Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-34495855

RESUMO

The exploration of single cell RNA-sequencing (scRNA-seq) technology generates a new perspective to analyze biological problems. One of the major applications of scRNA-seq data is to discover subtypes of cells by cell clustering. Nevertheless, it is challengeable for traditional methods to handle scRNA-seq data with high level of technical noise and notorious dropouts. To better analyze single cell data, a novel scRNA-seq data analysis model called Maximum correntropy criterion based Non-negative and Low Rank Representation (MccNLRR) is introduced. Specifically, the maximum correntropy criterion, as an effective loss function, is more robust to the high noise and large outliers existed in the data. Moreover, the low rank representation is proven to be a powerful tool for capturing the global and local structures of data. Therefore, some important information, such as the similarity of cells in the subspace, is also extracted by it. Then, an iterative algorithm on the basis of the half-quadratic optimization and alternating direction method is developed to settle the complex optimization problem. Before the experiment, we also analyze the convergence and robustness of MccNLRR. At last, the results of cell clustering, visualization analysis, and gene markers selection on scRNA-seq data reveal that MccNLRR method can distinguish cell subtypes accurately and robustly.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34529571

RESUMO

Lots of experimental studies have revealed the significant associations between lncRNAs and diseases. Identifying accurate associations will provide a new perspective for disease therapy. Calculation-based methods have been developed to solve these problems, but these methods have some limitations. In this paper, we proposed an accurate method, named MLGCNET, to discover potential lncRNA-disease associations. Firstly, we reconstructed similarity networks for both lncRNAs and diseases using top k similar information, and constructed a lncRNA-disease heterogeneous network (LDN). Then, we applied Multi-Layer Graph Convolutional Network on LDN to obtain latent feature representations of nodes. Finally, the Extra Trees was used to calculate the probability of association between disease and lncRNA. The results of extensive 5-fold cross-validation experiments show that MLGCNET has superior prediction performance compared to the state-of-the-art methods. Case studies confirm the performance of our model on specific diseases. All the experiment results prove the effectiveness and practicality of MLGCNET in predicting potential lncRNA-disease associations.

3.
BMC Bioinformatics ; 22(Suppl 3): 457, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34560840

RESUMO

BACKGROUND: As one of the deadliest diseases in the world, cancer is driven by a few somatic mutations that disrupt the normal growth of cells, and leads to abnormal proliferation and tumor development. The vast majority of somatic mutations did not affect the occurrence and development of cancer; thus, identifying the mutations responsible for tumor occurrence and development is one of the main targets of current cancer treatments. RESULTS: To effectively identify driver genes, we adopted a semi-local centrality measure and gene mutation effect function to assess the effect of gene mutations on changes in gene expression patterns. Firstly, we calculated the mutation score for each gene. Secondly, we identified differentially expressed genes (DEGs) in the cohort by comparing the expression profiles of tumor samples and normal samples, and then constructed a local network for each mutation gene using DEGs and mutant genes according to the protein-protein interaction network. Finally, we calculated the score of each mutant gene according to the objective function. The top-ranking mutant genes were selected as driver genes. We name the proposed method as mutations effect and network centrality. CONCLUSIONS: Four types of cancer data in The Cancer Genome Atlas were tested. The experimental data proved that our method was superior to the existing network-centric method, as it was able to quickly and easily identify driver genes and rare driver factors.


Assuntos
Neoplasias , Redes Reguladoras de Genes , Humanos , Mutação , Neoplasias/genética
4.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445212

RESUMO

Circular RNAs (circRNAs) are a new class of endogenous non-coding RNAs with covalent closed loop structure. Researchers have revealed that circRNAs play an important role in human diseases. As experimental identification of interactions between circRNA and disease is time-consuming and expensive, effective computational methods are an urgent need for predicting potential circRNA-disease associations. In this study, we proposed a novel computational method named GATNNCDA, which combines Graph Attention Network (GAT) and multi-layer neural network (NN) to infer disease-related circRNAs. Specially, GATNNCDA first integrates disease semantic similarity, circRNA functional similarity and the respective Gaussian Interaction Profile (GIP) kernel similarities. The integrated similarities are used as initial node features, and then GAT is applied for further feature extraction in the heterogeneous circRNA-disease graph. Finally, the NN-based classifier is introduced for prediction. The results of fivefold cross validation demonstrated that GATNNCDA achieved an average AUC of 0.9613 and AUPR of 0.9433 on the CircR2Disease dataset, and outperformed other state-of-the-art methods. In addition, case studies on breast cancer and hepatocellular carcinoma showed that 20 and 18 of the top 20 candidates were respectively confirmed in the validation datasets or published literature. Therefore, GATNNCDA is an effective and reliable tool for discovering circRNA-disease associations.


Assuntos
Neoplasias da Mama , Carcinoma Hepatocelular , Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Neoplasias Hepáticas , Redes Neurais de Computação , RNA Circular , RNA Neoplásico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
5.
Technol Cancer Res Treat ; 20: 15330338211034284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34387104

RESUMO

Radiotherapy plays an important role in controlling the local recurrence of esophageal cancer after radical surgery. Segmentation of the clinical target volume is a key step in radiotherapy treatment planning, but it is time-consuming and operator-dependent. This paper introduces a deep dilated convolutional U-network to achieve fast and accurate clinical target volume auto-segmentation of esophageal cancer after radical surgery. The deep dilated convolutional U-network, which integrates the advantages of dilated convolution and the U-network, is an end-to-end architecture that enables rapid training and testing. A dilated convolution module for extracting multiscale context features containing the original information on fine texture and boundaries is integrated into the U-network architecture to avoid information loss due to down-sampling and improve the segmentation accuracy. In addition, batch normalization is added to the deep dilated convolutional U-network for fast and stable convergence. In the present study, the training and validation loss tended to be stable after 40 training epochs. This deep dilated convolutional U-network model was able to segment the clinical target volume with an overall mean Dice similarity coefficient of 86.7% and a respective 95% Hausdorff distance of 37.4 mm, indicating reasonable volume overlap of the auto-segmented and manual contours. The mean Cohen kappa coefficient was 0.863, indicating that the deep dilated convolutional U-network was robust. Comparisons with the U-network and attention U-network showed that the overall performance of the deep dilated convolutional U-network was best for the Dice similarity coefficient, 95% Hausdorff distance, and Cohen kappa coefficient. The test time for segmentation of the clinical target volume was approximately 25 seconds per patient. This deep dilated convolutional U-network could be applied in the clinical setting to save time in delineation and improve the consistency of contouring.

6.
PLoS Comput Biol ; 17(7): e1009165, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34252084

RESUMO

miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction (SCMFMDA). In order to effectively combine different disease and miRNA similarity data, we applied similarity network fusion algorithm to obtain integrated disease similarity (composed of disease functional similarity, disease semantic similarity and disease Gaussian interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile kernel similarity). In addition, the L2 regularization terms and similarity constraint terms were added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, the case studies on two common human diseases were also implemented to demonstrate the prediction accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental reports that indicated SCMFMDA was effective for prediction of relationship between miRNAs and diseases.

8.
Interdiscip Sci ; 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34115312

RESUMO

In recent years, clustering analysis of cancer genomics data has gained widespread attention. However, limited by the dimensions of the matrix, the traditional methods cannot fully mine the underlying geometric structure information in the data. Besides, noise and outliers inevitably exist in the data. To solve the above two problems, we come up with a new method which uses tensor to represent cancer omics data and applies hypergraph to save the geometric structure information in original data. This model is called hypergraph regularized tensor robust principal component analysis (HTRPCA). The data processed by HTRPCA becomes two parts, one of which is a low-rank component that contains pure underlying structure information between samples, and the other is some sparse interference points. So we can use the low-rank component for clustering. This model can retain complex geometric information between more sample points due to the addition of the hypergraph regularization. Through clustering, we can demonstrate the effectiveness of HTRPCA, and the experimental results on TCGA datasets demonstrate that HTRPCA precedes other advanced methods. This paper proposes a new method of using tensors to represent cancer omics data and introduces hypergraph items to save the geometric structure information of the original data. At the same time, the model decomposes the original tensor into low-order tensors and sparse tensors. The low-rank tensor was used to cluster cancer samples to verify the effectiveness of the method.

9.
Artigo em Inglês | MEDLINE | ID: mdl-34156956

RESUMO

The development of single-cell RNA sequencing (scRNA-seq) technology has made it possible to measure gene expression levels at the resolution of a single cell, which further reveals the complex growth processes of cells such as mutation and differentiation. Recognizing cell heterogeneity is one of the most critical tasks in scRNA-seq research. To solve it, we propose a non-negative matrix factorization framework based on multi-subspace cell similarity learning for unsupervised scRNA-seq data analysis (MscNMF). MscNMF includes three parts: data decomposition, similarity learning, and similarity fusion. The three work together to complete the data similarity learning task. MscNMF can learn the gene features and cell features of different subspaces, and the correlation and heterogeneity between cells will be more prominent in multi-subspaces. The redundant information and noise in each low-dimensional feature space are eliminated, and its gene weight information can be further analyzed to calculate the optimal number of subpopulations. The final cell similarity learning will be more satisfactory due to the fusion of cell similarity information in different subspaces. The advantage of MscNMF is that it can calculate the number of cell types and the rank of Non-negative matrix factorization (NMF) reasonably. Experiments on seven real scRNA-seq datasets show that MscNMF can effectively perform clustering tasks and extract useful genetic markers. To verify its clustering performance, the framework is compared with other latest clustering algorithms and satisfactory results are obtained. The code of MscNMF is free available for academic https://github.com/wangchuanyuan1/project-MscNMF).

10.
BMC Bioinformatics ; 22(1): 307, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103016

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are a class of single-stranded RNA molecules with a closed-loop structure. A growing body of research has shown that circRNAs are closely related to the development of diseases. Because biological experiments to verify circRNA-disease associations are time-consuming and wasteful of resources, it is necessary to propose a reliable computational method to predict the potential candidate circRNA-disease associations for biological experiments to make them more efficient. RESULTS: In this paper, we propose a double matrix completion method (DMCCDA) for predicting potential circRNA-disease associations. First, we constructed a similarity matrix of circRNA and disease according to circRNA sequence information and semantic disease information. We also built a Gauss interaction profile similarity matrix for circRNA and disease based on experimentally verified circRNA-disease associations. Then, the corresponding circRNA sequence similarity and semantic similarity of disease are used to update the association matrix from the perspective of circRNA and disease, respectively, by matrix multiplication. Finally, from the perspective of circRNA and disease, matrix completion is used to update the matrix block, which is formed by splicing the association matrix obtained in the previous step with the corresponding Gaussian similarity matrix. Compared with other approaches, the model of DMCCDA has a relatively good result in leave-one-out cross-validation and five-fold cross-validation. Additionally, the results of the case studies illustrate the effectiveness of the DMCCDA model. CONCLUSION: The results show that our method works well for recommending the potential circRNAs for a disease for biological experiments.


Assuntos
RNA Circular , RNA , Distribuição Normal , RNA/genética
11.
BMC Bioinformatics ; 22(1): 268, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034643

RESUMO

BACKGROUND: In recent years, various sequencing techniques have been used to collect biomedical omics datasets. It is usually possible to obtain multiple types of omics data from a single patient sample. Clustering of omics data plays an indispensable role in biological and medical research, and it is helpful to reveal data structures from multiple collections. Nevertheless, clustering of omics data consists of many challenges. The primary challenges in omics data analysis come from high dimension of data and small size of sample. Therefore, it is difficult to find a suitable integration method for structural analysis of multiple datasets. RESULTS: In this paper, a multi-view clustering based on Stiefel manifold method (MCSM) is proposed. The MCSM method comprises three core steps. Firstly, we established a binary optimization model for the simultaneous clustering problem. Secondly, we solved the optimization problem by linear search algorithm based on Stiefel manifold. Finally, we integrated the clustering results obtained from three omics by using k-nearest neighbor method. We applied this approach to four cancer datasets on TCGA. The result shows that our method is superior to several state-of-art methods, which depends on the hypothesis that the underlying omics cluster class is the same. CONCLUSION: Particularly, our approach has better performance than compared approaches when the underlying clusters are inconsistent. For patients with different subtypes, both consistent and differential clusters can be identified at the same time.


Assuntos
Neoplasias , Algoritmos , Análise por Conglomerados , Análise de Dados , Humanos , Neoplasias/genética
12.
Brief Bioinform ; 22(5)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-33866367

RESUMO

Although synonymous mutations do not alter the encoded amino acids, they may impact protein function by interfering with the regulation of RNA splicing or altering transcript splicing. New progress on next-generation sequencing technologies has put the exploration of synonymous mutations at the forefront of precision medicine. Several approaches have been proposed for predicting the deleterious synonymous mutations specifically, but their performance is limited by imbalance of the positive and negative samples. In this study, we firstly expanded the number of samples greatly from various data sources and compared six undersampling strategies to solve the problem of the imbalanced datasets. The results suggested that cluster centroid is the most effective scheme. Secondly, we presented a computational model, undersampling scheme based method for deleterious synonymous mutation (usDSM) prediction, using 14-dimensional biology features and random forest classifier to detect the deleterious synonymous mutation. The results on the test datasets indicated that the proposed usDSM model can attain superior performance in comparison with other state-of-the-art machine learning methods. Lastly, we found that the deep learning model did not play a substantial role in deleterious synonymous mutation prediction through a lot of experiments, although it achieves superior results in other fields. In conclusion, we hope our work will contribute to the future development of computational methods for a more accurate prediction of the deleterious effect of human synonymous mutation. The web server of usDSM is freely accessible at http://usdsm.xialab.info/.

13.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919681

RESUMO

Accurate prediction of binding affinity between protein and ligand is a very important step in the field of drug discovery. Although there are many methods based on different assumptions and rules do exist, prediction performance of protein-ligand binding affinity is not satisfactory so far. This paper proposes a new cascade graph-based convolutional neural network architecture by dealing with non-Euclidean irregular data. We represent the molecule as a graph, and use a simple linear transformation to deal with the sparsity problem of the one-hot encoding of original data. The first stage adopts ARMA graph convolutional neural network to learn the characteristics of atomic space in the protein-ligand complex. In the second stage, one variant of the MPNN graph convolutional neural network is introduced with chemical bond information and interactive atomic features. Finally, the architecture passes through the global add pool and the fully connected layer, and outputs a constant value as the predicted binding affinity. Experiments on the PDBbind v2016 data set showed that our method is better than most of the current methods. Our method is also comparable to the state-of-the-art method on the data set, and is more intuitive and simple.


Assuntos
Redes Neurais de Computação , Proteínas/metabolismo , Bases de Dados de Proteínas , Ligantes , Modelos Teóricos , Ligação Proteica
14.
BMC Med Inform Decis Mak ; 21(Suppl 1): 133, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33882934

RESUMO

BACKGROUND: MicroRNAs (miRNAs) have been confirmed to have close relationship with various human complex diseases. The identification of disease-related miRNAs provides great insights into the underlying pathogenesis of diseases. However, it is still a big challenge to identify which miRNAs are related to diseases. As experimental methods are in general expensive and time-consuming, it is important to develop efficient computational models to discover potential miRNA-disease associations. METHODS: This study presents a novel prediction method called HFHLMDA, which is based on high-dimensionality features and hypergraph learning, to reveal the association between diseases and miRNAs. Firstly, the miRNA functional similarity and the disease semantic similarity are integrated to form an informative high-dimensionality feature vector. Then, a hypergraph is constructed by the K-Nearest-Neighbor (KNN) method, in which each miRNA-disease pair and its k most relevant neighbors are linked as one hyperedge to represent the complex relationships among miRNA-disease pairs. Finally, the hypergraph learning model is designed to learn the projection matrix which is used to calculate uncertain miRNA-disease association score. RESULT: Compared with four state-of-the-art computational models, HFHLMDA achieved best results of 92.09% and 91.87% in leave-one-out cross validation and fivefold cross validation, respectively. Moreover, in case studies on Esophageal neoplasms, Hepatocellular Carcinoma, Breast Neoplasms, 90%, 98%, and 96% of the top 50 predictions have been manually confirmed by previous experimental studies. CONCLUSION: MiRNAs have complex connections with many human diseases. In this study, we proposed a novel computational model to predict the underlying miRNA-disease associations. All results show that the proposed method is effective for miRNA-disease association predication.


Assuntos
Neoplasias da Mama , Neoplasias Esofágicas , MicroRNAs , Algoritmos , Biologia Computacional , Predisposição Genética para Doença , Humanos , MicroRNAs/genética
15.
BMC Med Inform Decis Mak ; 21(Suppl 1): 134, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888098

RESUMO

BACKGROUND: Deep learning algorithms significantly improve the accuracy of pathological image classification, but the accuracy of breast cancer classification using only single-mode pathological images still cannot meet the needs of clinical practice. Inspired by the real scenario of pathologists reading pathological images for diagnosis, we integrate pathological images and structured data extracted from clinical electronic medical record (EMR) to further improve the accuracy of breast cancer classification. METHODS: In this paper, we propose a new richer fusion network for the classification of benign and malignant breast cancer based on multimodal data. To make pathological image can be integrated more sufficient with structured EMR data, we proposed a method to extract richer multilevel feature representation of the pathological image from multiple convolutional layers. Meanwhile, to minimize the information loss for each modality before data fusion, we use the denoising autoencoder as a way to increase the low-dimensional structured EMR data to high-dimensional, instead of reducing the high-dimensional image data to low-dimensional before data fusion. In addition, denoising autoencoder naturally generalizes our method to make the accurate prediction with partially missing structured EMR data. RESULTS: The experimental results show that the proposed method is superior to the most advanced method in terms of the average classification accuracy (92.9%). In addition, we have released a dataset containing structured data from 185 patients that were extracted from EMR and 3764 paired pathological images of breast cancer, which can be publicly downloaded from http://ear.ict.ac.cn/?page_id=1663 . CONCLUSIONS: We utilized a new richer fusion network to integrate highly heterogeneous data to leverage the structured EMR data to improve the accuracy of pathological image classification. Therefore, the application of automatic breast cancer classification algorithms in clinical practice becomes possible. Due to the generality of the proposed fusion method, it can be straightforwardly extended to the fusion of other structured data and unstructured data.


Assuntos
Neoplasias da Mama , Algoritmos , Mama , Neoplasias da Mama/diagnóstico por imagem , Registros Eletrônicos de Saúde , Humanos , Redes Neurais de Computação
16.
Artigo em Inglês | MEDLINE | ID: mdl-33690124

RESUMO

Extracting genes involved in cancer lesions from gene expression data is critical for cancer research and drug development. the method of feature selection has attracted much attention in the field of bioinformatics. Principal Component Analysis (PCA) is a widely used method for learning low-dimensional representation. Some variants of PCA have been proposed to improve the robustness and sparsity of the algorithm. However, the existing methods ignore the high-order relationships between data. In this paper, a new model named Robust Principal Component Analysis via Hypergraph Regularization (HRPCA) is proposed. In detail, HRPCA utilizes L2,1-norm to reduce the effect of outliers and make data sufficiently row-sparse. And the Hypergraph Regularization is introduced to consider the complex relationship between data. Important information hidden in the data are mined, and this method ensures the accuracy of the resulting data relationship information. Extensive experiments on multi-view biological data demonstrate that the feasible and effective of the proposed approach.

17.
Artigo em Inglês | MEDLINE | ID: mdl-33735084

RESUMO

MicroRNAs (miRNAs) are a class of non-coding RNAs that play critical role in many biological processes, such as cell growth, development, differentiation and aging. Increasing studies have revealed that miRNAs are closely involved in many humandiseases. Therefore, the prediction of miRNA-disease associations is of great significance to the study of the pathogenesis, diagnosis and intervention of human disease. However, biological experimentally methods are usually expensive in time and money, while computational methods can provide an efficient way to infer the underlying disease-related miRNAs. In this study, we propose a novel method to predict potential miRNA-disease associations, called SVAEMDA. Our method mainly consider the miRNA-disease association prediction as semi-supervised learning problem. SVAEMDA integrates disease semantic similarity, miRNA functional similarity and respective Gaussian interaction profile (GIP) similarities. The integrated similarities are used to learn the representations of diseases and miRNAs. SVAEMDA trains a variational autoencoder based predictor by using known miRNA-disease associations, with the form of concatenated dense vectors. Reconstruction probability of the predictor is used to measure the correlation of the miRNA-disease pairs. Experimental results show that SVAEMDA outperforms other stat-of-the-art methods.

18.
Interdiscip Sci ; 13(1): 83-90, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33475958

RESUMO

Clustering is a common method to identify cell types in single cell analysis, but the increasing size of scRNA-seq datasets brings challenges to single cell clustering. Therefore, it is an urgent need to design a faster and more accurate clustering method for large-scale scRNA-seq data. In this paper, we proposed a new method for single cell clustering. First, a count matrix is constructed through normalization and gene filtration. Second, the raw data of gene expression matrix are projected to feature space constructed by secondary construction of feature space based on UMAP (Uniform Manifold Approximation and Projection). Third, the low-dimensional matrix on the feature space is randomly divided into two sub-matrices according to a certain proportion for clustering and classifying, respectively. Finally, one subset is clustered by k-means algorithm and then the other subset is classified by k-nearest neighbor algorithm based on clustering results. Experimental results show that our method can cluster the scRNA-seq datasets effectively.


Assuntos
Análise de Célula Única , Algoritmos , Análise por Conglomerados , RNA-Seq , Análise de Sequência de RNA
19.
Brief Bioinform ; 22(5)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-33415333

RESUMO

Predicting disease-related long non-coding RNAs (lncRNAs) is beneficial to finding of new biomarkers for prevention, diagnosis and treatment of complex human diseases. In this paper, we proposed a machine learning techniques-based classification approach to identify disease-related lncRNAs by graph auto-encoder (GAE) and random forest (RF) (GAERF). First, we combined the relationship of lncRNA, miRNA and disease into a heterogeneous network. Then, low-dimensional representation vectors of nodes were learned from the network by GAE, which reduce the dimension and heterogeneity of biological data. Taking these feature vectors as input, we trained a RF classifier to predict new lncRNA-disease associations (LDAs). Related experiment results show that the proposed method for the representation of lncRNA-disease characterizes them accurately. GAERF achieves superior performance owing to the ensemble learning method, outperforming other methods significantly. Moreover, case studies further demonstrated that GAERF is an effective method to predict LDAs.

20.
IEEE/ACM Trans Comput Biol Bioinform ; 18(3): 1026-1034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32248121

RESUMO

Pathogenicity-related studies are of great importance in understanding the pathogenesis of complex diseases and improving the level of clinical medicine. This work proposed a bioinformatics scheme to analyze cancer-related gene mutations, and try to figure out potential genes associated with diseases from the protein domain-domain interaction network. Herein, five measures of the principle of centrality lethality had been adopted to implement potential correlation analysis, and prioritize the significance of genes. This method was further applied to KEGG pathway analysis by taking the malignant melanoma as an example. The experimental results show that 25 domains can be found, and 18 of them have high potential to be pathogenically important related to malignant melanoma. Finally, a web-based tool, named Human Cancer Related Domain Interaction Network Analyzer, is developed for potential pathogenic genes prioritization for 26 types of human cancers, and the analysis results can be visualized and downloaded online.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...