Verrucomicrobia and Deferribacteres, and decreases the relative abundance of Bacteroidetes. OP treatment increases the relative abundance of Akkermansia, as well as decreases the relative abundance of Prevotella, Odoribacter, Ruminococcus, and Parabacteroides at genus level. In conclusion, OP may ameliorate the advanced stage of type 2 diabetes through modulating the composition and function of gut microbiota. Our findings provide a promising therapeutic approach for the treatment of advanced stage type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Glucosídeos Iridoides/farmacologia , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 2/sangue , Jejum/sangue , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos
3.
Nat Commun ; 12(1): 3371, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099671

RESUMO

The role of p53 in tumor suppression has been extensively studied and well-established. However, the role of p53 in parasitic infections and the intestinal type 2 immunity is unclear. Here, we report that p53 is crucial for intestinal type 2 immunity in response to the infection of parasites, such as Tritrichomonas muris and Nippostrongylus brasiliensis. Mechanistically, p53 plays a critical role in the activation of the tuft cell-IL-25-type 2 innate lymphoid cell circuit, partly via transcriptional regulation of Lrmp in tuft cells. Lrmp modulates Ca2+ influx and IL-25 release, which are critical triggers of type 2 innate lymphoid cell response. Our results thus reveal a previously unrecognized function of p53 in regulating intestinal type 2 immunity to protect against parasitic infections, highlighting the role of p53 as a guardian of immune integrity.


Assuntos
Imunidade Inata/imunologia , Intestinos/imunologia , Nippostrongylus/imunologia , Doenças Parasitárias/imunologia , Tritrichomonas/imunologia , Proteína Supressora de Tumor p53/imunologia , Animais , Linhagem Celular Tumoral , Eosinófilos/imunologia , Eosinófilos/parasitologia , Regulação da Expressão Gênica , Células Caliciformes/imunologia , Células Caliciformes/parasitologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Intestino Delgado/parasitologia , Intestinos/parasitologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nippostrongylus/fisiologia , Doenças Parasitárias/metabolismo , Doenças Parasitárias/parasitologia , Tritrichomonas/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Environ Sci Pollut Res Int ; 28(27): 35528-35536, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34031827

RESUMO

As an indicator of cardiac autonomic function, heart rate variability (HRV) has been proven to decrease after short-term exposure to particulate matters (PM) based on controlled animal studies. In this study, we conducted a systematic review to investigate short-term effects of exposure with different particle sizes on HRV in humans. Both crossover and controlled studies of human which were published prior to February 2020 were searched on four electronic databases. The HRV parameters included standard deviation of normal-to-normal intervals (SDNN), root mean square of successive normal-to-normal intervals (RMSSD), percent of normal-to-normal intervals that differ by more than 50 milliseconds (PNN50), low frequency (LF), high frequency (HF), and LF/HF. This review included 14 studies with 300 participants. The short-term effects of PM exposure on HRV in humans are inconclusive. For time-domain parameters, one study showed higher SDNN values with 2-h exposure to PM, whereas another one showed lower SDNN values. One study found RMSSD increased after PM exposure. One study found PNN50 decreased after PM exposure. For frequency-domain parameters, two studies showed LF increased with 2-h exposure to PM, and two studies showed an increase of LF/HF after PM exposure. Four studies showed lower HF values after PM exposure, whereas two studies showed higher HF values. Five studies did not find statistically significant results for any HRV parameters. We could not conclude that short-term exposure to PM can influence autonomic nervous function. The inconsistent changes of HRV in response to PM exposure may have complex mechanisms, which remains to be elucidated.


Assuntos
Sistema Nervoso Autônomo , Material Particulado , Animais , Estudos Cross-Over , Frequência Cardíaca , Humanos , Tamanho da Partícula
5.
Insect Sci ; 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33750010

RESUMO

Sugar transporters (STs), which mainly mediate cellular sugar exchanges, play critical physiological roles in living organisms, and they may be responsible for sugar exchanges among various insect tissues. However, the molecular and physiological functions of insect STs are largely unknown. Here, 16 STs of Helicoverpa armigera were identified. A phylogenetic analysis classified the putative HaSTs into 12 sub-families, and those identified in this study were distributed into 6 sub-families. Real-time polymerase chain reaction indicated that the 16 HaSTs had diverse tissue-specific expression levels. One transporter, HaST10, was highly expressed in thoracic muscles. A functional study using a Xenopus oocyte expression system revealed that HaST10 mediated both H+ -driven trehalose and Na+ -driven glucose antiport activities with high transport efficiency and low affinity levels. A HaST10 knockout clearly impaired the performance of H. armigera. Thus, HaST10 may participate in sugar-supply regulation and have essential physiological roles in H. armigera.

6.
Chemosphere ; 272: 129716, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33601205

RESUMO

Isotope signatures of mercury (Hg) were determined for Hg fractions in seawater, sediments, porewaters, core sediments and fish from the Yundang Lagoon, Xiamen, China. Sequential extraction was used to extract Hg fractions in sediments and the purge-trap method was used to preconcentrate Hg in seawater. A large variation in mass dependent fractionation (δ202Hg: -2.50‰ to -0.36‰) was observed in the lagoon. Seawater and fish samples showed positive mass-independent fractionation (Δ199Hg: -0.06‰-0.45‰), while most of sediment and porewater samples displayed insignificant mass-independent fractionation (Δ199Hg: -0.10‰-0.07‰). Ancillary parameters (total organic carbon, sulfide, pH, Eh, water content and grain size) were also measured in the sediments to investigate correlations with Hg isotopes. Three sources (domestic sewage, sediments and atmospheric deposition) were identified as the main sources of Hg in the lagoon seawater. Photochemical reaction was the main process causing isotope fractionation in seawater. Through Hg partitioning and deposition, light isotopes were enriched from dissolved Hg to particulate Hg, then to sediments, and then to porewaters. Finally, Hg isotope signatures were used to identify the Hg sources and fractionation processes in core sediments from different depths. Our results demonstrate that Hg isotopes are powerful tools for tracing Hg sources and arriving at a better understanding of Hg biogeochemical cycling in the lagoon after long-term interventions.


Assuntos
Sedimentos Geológicos , Mercúrio , Animais , China , Monitoramento Ambiental , Mercúrio/análise , Isótopos de Mercúrio/análise
7.
Org Lett ; 23(2): 410-415, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33400544

RESUMO

The indole scaffold is a ubiquitous and useful substructure, and extensive investigations have been conducted to construct the indole framework and/or realize indole modification. Nevertheless, the direct selective functionalization on the benzenoid core must overcome the high activity of the C-3 position and still remains highly challenging. Herein, a palladium-catalyzed direct and specific C-7 acylation of indolines in the presence of an easily removed directing group was developed. This strategy usually is considered as a practical strategy for the preparation of acylated indoles because indoline can be easily converted to indole under oxidation conditions. In particular, our strategy greatly improved the alkacylation yield of indolines for which only an unsatisfactory yield could be achieved in the previous studies. Furthermore, the reaction can be scaled up to gram level in the standard reaction conditions with a much lower palladium loading (1 mol %).

8.
Life Sci Alliance ; 4(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33376133

RESUMO

p53 is the most frequently mutated gene in human cancers. Li-Fraumeni syndrome patients inheriting heterozygous p53 mutations often have a much-increased risk to develop cancer(s) at early ages. Recent studies suggest that some individuals inherited p53 mutations do not have the early onset or high frequency of cancers. These observations suggest that other genetic, environmental, immunological, epigenetic, or stochastic factors modify the penetrance of the cancerous mutant Tp53 phenotype. To test this possibility, this study explored dominant genetic modifiers of Tp53 mutations in heterozygous mice with different genetic backgrounds. Both genetic and stochastic effects upon tumor formation were observed in these mice. The genetic background of mice carrying Tp53 mutations has a strong influence upon the tissue type of the tumor produced and the number of tumors formed in a single mouse. The onset age of a tumor is correlated with the tissue type of that tumor, although identical tumor tissue types can occur at very different ages. These observations help to explain the great diversity of cancers in different Li-Fraumeni patients over lifetimes.


Assuntos
Carcinogênese/genética , Mutação em Linhagem Germinativa , Síndrome de Li-Fraumeni/genética , Fenótipo , Proteína Supressora de Tumor p53/genética , Animais , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Heterozigoto , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Processos Estocásticos
9.
Pestic Biochem Physiol ; 170: 104701, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32980054

RESUMO

Fifteen flavonoids isolated from the Eupatorium adenophorum showed inhibitory activities against acetylcholinesterase (AChE) isolated from Caenorhabditis elegans and Spodoptera litura. Their IC50 values ranged from 12.54 to 89.06µg/mL and 12.08 to 86.01µg/mL, respectively against the AChE isolated from the nematode and insect species. AChE was inhibited in a dose-dependent manner by all tested flavonoids, The isolated compound quercetagetin-7-O-(6-O-caffeoyl-ß-D-glucopyranoside) displayed the highest inhibitory effect against AChE from C. elegans and S. litura, with IC50 values of 12.54 µg/mL and 12.58 µg/mL, respectively. The structure-activity relationship of flavonoids on the inhibitory activities indicated that additional phenolic hydroxyl groups in the glucose were favorable for their inhibitory effects and the degree of increase in inhibitory activity also depended on the number of phenolic hydroxyl groups. The Lineweaver-Burk and Dixon plots indicated that quercetagetin-7-O-(6-O-caffeoyl-ß-d-glucopyranoside) is a reversible inhibitor against AChE. Quercetagetin-7-O-(6-O-caffeoyl-ß-d-glucopyranoside), 5,4'-Dihydroxytlavone and quercetin-3-O-ß-d-glucopyranoside inhibited AChE in a mixed-type competitive manner and these compounds might be the dual binding site AChE inhibitors. Further, nine compounds showed poisonous effects against C. elegans and inhibitory effects on the growth and development of S. litura.


Assuntos
Acetilcolinesterase , Ageratina , Animais , Caenorhabditis elegans , Inibidores da Colinesterase/farmacologia , Flavonoides/farmacologia
10.
Cell Death Dis ; 11(7): 588, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719388

RESUMO

Leukemia inhibitory factor (LIF) is a cytokine essential for maintaining pluripotency of mouse embryonic stem cells. However, its role in adult intestinal stem cells (ISCs) is unclear. The adult intestinal epithelium has a high self-renewal rate driven by ISCs in crypts. Here, we find that LIF is present in the ISC niche in crypts and critical for the function of ISCs in maintaining the intestinal epithelial homeostasis and regeneration. Mechanistically, LIF maintains ß-catenin activity through the AKT/GSK3ß signaling to regulate ISC functions. LIF deficiency in mice impairs the renewal of the intestinal epithelium under the physiological condition. Further, LIF deficiency in mice impairs the regeneration of intestinal epithelium in response to radiation and shortens the lifespan of mice after high doses of radiation due to gastrointestinal (GI) syndrome, which can be rescued by administering recombinant LIF (rLIF). Importantly, LIF exhibits a radioprotective role in wild-type (WT) mice by protecting mice from lethal radiation-induced GI syndrome; administering rLIF promotes intestinal epithelial regeneration and prolongs survival in WT mice after radiation. These results reveal a previously unidentified and a crucial role of LIF in ensuring ISC function, promoting regeneration of the intestinal epithelium in response to radiation and protecting against radiation-induced GI syndrome.


Assuntos
Intestinos/patologia , Fator Inibidor de Leucemia/metabolismo , Lesões por Radiação/prevenção & controle , Células-Tronco/metabolismo , Células-Tronco/efeitos da radiação , Animais , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos da radiação , Intestino Delgado/crescimento & desenvolvimento , Intestino Delgado/patologia , Intestino Delgado/efeitos da radiação , Fator Inibidor de Leucemia/deficiência , Camundongos Knockout , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Organoides/efeitos da radiação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Radiação Ionizante , Proteínas Recombinantes/farmacologia , Transdução de Sinais , beta Catenina/metabolismo
11.
Int J Clin Exp Pathol ; 13(5): 964-971, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509067

RESUMO

Endoplasmic reticulum stress (ERS), arising from the loss of dynamic balance in endoplasmic reticulum function under stress and inflammation, has been implicated in the progression of sepsis. Multiple organ failure caused by sepsis still has a high mortality rate, of which the heart is one of the more damaged organs. In this research, a rat model of sepsis was set up by cecal ligation and puncture (CLP); serum myocardial enzyme levels were measured using an automated biochemical analyzer, inflammatory cytokine levels were measured by ELISA kit, and cardiac histology and cardiomyocyte apoptosis were measured by hematoxylin and eosin (H&E) staining and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay to assess the extent of myocardial damage. Western blot was used to detect expression of related proteins. The results showed that serum myocardial enzymes and pro-inflammatory factors were elevated in septic rats, and the increase was most significant in the CLP 24 h group. At the same time, the myocardium of septic rats had a histopathologic abnormality. After CLP, levels of endoplasmic reticulum stress related protein were upregulated. After 12 and 24 hours, the density of apoptotic cells in the myocardium of CLP-treated rats increased significantly, and the expression of apoptosis-related proteins changed significantly. This suggests that the unfolded protein response occurs during sepsis and causes damage to the heart muscle. Endoplasmic reticulum stress-mediated apoptotic signaling pathway is one of the causes of cardiac injury caused by sepsis, and may be a key to clinical prevention of cardiac dysfunction caused by sepsis.

12.
BMC Plant Biol ; 20(1): 215, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404101

RESUMO

BACKGROUND: MicroRNAs are important gene expression regulators in plants immune system. Aspergillus flavus is the most common causal agents of aflatoxin contamination in peanuts, but information on the function of miRNA in peanut-A. flavus interaction is lacking. In this study, the resistant cultivar (GT-C20) and susceptible cultivar (Tifrunner) were used to investigate regulatory roles of miRNAs in response to A. flavus growth. RESULTS: A total of 30 miRNAs, 447 genes and 21 potential miRNA/mRNA pairs were differentially expressed significantly when treated with A. flavus. A total of 62 miRNAs, 451 genes and 44 potential miRNA/mRNA pairs exhibited differential expression profiles between two peanut varieties. Gene Ontology (GO) analysis showed that metabolic-process related GO terms were enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses further supported the GO results, in which many enriched pathways were related with biosynthesis and metabolism, such as biosynthesis of secondary metabolites and metabolic pathways. Correlation analysis of small RNA, transcriptome and degradome indicated that miR156/SPL pairs might regulate the accumulation of flavonoids in resistant and susceptible genotypes. The miR482/2118 family might regulate NBS-LRR gene which had the higher expression level in resistant genotype. These results provided useful information for further understanding the roles of miR156/157/SPL and miR482/2118/NBS-LRR pairs. CONCLUSIONS: Integration analysis of the transcriptome, miRNAome and degradome of resistant and susceptible peanut varieties were performed in this study. The knowledge gained will help to understand the roles of miRNAs of peanut in response to A. flavus.


Assuntos
Arachis/genética , Aspergillus flavus/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , MicroRNAs/genética , RNA Mensageiro/genética , Transcriptoma , Arachis/metabolismo , Arachis/microbiologia , Genes de Plantas , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sementes/metabolismo , Sementes/microbiologia
13.
Genes Dev ; 34(9-10): 688-700, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32193353

RESUMO

Autophagy captures intracellular components and delivers them to lysosomes for degradation and recycling. Conditional autophagy deficiency in adult mice causes liver damage, shortens life span to 3 mo due to neurodegeneration, and is lethal upon fasting. As autophagy deficiency causes p53 induction and cell death in neurons, we sought to test whether p53 mediates the lethal consequences of autophagy deficiency. Here, we conditionally deleted Trp53 (p53 hereafter) and/or the essential autophagy gene Atg7 throughout adult mice. Compared with Atg7 Δ/Δ mice, the life span of Atg7 Δ/Δ p53 Δ/Δ mice was extended due to delayed neurodegeneration and resistance to death upon fasting. Atg7 also suppressed apoptosis induced by p53 activator Nutlin-3, suggesting that autophagy inhibited p53 activation. To test whether increased oxidative stress in Atg7 Δ/Δ mice was responsible for p53 activation, Atg7 was deleted in the presence or absence of the master regulator of antioxidant defense nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2-/-Atg7 Δ/Δ mice died rapidly due to small intestine damage, which was not rescued by p53 codeletion. Thus, Atg7 limits p53 activation and p53-mediated neurodegeneration. In turn, NRF2 mitigates lethal intestine degeneration upon autophagy loss. These findings illustrate the tissue-specific roles for autophagy and functional dependencies on the p53 and NRF2 stress response mechanisms.


Assuntos
Autofagia/genética , Longevidade/genética , Estresse Oxidativo/genética , Proteína Supressora de Tumor p53/genética , Animais , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Deleção de Genes , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/metabolismo
14.
Electron. j. biotechnol ; 44: 25-32, Mar. 2020. graf, tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1087637

RESUMO

BACKGROUND: Cultivated peanut (Arachis hypogaea. L) represents one of the most important oil crops in the world. Although much effort has been expended to characterize microsatellites or Simple Sequence Repeats (SSRs) in peanut, the quantity and quality of the markers in breeding applications remain limited. Here, genome-wide SSR characterization and marker development were performed using the recently assembled genome of the cultivar Tifrunner. RESULTS: In total, 512,900 microsatellites were identified from 2556.9-Mb genomic sequences. Based on the flanking sequences of the identified microsatellites, 7757 primer pairs (markers) were designed, and further evaluated in the assembled genomic sequences of the tetraploid Arachis cultivars, Tifrunner and Shitouqi, and the diploid ancestral species, A. duranensis and A. ipaensis. In silico PCR analysis showed that the SSR markers had high amplification efficiency and polymorphism in four Arachis genotypes. Notably, nearly 60% of these markers were single-locus SSRs in tetraploid Arachis species, indicating they are more specific in distinguishing the alleles of the A and B sub-genomes of peanut. In addition, two markers closely related with purple testa color and 27 markers near to FAD2 genes were identified, which could be used for breeding varieties with purple testa and high-oleic acid content, respectively. Moreover, the potential application of these SSR markers in tracking introgressions from Arachis wild relatives was discussed. CONCLUSIONS: This study reported the development of genomic SSRs from assembled genomic sequences of the tetraploid Arachis Tifrunner, which will be useful for diversity analysis, genetic mapping and functional genomics studies in peanut


Assuntos
Arachis/genética , Cruzamento/métodos , Repetições de Microssatélites , Polimorfismo Genético , Marcadores Genéticos , Reação em Cadeia da Polimerase , Genoma , Produtos Agrícolas
15.
Bull Entomol Res ; 110(4): 506-511, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32037993

RESUMO

Four putative knockdown resistance (kdr) mutations have been documented in the voltage-gated sodium channel (VGSC) gene of Cimex hemipterus from several countries. However, no information regarding kdr mutations in any Chinese tropical bed bug population is available to date. In this study, a double-mutation(M918I + L1014F)kdr allele was identified in six C. hemipterus populations across Guangxi Zhuang Autonomous Region of China. The frequency of this allele was 100% in all the six examined populations. In addition, only two cytochrome c oxidase I (COI) gene haplotypes, with one synonymous nucleotide variation, were identified in a total of 48 individuals from six locations. The fixation and broad geographic distribution of this resistant allele questions the continued use of pyrethroids in the treatment of tropical bed bug infestations. The very low genetic diversity within and among these populations indicates that these bed bugs may have a single origin.


Assuntos
Percevejos-de-Cama/genética , Resistência a Inseticidas/genética , Animais , Percevejos-de-Cama/efeitos dos fármacos , China , Complexo IV da Cadeia de Transporte de Elétrons/genética , Inseticidas , Mutação , Piretrinas , Canais de Sódio Disparados por Voltagem/genética
16.
Theriogenology ; 143: 64-73, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31837632

RESUMO

Aging oocytes undergo various molecular, cellular, and biochemical changes. Aging of oocytes results in reduced embryo developmental capacity and blastocyst quality, which is thought to be caused partly by the accumulation of reactive oxygen species (ROS). This study aimed to determine the effect of l-carnitine (LC) on the development of embryos formed from aged oocytes in vitro. The development and quality of the blastocysts in the LC-treated group were significantly higher than those in the untreated aged group after in vitro fertilization (IVF). In addition, after LC treatment, the level of intracellular ROS in aged group significantly decreased, and glutathione (GSH) levels significantly increased compared with those in the untreated aged group. There was no significant difference in the mitochondrial membrane potential among the three groups. Moreover, ROS could induce autophagy and LC3 antibody was widely used as a marker for detecting autophagy. The fluorescence intensity of LC3 in the aged group was significantly higher than that of LC3 in the LC-treated group. Furthermore, Real-time reverse transcriptase-polymerase chain reaction showed that the mRNA levels of antioxidation genes GPX4 and SOD1 were significantly higher in embryos from LC-treated group than in those from the untreated aged group. In summary, our results indicated that LC can improve the developmental capacity of embryos from aging oocytes in vitro by reducing oxidative stress.


Assuntos
Carnitina/farmacologia , Bovinos/embriologia , Técnicas de Cultura Embrionária/veterinária , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos/fisiologia , Animais , Meios de Cultura , Feminino , Fertilização In Vitro/veterinária , Estresse Oxidativo
17.
Plant Biotechnol J ; 18(1): 96-105, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31131506

RESUMO

Peanut (Arachis hypogaea. L) is an important oil crop worldwide. The common testa colours of peanut varieties are pink or red. But the peanut varieties with dark purple testa have been focused in recent years due to the potential high levels of anthocyanin, an added nutritional value of antioxidant. However, the genetic mechanism regulating testa colour of peanut is unknown. In this study, we found that the purple testa was decided by the female parent and controlled by a single major gene named AhTc1. To identify the candidate gene controlling peanut purple testa, whole-genome resequencing-based approach (QTL-seq) was applied, and a total of 260.9 Gb of data were generated from the parental and bulked lines. SNP index analysis indicated that AhTc1 located in a 4.7 Mb region in chromosome A10, which was confirmed by bulked segregant RNA sequencing (BSR) analysis in three segregation populations derived from the crosses between pink and purple testa varieties. Allele-specific markers were developed and demonstrated that the marker pTesta1089 was closely linked with purple testa. Further, AhTc1 encoding a R2R3-MYB gene was positional cloned. The expression of AhTc1 was significantly up-regulated in the purple testa parent YH29. Overexpression of AhTc1 in transgenic tobacco plants led to purple colour of leaves, flowers, pods and seeds. In conclusion, AhTc1, encoding a R2R3-MYB transcription factor and conferring peanut purple testa, was identified, which will be useful for peanut molecular breeding selection for cultivars with purple testa colour for potential increased nutritional value to consumers.


Assuntos
Arachis/genética , Genoma de Planta , Pigmentação/genética , Fatores de Transcrição/genética , Antocianinas , Proteínas de Plantas/genética , Locos de Características Quantitativas
18.
Virus Res ; 275: 197754, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31622636

RESUMO

Herpesvirus infection usually relies on the interaction between viral protein and host protein to enhance replication of the enveloped virus. Fish Carassius auratus herpesvirus (CaHV) is highly pathogenic pathogen causing gill acute hemorrhages of crucian carp (Carassius auratus) and high moritality rates among those infected fish. The protein of CaHV (CaHV-138 L) containing two transmembrane (TM) domains and an immunoglobulin C-2 Type (IGc2) domain was predicted as a viral membrane protein. In this investigation, fluorescence observation showed that full-length CaHV-138 L mainly localized on the plasma membrane or around nuclear membrane of fish fathead minnow (FHM) cells in a punctate pattern. The TM domain deletion mutants of CaHV-138 L (ΔTM1, ΔTM2, and ΔTM1&ΔTM2) diffusely distributed in both the cytoplasm and the nucleus, mainly presented patchy fashion in the cytoplasm, and mainly presented both in the nucleus and in the cytoplasm, respectively. Obviously, the TM domain deletion mutants significantly affected CaHV-138 L subcellular localization. Meanwhile, colocalization assay showed that the full-length viral protein colocalized with mitochondria. Furthermore, the interaction between CaHV-138 L and host protein was identified by yeast two-hybrid (Y2H) and co-immunoprecipitation (co-IP) assays. The host mitochondrial protein FoF1 ATP synthase (FoF1-ATPase) that interacts with this viral protein was screened. The data indicated that CaHV-138 L can target to mitochondrial protein FoF1-ATPase, which might provide energy for virus replication through mediating mitochondrial ATP synthesis. This study has provided valuable information for better understanding of the links of herpesvirus proteins with aquaculture animal proteins.


Assuntos
Adenosina Trifosfatases/metabolismo , Carpas/virologia , Proteínas de Peixes/metabolismo , Infecções por Herpesviridae/veterinária , Herpesviridae/genética , Proteínas Virais/metabolismo , Animais , Núcleo Celular/virologia , Citoplasma/virologia , Herpesviridae/patogenicidade , Infecções por Herpesviridae/virologia , Interações entre Hospedeiro e Microrganismos , Microscopia de Fluorescência , Proteínas Mitocondriais/metabolismo , Membrana Nuclear/virologia
19.
Zygote ; 28(1): 59-64, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31662136

RESUMO

Kaempferol (KAE) is one of the most common dietary flavonols possessing biological activities such as anticancer, anti-inflammatory and antioxidant effects. Although previous studies have reported the biological activity of KAE on a variety of cells, it is not clear whether KAE plays a similar role in oocyte and embryo in vitro culture systems. This study investigated the effect of KAE addition to in vitro maturation on the antioxidant capacity of embryos in porcine oocytes after parthenogenetic activation. The effects of kaempferol on oocyte quality in porcine oocytes were studied based on the expression of related genes, reactive oxygen species, glutathione and mitochondrial membrane potential as criteria. The rate of blastocyst formation was significantly higher in oocytes treated with 0.1 µm KAE than in control oocytes. The mRNA level of the apoptosis-related gene Caspase-3 was significantly lower in the blastocysts derived from KAE-treated oocytes than in the control group and the mRNA expression of the embryo development-related genes COX2 and SOX2 was significantly increased in the KAE-treated group compared with that in the control group. Furthermore, the level of intracellular reactive oxygen species was significantly decreased and that of glutathione was significantly increased after KAE treatment. Mitochondrial membrane potential (ΔΨm) was increased and the activity of Caspase-3 was significantly decreased in the KAE-treated group compared with that in the control group. Taken together, these results suggested that KAE is beneficial for the improvement of embryo development by inhibiting oxidative stress in porcine oocytes.


Assuntos
Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Maturação in Vitro de Oócitos , Quempferóis/farmacologia , Oócitos/citologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Feminino , Glutationa/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Suínos
20.
J Reprod Dev ; 65(6): 499-506, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31474647

RESUMO

L-carnitine (LC) is well known for its antioxidant activity. In this study, we explored the potential mechanistic effects of LC supplementation on aged bovine oocytes in vitro. We showed that in-vitro maturation could enhance the subsequent developmental capacity of aging oocytes, when supplemented with LC. After in vitro fertilization, the blastocyst formation rate in the aged oocytes post-LC treatment significantly increased compared to that in untreated aged oocytes (29.23 ± 2.20% vs. 20.90 ± 3.05%). Furthermore, after LC treatment, the level of intracellular reactive oxygen species in aged oocytes significantly decreased, and glutathione levels significantly increased, compared to those in untreated aged oocytes. Mitochondrial membrane potential, the percentage of early apoptotic oocytes, and caspase-3 activity were significantly reduced in LC-treated aged oocytes compared to those in untreated aged oocytes. Furthermore, during in vitro aging, the mRNA levels of the anti-apoptotic genes, Bcl-xl and survivin in LC-treated aged oocytes were significantly higher than those in untreated aged oocytes. Overall, these results indicate that at least in in vitro conditions, LC can prevent the aging of bovine oocytes and improve the developmental capacity of bovine embryo.


Assuntos
Bovinos , Senescência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Animais , Carnitina/farmacologia , Bovinos/embriologia , Bovinos/fisiologia , Células Cultivadas , Senescência Celular/genética , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Glutationa/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Oócitos/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...