Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33274570

RESUMO

Carbonium ions are an important class of reaction intermediates, but their dynamic evolution is difficult to be monitored by in situ techniques under experimental conditions because of their extremely short life. Probably the most famous case is 2-norbornyl cation (2NB + ): its existing form (classical or non-classical) had been debated for decades, until the concrete proof of non-classical geometry was obtained by X-ray crystallographic characterization under ultra-low temperature (40 K) and super acidic environment. However, we are in lack of understanding to 2NB + under ambient conditions. Herein, by taking advantage of the confinement effect and delocalized acidic environment of zeolites, we successfully stabilized 2NB + and unequivocally confirmed its "non-classical" structure inside the ZSM-5 zeolite by ab initio molecular dynamics simulations and 13 C solid-state nuclear magnetic resonance experiments. It is the first time to in situ observe the non-classical 2NB + without the super acidic environment under ambient temperature, which provides a new strategy to expand the carbocation chemistry.

2.
Nat Protoc ; 15(10): 3527-3555, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32968252

RESUMO

Solid acid catalysts are used extensively in various advanced chemical and petrochemical processes. Their catalytic performance (namely, activity, selectivity, and reaction pathway) mostly depends on their acid properties, such as type (Brønsted versus Lewis), location, concentration, and strength, as well as the spatial correlations of their acid sites. Among the diverse methods available for acidity characterization, solid-state nuclear magnetic resonance (SSNMR) techniques have been recognized as the most valuable and reliable tool, especially in conjunction with suitable probe molecules that possess observable nuclei with desirable properties. Taking 31P probe molecules as an example, both trimethylphosphine (TMP) and trimethylphosphine oxide (TMPO) adsorb preferentially to the acid sites on solid catalysts and thus are capable of providing qualitative and quantitative information for both Brønsted and Lewis acid sites. This protocol describes procedures for (i) the pretreatment of typical solid acid catalysts, (ii) adoption and adsorption of various 31P probe molecules, (iii) considerations for one- and two-dimensional (1D and 2D, respectively) NMR acquisition, (iv) relevant data analysis and spectral assignment, and (v) methodology for NMR mapping with the assistance of theoretical calculations. Users familiar with SSNMR experiments can complete 31P-1H heteronuclear correlation (HETCOR), 31P-31P proton-driven spin diffusion (PDSD), and double-quantum (DQ) homonuclear correlation with this protocol within 2-3 d, depending on the complexity and the accessible acid sites of the solid acid samples.


Assuntos
Ácidos/química , Catálise , Ressonância Magnética Nuclear Biomolecular/métodos , Imagem por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Fosfinas/química , Prótons
3.
J Am Chem Soc ; 142(35): 14877-14889, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786791

RESUMO

The spectroscopic study of oxygen, a vital element in materials, physical, and life sciences, is of tremendous fundamental and practical importance. 17O solid-state NMR (SSNMR) spectroscopy has evolved into an ideal site-specific characterization tool, furnishing valuable information on the local geometric and bonding environments about chemically distinct and, in some favorable cases, crystallographically inequivalent oxygen sites. However, 17O is a challenging nucleus to study via SSNMR, as it suffers from low sensitivity and resolution, owing to the quadrupolar interaction and low 17O natural abundance. Herein, we report a significant advance in 17O SSNMR spectroscopy. 17O isotopic enrichment and the use of an ultrahigh 35.2 T magnetic field have unlocked the identification of many inequivalent carboxylate oxygen sites in the as-made and activated phases of the metal-organic framework (MOF) α-Mg3(HCOO)6. The subtle 17O spectral differences between the as-made and activated phases yield detailed information about host-guest interactions, including insight into nonconventional O···H-C hydrogen bonding. Such weak interactions often play key roles in the applications of MOFs, such as gas adsorption and biomedicine, and are usually difficult to study via other characterization routes. The power of performing 17O SSNMR experiments at an ultrahigh magnetic field of 35.2 T for MOF characterization is further demonstrated by examining activation of the MIL-53(Al) MOF. The sensitivity and resolution enhanced at 35.2 T allows partially and fully activated MIL-53(Al) to be unambiguously distinguished and also permits several oxygen environments in the partially activated phase to be tentatively identified. This demonstration of the very high resolution of 17O SSNMR recorded at the highest magnetic field accessible to chemists to date illustrates how a broad variety of scientists can now study oxygen-containing materials and obtain previously inaccessible fine structural information.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32706134

RESUMO

Water is the most important substance in nature. Imitating the formation of natural materials, molecular sieves have been synthesized under hydrothermal conditions and applied in industry. Herein, we reveal an unforeseen observation on a very special water-induced structural dynamic process of these materials. Dynamic and reversible breaking and forming of T-O-T bonds in silicoaluminophosphate (SAPO) occurs through interactions between gaseous water and the molecular-sieve framework under mild hydrothermal conditions and is confirmed by detection of the incorporation of 17 O from H2 17 O into molecular-sieve framework. Encapsulation of the bulky molecules trimethylphosphine and pyridine (kinetic diameters much larger than the pore size of SAPO-34) into CHA cavities consolidated the water-induced dynamic process. Consequently, new insights into the dynamic features of molecular sieves in water are provided. The ship-in-a-bottle strategy based on these findings also open new fields for fine acidity identification and gives extra boost in shape-selective catalysis.

5.
Nat Commun ; 11(1): 2609, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433564

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32453899

RESUMO

There are a large number of zeolites, such as ITH, that cannot be prepared in the aluminosilicate form. Now, the successful synthesis of aluminosilicate ITH zeolite using a simple cationic oligomer as an organic template is presented. Key to the success is that the cationic oligomer has a strong complexation ability with aluminum species combined with a structural directing ability for the ITH structure similar to that of the conventional organic template. The aluminosilicate ITH zeolite has very high crystallinity, nanosheet-like crystal morphology, large surface area, fully four-coordinated Al species, and abundant acidic sites. Methanol-to-propylene (MTP) tests reveal that the Al-ITH zeolite shows much higher selectivity for propylene and longer lifetime than commercial ZSM-5. FCC tests show that Al-ITH zeolite is a good candidate as a shape-selective FCC additive for enhancing propylene and butylene selectivity.

7.
Chemistry ; 26(51): 11900-11908, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32329538

RESUMO

The energetically viable fabrication of stable and highly efficient solid acid catalysts is one of the key steps in large-scale transformation processes of biomass resources. Herein, the covalent modification of the classical Dawson polyoxometalate (POMs) with sulfonic acids (-SO3 H) is reported by grafting sulfonic acid groups on the POM's surface followed by oxidation of (3-mercaptopropyl)trimethoxysilane. The acidity of TBA6 -P2 W17 -SO3 H (TBA=tetrabutyl ammonium) has been demonstrated by using 31 P NMR spectroscopy, clearly indicating the presence of strong Brønsted acid sites. The presence of TBA counterions renders the solid acid catalyst as a promising candidate for phase transfer catalytic processes. The TBA6 -P2 W17 -SO3 H shows remarkable activity and selectivity, excellent stability, and great substrate compatibility for the esterification of free fatty acids (FFA) with methanol and conversion into biodiesel at 70 °C with >98 % conversion of oleic acid in 20 min. The excellent catalytic performance can be attributed to the formation of a catalytically active emulsion, which results in a uniform catalytic behavior during the reaction, leading to efficient interaction between the substrate and the active sites of the catalyst. Most importantly, the catalyst can be easily recovered and reused without any loss of its catalytic activity owing to its excellent phase transfer properties. This work offers an efficient and cost-effective strategy for large-scale biomass conversion applications.


Assuntos
Ácidos/química , Ácido Oleico/química , Compostos de Tungstênio/química , Biocombustíveis , Biomassa , Catálise , Esterificação , Metanol/química , Ácidos Sulfônicos/química
8.
Nat Commun ; 11(1): 1079, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103001

RESUMO

Extension and clustering of polycyclic aromatic hydrocarbons (PAHs) are key mechanistic steps for coking and deactivation in catalysis reactions. However, no unambiguous mechanistic picture exists on molecule-resolved PAHs speciation and evolution, due to the immense experimental challenges in deciphering the complex PAHs structures. Herein, we report an effective strategy through integrating a high resolution MALDI FT-ICR mass spectrometry with isotope labeling technique. With this strategy, a complete route for aromatic hydrocarbon evolution is unveiled for SAPO-34-catalyzed, industrially relevant methanol-to-olefins (MTO) as a model reaction. Notable is the elucidation of an unusual, previously unrecognized mechanistic step: cage-passing growth forming cross-linked multi-core PAHs with graphene-like structure. This mechanistic concept proves general on other cage-based molecule sieves. This preliminary work would provide a versatile means to decipher the key mechanistic step of molecular mass growth for PAHs involved in catalysis and combustion chemistry.

9.
Nat Commun ; 11(1): 653, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005833

RESUMO

The industrial synthesis of ammonia (NH3) using iron-based Haber-Bosch catalyst requires harsh reaction conditions. Developing advanced catalysts that perform well at mild conditions (<400 °C, <2 MPa) for industrial application is a long-term goal. Here we report a Co-N-C catalyst with high NH3 synthesis rate that simultaneously exhibits dynamic and steady-state active sites. Our studies demonstrate that the atomically dispersed cobalt weakly coordinated with pyridine N reacts with surface H2 to produce NH3 via a chemical looping pathway. Pyrrolic N serves as an anchor to stabilize the single cobalt atom in the form of Co1-N3.5 that facilitates N2 adsorption and step-by-step hydrogenation of N2 to *HNNH, *NH-NH3 and *NH2-NH4. Finally, NH3 is facilely generated via the breaking of the *NH2-NH4 bond. With the co-existence of dynamic and steady-state single atom active sites, the Co-N-C catalyst circumvents the bottleneck of N2 dissociation, making the synthesis of NH3 at mild conditions possible.

10.
Nat Commun ; 11(1): 13, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911625

RESUMO

A membrane with both high ion conductivity and selectivity is critical to high power density and low-cost flow batteries, which are of great importance for the wide application of renewable energies. The trade-off between ion selectivity and conductivity is a bottleneck of ion conductive membranes. In this paper, a thin-film composite membrane with ultrathin polyamide selective layer is found to break the trade-off between ion selectivity and conductivity, and dramatically improve the power density of a flow battery. As a result, a vanadium flow battery with a thin-film composite membrane achieves energy efficiency higher than 80% at a current density of 260 mA cm-2, which is the highest ever reported to the best of our knowledge. Combining experiments and theoretical calculation, we propose that the high performance is attributed to the proton transfer via Grotthuss mechanism and Vehicle mechanism in sub-1 nm pores of the ultrathin polyamide selective layer.

11.
Angew Chem Int Ed Engl ; 59(9): 3624-3629, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-31773844

RESUMO

The construction of 2D and 3D covalent organic frameworks (COFs) from functional moieties for desired properties has gained much attention. However, the influence of COFs dimensionality on their functionalities, which can further assist in COF design, has never been explored. Now, by selecting designed precursors and topology diagrams, 2D and 3D porphyrinic COFs (2D-PdPor-COF and 3D-PdPor-COF) are synthesized. By model building and Rietveld refinement of powder X-ray diffraction, 2D-PdPor-COF crystallizes as 2D sheets while 3D-PdPor-COF adopts a five-fold interpenetrated pts topology. Interestingly, compared with 2D-PdPor-COF, 3D-PdPor-COF showed interesting properties, including 1) higher CO2 adsorption capacity; 2) better photocatalytic performance; and 3) size-selective photocatalysis. Based on this study, we believe that with the incorporation of functional moieties, the dimensionality of COFs can definitely influence their functionalities.

12.
Magn Reson Chem ; 58(11): 1082-1090, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31659777

RESUMO

Metal-organic frameworks (MOFs) are a class of important porous materials with many current and potential applications. Their applications almost always involve the interaction between host framework and guest species. Therefore, understanding of host-guest interaction in MOF systems is fundamentally important. Solid-state NMR spectroscopy is an excellent technique for investigating host-guest interaction as it provides information complementary to that obtained from X-ray diffraction. In this work, using MOF α-Mg3 (HCOO)6 as an example, we demonstrated that 13 C chemical shift tensor of organic linker can be utilized to probe the host-guest interaction in MOFs. Obtaining 13 C chemical shift tensor components (δ11 , δ22 , and δ33 , where δ11 ≥ δ22 ≥ δ33 ) in this MOF is particularly challenging as there are six coordinatively equivalent but crystallographically non-equivalent carbons in the unit cell with very similar local coordination environment. Two-dimensional magic-angle-turning experiments were employed to measure the 13 C chemical shift tensors of each individual crystallographically non-equivalent carbon in three microporous α-Mg3 (HCOO)6 samples with different guest species. The results indicate that the δ22 component (with its direction approximately being co-planar with the formate anion and perpendicular to the C-H bond) is more sensitive to the adsorbate molecules inside the MOF channel due to the weak C-H···O hydrogen bonding or the ring current effect of benzene. The 13 C isotropic chemical shift, on the other hand, seems much less sensitive to the subtle changes in the local environment around formate linker induced by adsorption. The approach described in this study may be used in future studies on host-guest interaction within MOFs.

13.
J Am Chem Soc ; 141(45): 18318-18324, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31644275

RESUMO

A large amount of zeolite structures are still not synthetically available or not available in the form of aluminosilicate currently. Despite significant progress in the development of predictive concepts for zeolite synthesis, accessing some of these new materials is still challenging. One example is the IWR structure as well. Despite successful synthesis of Ge-based IWR zeolites, direct synthesis of aluminosilicate IWR zeolite is still not successful. In this report we show how a suitable organic structure directing agent (OSDA), through modeling of an OSDA/zeolite cage interaction, could access directly the aluminum-containing IWR structure (denoted as COE-6), which might allow access to new classes of materials and thus open opportunities in valuable chemical applications. The experimental results reveal that the COE-6 zeolites with a SiO2/Al2O3 ratio as low as 30 could be obtained. Very interestingly, the COE-6 zeolite has much higher hydrothermal and thermal stabilities than those of the conventional Ge-Al-IWR zeolite. In methanol-to-propylene (MTP) reaction, the COE-6 zeolite exhibits excellent selectivity for propylene, offering a potential catalyst for MTP reaction in the future.

14.
Chem Commun (Camb) ; 55(72): 10693-10696, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31414676

RESUMO

The inhomogeneous phenomenon with a gradient distribution in adsorption and diffusion behaviors of xenon within a large SAPO-34 crystal was revealed by 129Xe NMR, 2D EXSY NMR and 129Xe PFG NMR techniques at the micro-scale. A multi-layer adsorption and diffusion model for xenon in a single crystal was proposed.

15.
Chem Sci ; 10(23): 5875-5883, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31360391

RESUMO

Solid acids have been widely used as heterogeneous catalysts in developing green and sustainable chemistry. However, it remains a challenge to improve the mass transport properties and acid strength of solid acids simultaneously. Herein, we report a class of two dimensional (2D) layered hybrid solid acids with outstanding mass transfer and extremely high acid strength by incorporating sulfonated polymers in-between montmorillonite layers. The 2D layered structure and broad distribution of pore sizes allow for highly efficient mass transport of substrate molecules into and out of the solid acids. The acid strength of these solid acids was found to be stronger than that of 100% H2SO4, H3PW12O40 and any other reported solid acids to date, as determined by 1H and 31P solid-state NMR. These 2D solid acids show extraordinary catalytic performance in biomass conversion to fuels, superior to that of H3PW12O40, HCl and H2SO4. Theoretical calculations and control experiments reveal that H-bond based interactions between the polymer and montmorillonite facilitate the unusually high acid strengths found in these samples.

16.
ACS Appl Mater Interfaces ; 11(33): 29950-29959, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31352779

RESUMO

Hydrogen sulfide (H2S) is malodorous and highly toxic, and its selective removal from industrial feedstock is highly recommended for safety and environment protection. We report here a class of nitrogen-functionalized, hierarchical porous polymers (N-HPPs) synthesized from one-step alkylation-induced cross-linking without any involvement of templates. The as-engineered N-HPPs are large in BET surface area (792-1397 m2/g) and endowed with hierarchical porosity. The incorporated nitrogen species of N-HPPs act as structural base sites with properties that can be precisely controlled. By molecular simulation, the enhanced interactions between N-HPPs and H2S were verified. The synthesized N-HPPs show superb capacities for H2S adsorption (9.2 mmol/g at 0 °C, 1.0 bar) and display satisfactory IAST H2S/N2 and H2S/CH4 selectivity (88.3 and 119.6, respectively, at 0 °C). Catalyzed by the structural base sites located in the N-HPPs, the COS together with its derived H2S can be effectively eliminated under mild conditions.

17.
ACS Appl Mater Interfaces ; 11(26): 23112-23117, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31252486

RESUMO

For the first time, SSZ-39 zeolite has been directly prepared using conventional colloidal silica and sodium aluminate instead of using FAU zeolite as the raw material in the alkaline media. The adjustment of the Si/Al ratios in the starting materials to the suitable values is a key factor to prepare the aluminosilicate SSZ-39 zeolite. Various characterizations (for instance, X-ray diffraction, scanning electron microscopy, nitrogen sorption, solid 27Al NMR, and NH3-temperature-programmed desorption) display that the aluminosilicate SSZ-39 zeolite owns high crystallinity, uniform cuboid morphology, large surface area, four-coordinated aluminum species, and strong acidic sites. Inductively coupled plasma analysis shows that the SiO2/Al2O3 ratios of the SSZ-39 products are ranged from 12.8 to 16.8. Considering the special framework of the SSZ-39 zeolite, the yield of this synthesis is not higher than 21.3%. Moreover, the catalytic performance of Cu-SSZ-39 catalyst synthesized from this route is excellent in the selective catalytic reduction of NO x with NH3 (NH3-SCR).

18.
Phys Chem Chem Phys ; 21(6): 3287-3293, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30681681

RESUMO

A comparative study of the adsorption and desorption processes of methanol in two kinds of nanochannels (i.e. MCM-41 and SWNTs) is performed by in situ continuous-flow laser-hyperpolarized 129Xe NMR. The high sensitivity and short acquisition time of hyperpolarized 129Xe allow for probing the molecular dynamics in a confined geometry under real working conditions. Hyperpolarized 129Xe NMR spectra indicate that the methanol adsorption behavior in nanochannels is determined by the characters of adsorption sites and that the methanol adsorption rate in the nanochannels of SWNTs is faster than in MCM-41. The experimental data shown in this work also indicate that there is a change in gas phase 129Xe NMR signal intensity during the adsorption and desorption of methanol in SWNTs. This may be because there is a strong depolarization of hyperpolarized 129Xe in SWNTs.

19.
J Phys Chem Lett ; 9(24): 7137-7145, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30395479

RESUMO

Pentazole (HN5) and its anion ( cyclo-N5-) have been elusive for nearly a century because of the unstable N5 ring. Recently, Zhang et al. reported the first synthesis and characterization of the pentazolate anion cyclo-N5- in (N5)6(H3O)3(NH4)4Cl salt at ambient conditions ( Science 2017, 355, 374 ). However, whether the cyclo-N5- in (N5)6(H3O)3(NH4)4Cl salt is protonated or not has been debated ( Huang and Xu, Science, 2018, 359, eaao3672 ; Jiang et al. Science, 2018, 359, aas8953 ). Herein, we employed ab initio molecular dynamics (AIMD) simulations, which can well present the dynamic behavior at realistic experimental conditions, to examine the potential protonated state of cyclo-N5- in both crystal and dimethyl sulfoxide (DMSO) solvent. Our simulations revealed that the protonation reaction of (N5)6(H3O)3(NH4)4Cl → (N5)5(N5H)(H2O)(H3O)2(NH4)4Cl is thermodynamically spontaneous according to Δ G < 0, and the small energy barrier of 12.6 kJ/mol is not enough to prevent the partial protonation of cyclo-N5- due to the temperature effect; consequently, both deprotonated and protonated cyclo-N5- exist in the crystal. In comparison, the DMSO solvent effect can remarkably reduce the difference of proton affinities among cyclo-N5-, H2O, and NH3, and the temperature effect can finally break these hydrogen bonds and lead to the deprotonated cyclo-N5- in DMSO solvent. Our AIMD simulations reconcile the recent controversy.

20.
Chem Commun (Camb) ; 54(95): 13435-13438, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30430159

RESUMO

The acidity enhancement induced by the nonpolar solvent effect of naphthalene inside zeolites was unambiguously identified. The mechanism of such an effect due to the CH/π interaction in the nonpolar environment has been revealed based on the advanced 2D 1H-13C correlation NMR technique and DFT calculations for the first time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA