Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 11(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019256

RESUMO

Stannous oxide (SnO) nanowires were synthesized by a template and catalyst-free thermal oxidation process. After annealing a Sn nanowires-embedded anodic aluminum oxide (AAO) template in air, we obtained a large amount of SnO nanowires. SnO nanowires were first prepared by electrochemical deposition and an oxidization method based on an AAO template. The preparation of SnO nanowires used aluminum sheet (purity 99.999%) and then a two-step anodization procedure to obtain a raw alumina mold. Finally, transparent alumina molds (AAO template) were obtained by reaming, soaking with phosphoric acid for 20 min, and a stripping process. We got a pore size of < 20 nm on the transparent alumina mold. In order to meet electroplating needs, we produced a platinum film on the bottom surface of the AAO template by using a sputtering method as the electrode of electroplating deposition. The structure was characterized by X-ray diffraction (XRD). High resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM) with X-ray energy dispersive spectrometer (EDS) were used to observe the morphology. The EDS spectrum showed that components of the materials were Sn and O. FE-SEM results showed the synthesized SnO nanowires have an approximate length of ~10-20 µm with a highly aspect ratio of > 500. SnO nanowires with a Sn/O atomic ratio of ~1:1 were observed from EDS. The crystal structure of SnO nanowires showed that all the peaks within the spectrum lead to SnO with a tetragonal structure. This study may lead to the use of the 1D structure nanowires into electronic nanodevices and/or sensors, thus leading to nano-based functional structures.

2.
Nanoscale Res Lett ; 13(1): 109, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29675727

RESUMO

In this study, alpha nickel sulfide (α-NiS) nanosphere films have been successfully synthesized by electroplating the nickel nanosheet film on the indium tin oxide (ITO) glass substrate and sulfuring nickel-coated ITO glass substrate. First, we electrodeposited the nickel nanosheet films on the ITO glass substrates which were cut into a 0.5 × 1 cm2 size. Second, the nanosheet nickel films were annealed in vacuum-sealed glass ampoules with sulfur sheets at different annealing temperatures (300, 400, and 500 °C) for 4 h in vacuum-sealed glass ampoules. The α-NiS films were investigated by using X-ray diffraction (XRD), variable vacuum scanning electron microscopy (VVSEM), field emission scanning electron microscopy/energy dispersive spectrometer (FE-SEM/EDS), cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), ultraviolet/visible/near-infrared (UV/Visible/NIR) spectra, and photoluminescence (PL) spectra. Many nanospheres were observed on the surface of the α-NiS films at the annealing temperature 400 °C for 4 h. We also used the high-resolution transmission electron microscopy (HR-TEM) for the analysis of the α-NiS nanospheres. We demonstrated that our α-NiS nanosphere film had a linear current response to different glucose concentrations. Additionally, our α-NiS nanosphere films were preserved at room temperature for five and a half years and were still useful for detecting glucose at low concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...