Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 712
Filtrar
1.
iScience ; 24(10): 103186, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34608450

RESUMO

The COVID-19 pandemic has caused over 220 million infections and 4.5 million deaths worldwide. Current risk factor cannot fully explain the diversity in disease severity. Here, we present a comprehensive analysis of a broad range of patients' laboratory and clinical assessments to investigate the genetic contributions to COVID-19 severity. By performing GWAS analysis, we discovered several concrete associations for laboratory traits and used Mendelian randomization (MR) analysis to further investigate the causality of traits on disease severity. Two causal traits, WBC counts and cholesterol levels, were identified based on MR study, and their functional genes are located at genes MHC complex and ApoE, respectively. Our gene-based analysis and GSEA revealed four interferon pathways, including type I interferon receptor binding and SARS coronavirus and innate immunity. We hope that our work will contribute to studying the genetic mechanisms of disease and serve as a useful reference for COVID-19 diagnosis and treatment.

2.
Neurol Sci ; 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34671854

RESUMO

Coronavirus disease 2019 (COVID-19), the third type of coronavirus pneumonia after severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), is spreading widely worldwide now. This pneumonia causes not only respiratory symptoms but also multiple organ dysfunction, including thrombotic diseases such as ischemic stroke. The purpose of this review is to explore whether COVID-19 is a risk factor for ischemic stroke and its related pathophysiological mechanisms. Based on the high thrombosis rate and frequent strokes of COVID-19 patients, combined with related laboratory indicators and pathological results, the discussion is mainly from two aspects: nerve invasion and endothelial dysfunction. SARS-CoV-2 can directly invade the CNS through blood-borne and neuronal retrograde pathways, causing cerebrovascular diseases. In addition, the endothelial dysfunction in COVID-19 is almost certain. Cytokine storm causes thromboinflammation, and downregulation of ACE2 leads to RAS imbalance, which eventually lead to ischemic stroke.

3.
Biomater Sci ; 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34668000

RESUMO

Photothermal therapy (PTT), as a promising antineoplastic therapeutic strategy, has been harnessed to restrain tumor growth through near-infrared (NIR) irradiation mediated thermal ablation. Nevertheless, its biological applications are hampered by thermal diffusion and up-regulated heat shock proteins (HSPs). Herein, a versatile nanotheranostic agent is developed via integrating Zn0.2Fe2.8O4 nanoparticles (NPs), polydopamine (PDA), and MnO2 NPs for T1/T2 dual-modal magnetic resonance (MR) imaging-guided and self-augmented PTT. The as-designed Zn0.2Fe2.8O4@PDA@MnO2 NPs adequately serve as a PTT agent to realize effective photothermal conversion and obtain local hyperthermia. Additionally, the Zn0.2Fe2.8O4@PDA@MnO2 NPs can significantly consume overexpressed glutathione (GSH) and generate Mn2+ in the tumor microenvironment (TME), thus destroying redox homeostasis and catalytically generating hydroxyl radicals (˙OH) for HSP suppression and PTT enhancement. Meanwhile, Mn2+ and Zn0.2Fe2.8O4 NPs significantly strengthen T1- and T2-weighted MR contrast for tumor imaging and PTT guidance. Hence, this study offers proof of concept for self-augmented PTT and T1/T2 dual-modal MR imaging for tumor elimination.

4.
Cell Biol Toxicol ; 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34686948

RESUMO

The prognosis of pancreatic ductal adenocarcinoma (PDAC) is poor despite diagnostic progress and new chemotherapeutic regimens. Constitutive activation of NF-κB is frequently observed in PDAC. In this study, we found that YEATS2, a scaffolding protein of ATAC complex, was highly expressed in human PDAC. Depletion of YEATS2 reduced the growth, survival, and tumorigenesis of PDAC cells. The binding of YEATS2 is crucial for maintaining TAK1 activation and NF-κB transcriptional activity. Of importance, our results reveal that YEATS2 promotes NF-κB transcriptional activity through modulating TAK1 abundance and directly interacting with NF-κB as a co-transcriptional factor.

6.
Commun Biol ; 4(1): 1034, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465887

RESUMO

COVID-19 has caused numerous infections with diverse clinical symptoms. To identify human genetic variants contributing to the clinical development of COVID-19, we genotyped 1457 (598/859 with severe/mild symptoms) and sequenced 1141 (severe/mild: 474/667) patients of Chinese ancestry. We further incorporated 1401 genotyped and 948 sequenced ancestry-matched population controls, and tested genome-wide association on 1072 severe cases versus 3875 mild or population controls, followed by trans-ethnic meta-analysis with summary statistics of 3199 hospitalized cases and 897,488 population controls from the COVID-19 Host Genetics Initiative. We identified three significant signals outside the well-established 3p21.31 locus: an intronic variant in FOXP4-AS1 (rs1853837, odds ratio OR = 1.28, P = 2.51 × 10-10, allele frequencies in Chinese/European AF = 0.345/0.105), a frameshift insertion in ABO (rs8176719, OR = 1.19, P = 8.98 × 10-9, AF = 0.422/0.395) and a Chinese-specific intronic variant in MEF2B (rs74490654, OR = 8.73, P = 1.22 × 10-8, AF = 0.004/0). These findings highlight an important role of the adaptive immunity and the ABO blood-group system in protection from developing severe COVID-19.


Assuntos
COVID-19/etnologia , COVID-19/genética , Grupos Étnicos/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença/genética , Humanos , Íntrons/genética , Polimorfismo de Nucleotídeo Único
7.
Cell Discov ; 7(1): 76, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465742

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a broad clinical spectrum of coronavirus disease 2019 (COVID-19). The development of COVID-19 may be the result of a complex interaction between the microbial, environmental, and host genetic components. To reveal genetic determinants of susceptibility to COVID-19 severity in the Chinese population, we performed a genome-wide association study on 885 severe or critical COVID-19 patients (cases) and 546 mild or moderate patients (controls) from two hospitals, Huoshenshan and Union hospitals at Wuhan city in China. We identified two loci on chromosome 11q23.3 and 11q14.2, which are significantly associated with the COVID-19 severity in the meta-analyses of the two cohorts (index rs1712779: odds ratio [OR] = 0.49; 95% confidence interval [CI], 0.38-0.63 for T allele; P = 1.38 × 10-8; and index rs10831496: OR = 1.66; 95% CI, 1.38-1.98 for A allele; P = 4.04 × 10-8, respectively). The results for rs1712779 were validated in other two small COVID-19 cohorts in the Asian populations (P = 0.029 and 0.031, respectively). Furthermore, we identified significant eQTL associations for REXO2, C11orf71, NNMT, and CADM1 at 11q23.3, and CTSC at 11q14.2, respectively. In conclusion, our findings highlight two loci at 11q23.3 and 11q14.2 conferring susceptibility to the severity of COVID-19, which might provide novel insights into the pathogenesis and clinical treatment of this disease.

8.
Nat Immunol ; 22(9): 1175-1185, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34429546

RESUMO

Systematic characterizations of adipose regulatory T (Treg) cell subsets and their phenotypes remain uncommon. Using single-cell ATAC-sequencing and paired single-cell RNA and T cell receptor (TCR) sequencing to map mouse adipose Treg cells, we identified CD73hiST2lo and CD73loST2hi subsets with distinct clonal expansion patterns. Analysis of TCR-sharing data implied a state transition between CD73hiST2lo and CD73loST2hi subsets. Mechanistically, we revealed that insulin signaling occurs through a HIF-1α-Med23-PPAR-γ axis to drive the transition of CD73hiST2lo into a CD73loST2hi adipose Treg cell subset. Treg cells deficient in insulin receptor, HIF-1α or Med23 have decreased PPAR-γ expression that in turn promotes accumulation of CD73hiST2lo adipose Treg cells and physiological adenosine production to activate beige fat biogenesis. We therefore unveiled a developmental trajectory of adipose Treg cells and its dependence on insulin signaling. Our findings have implications for understanding the dynamics of adipose Treg cell subsets in aged and obese contexts.


Assuntos
Tecido Adiposo/imunologia , Resistência à Insulina/imunologia , Insulina/metabolismo , Receptor de Insulina/metabolismo , Linfócitos T Reguladores/imunologia , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Tecido Adiposo/citologia , Envelhecimento/imunologia , Animais , Células Cultivadas , Sequenciamento de Nucleotídeos em Larga Escala , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Masculino , Complexo Mediador/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/imunologia , PPAR gama/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/citologia
9.
Insects ; 12(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34357265

RESUMO

Mitogenomes have been widely used for exploring phylogenetic analysis and taxonomic diagnosis. In this study, the complete mitogenomes of five species of Filchnerella were sequenced, annotated and analyzed. Then, combined with other seven mitogenomes of Filchnerella and four of Pamphagidae, the phylogenetic relationships were reconstructed by maximum likelihood (ML) and Bayesian (BI) methods based on PCGs+rRNAs. The sizes of the five complete mitogenomes are Filchnerella sunanensis 15,656 bp, Filchnerella amplivertica 15,657 bp, Filchnerella nigritibia 15,661 bp, Filchnerella pamphagoides 15,661 bp and Filchnerella dingxiensis 15,666 bp. The nucleotide composition of mitogenomes is biased toward A+T. All tRNAs could be folded into the typical clover-leaf structure, except that tRNA Ser (AGN) lacked a dihydrouridine (DHU) arm. The phylogenetic relationships of Filchnerella species based on mitogenome data revealed a general pattern of wing evolution from long wing to increasingly shortened wing.

10.
Addict Biol ; : e13089, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34363291

RESUMO

Cocaine blocks dopamine uptake via dopamine transporter (DAT) on plasma membrane of neuron cells and, as a result, produces the high and induces DAT trafficking to plasma membrane which contributes to the drug seeking or craving. In this study, we first examined the dose dependence of cocaine-induced DAT trafficking and hyperactivity in rats, demonstrating that cocaine at an intraperitoneal dose of 10 mg/kg or higher led to redistribution of most DAT to the plasma membrane while inducing significant hyperactivity in rats. However, administration of 5-mg/kg cocaine (ip) did not significantly induce DAT trafficking or hyperactivity in rats. So the threshold (intraperitoneal) dose of cocaine that can significantly induce DAT trafficking or hyperactivity should be between 5 and 10 mg/kg. These data suggest that when a cocaine dose is high enough to induce significant hyperactivity, it can also significantly induce DAT trafficking to the plasma membrane. Further, the threshold brain cocaine concentration required to induce significant hyperactivity and DAT trafficking was estimated to be ~2.0 ± 0.8 µg/g. Particularly, for treatment of cocaine abuse, previous studies demonstrated that an exogenous cocaine-metabolizing enzyme, for example, CocH3-Fc(M3), can effectively block cocaine-induced hyperactivity. However, it was unknown whether an enzyme could also effectively block cocaine-induced DAT trafficking to the plasma membrane. This study demonstrates, for the first time, that the enzyme is also capable of effectively blocking cocaine from reaching the brain even with a lethal dose of 60-mg/kg cocaine (ip) and, thus, powerfully preventing cocaine-induced physiological effects such as the hyperactivity and DAT trafficking.

11.
Front Immunol ; 12: 683249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290705

RESUMO

Macrophages, a major subset of innate immune cells, are main infiltrating cells in the kidney in lupus nephritis. Macrophages with different phenotypes exert diverse or even opposite effects on the development of lupus nephritis. Substantial evidence has shown that macrophage M2 polarization is beneficial to individuals with chronic kidney disease. Further, it has been reported that PD-1 ligands (PD-Ls) contribute to M2 polarization of macrophages and their immunosuppressive effects. Total glucosides of paeony (TGP), originally extracted from Radix Paeoniae Alba, has been approved in China to treat some autoimmune diseases. Here, we investigated the potentially therapeutic effects of TGP on lupus nephritis in a pristane-induced murine model and explored the molecular mechanisms regulating macrophage phenotypes. We found that TGP treatment significantly improved renal function by decreasing the urinary protein and serum creatinine, reducing serum anti-ds-DNA level and ameliorating renal immunopathology. TGP increased the frequency of splenic and peritoneal F4/80+CD11b+CD206+ M2-like macrophages with no any significant effect on F4/80+CD11b+CD86+ M1-like macrophages. Immunofluorescence double-stainings of the renal tissue showed that TGP treatment increased the frequency of F4/80+Arg1+ subset while decreasing the percentage of F4/80+iNOS+ subset. Importantly, TGP treatment increased the percentage of both F4/80+CD11b+PD-L1+ and F4/80+CD11b+PD-L2+ subsets in spleen and peritoneal lavage fluid as well as the kidney. Furthermore, TGP augmented the expressions of CD206, PD-L2 and phosphorylated STAT6 in IL-4-treated Raw264.7 macrophages in vitro while its effects on PD-L2 were abolished by pretreatment of the cells with an inhibitor of STAT6, AS1517499. However, TGP treatment did not affect the expressions of STAT1 and PD-L1 in Raw264.7 macrophages treated with LPS/IFN-γ in vitro, indicating a possibly indirect effect of TGP on PD-L1 expression on macrophages in vivo. Thus, for the first time, we demonstrated that TGP may be a potent drug to treat lupus nephritis by inducing F4/80+CD11b+CD206+ and F4/80+CD11b+PD-L2+ macrophages through IL-4/STAT6/PD-L2 signaling pathway.

12.
Front Physiol ; 12: 687744, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093242

RESUMO

Non-alcoholic steatohepatitis (NASH) is an inflammatory disorder that is characterized by chronic activation of the hepatic inflammatory response and subsequent liver damage. The regulation of macrophage polarization in liver is closely related to the progression of NASH. The orphan nuclear receptor retinoic-acid-related orphan receptor α (RORα) and Krüppel-like factor 4 (KLF4) are key regulators which promote hepatic macrophages toward M2 phenotype and protect against NASH in mice. Nobiletin (NOB), a natural polymethoxylated flavone, is previously reported as a RORα regulator in diet-induced obese mice. However, it is still unclear whether NOB has the protective effect on NASH. In this study, we investigated the role of NOB in NASH using a methionine and choline deficient (MCD)-induced NASH mouse model. Our results showed that NOB ameliorated hepatic damage and fibrosis in MCD fed mice. NOB treatment reduced the infiltration of macrophages and neutrophils in the liver in MCD-fed mice. Of importance, NOB significantly increased the proportion of M2 macrophages and the expression of anti-inflammatory factors in vivo and in vitro. Meanwhile, NOB also decreased the population of M1 macrophages and the expression of proinflammatory cytokines. Mechanistically, NOB elevated KLF4 expression in macrophages. Inhibition of KLF4 abolished NOB regulated macrophage polarization. Furthermore, the regulation of NOB in KLF4 expression was dependent on RORα.

13.
Front Genet ; 12: 663098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122515

RESUMO

Symptoms of coronavirus disease 2019 (COVID-19) range from asymptomatic to severe pneumonia and death. A deep understanding of the variation of biological characteristics in severe COVID-19 patients is crucial for the detection of individuals at high risk of critical condition for the clinical management of the disease. Herein, by profiling the gene expression spectrum deduced from DNA coverage in regions surrounding transcriptional start site in plasma cell-free DNA (cfDNA) of COVID-19 patients, we deciphered the altered biological processes in the severe cases and demonstrated the feasibility of cfDNA in measuring the COVID-19 progression. The up- and downregulated genes in the plasma of severe patient were found to be closely related to the biological processes and functions affected by COVID-19 progression. More importantly, with the analysis of transcriptome data of blood cells and lung cells from control group and cases with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection, we revealed that the upregulated genes were predominantly involved in the viral and antiviral activity in blood cells, reflecting the intense viral replication and the active reaction of immune system in the severe patients. Pathway analysis of downregulated genes in plasma DNA and lung cells also demonstrated the diminished adenosine triphosphate synthesis function in lung cells, which was evidenced to correlate with the severe COVID-19 symptoms, such as a cytokine storm and acute respiratory distress. Overall, this study revealed tissue involvement, provided insights into the mechanism of COVID-19 progression, and highlighted the utility of cfDNA as a noninvasive biomarker for disease severity inspections.

14.
iScience ; 24(5): 102476, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34113820

RESUMO

Bacterial two-component regulatory systems are ubiquitous environment-sensing signal transducers involved in pathogenesis and antibiotic resistance. The Acinetobacter baumannii two-component regulatory system AdeRS is made up of a sensor histidine kinase AdeS and a cognate response regulator AdeR, which together reduce repression of the multidrug-resistant efflux pump AdeABC. Herein we demonstrate that an N-terminal intrinsically disordered tail in AdeR is important for the upregulation of adeABC expression, although it greatly increases the susceptibility of AdeR to proteasome-mediated degradation. We also show that AdeS assembles into a hexameric state that is necessary for its full histidine kinase activity, which appears to occur via cis autophosphorylation. Taken together, this study demonstrates new structural mechanisms through which two-component systems can transduce environmental signals to impact gene expression and enlightens new potential antimicrobial approach by targeting two-component regulatory systems.

15.
Clin Interv Aging ; 16: 1047-1056, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135577

RESUMO

Purpose: Medication therapy is crucial in the management of chronic coronary syndrome (CCS). The use of potentially inappropriate medications (PIMs) contributes to poor outcomes in older patients, making it a major public health concern. However, few studies are available on PIMs use in older Chinese CCS patients. To investigate the frequency of prescribed PIMs at discharge and explore risk factors in older adults with CCS. Patients and Methods: The cross-sectional study was conducted in a tertiary hospital in China over three months, from 1st October to 31st December, 2019. CCS patients aged over 60 years who were discharged alive were recruited. Information on demographics and medications at discharge was collected. Clinical data including diagnoses, frailty status, New York Heart Association (NYHA) class and age-adjusted Charlson Comorbidity Index (ACCI) were evaluated in each patient. PIMs were identified using the 2019 Beers criteria. Binary logistic regression was performed to recognize variables related to PIMs. Results: A total of 447 eligible patients with 2947 medications were included. The prevalence of PIMs use was 38%. Medications to be avoided, to be used with caution, and with drug-drug interactions were 38.4%, 48.9% and 12.7% of the PIMs, respectively. Medications with drug-disease/syndrome interactions and those adjusted for kidney function were not identified. The common PIMs were diuretics (37.1%), benzodiazepines and benzodiazepine receptor agonist hypnotics (15.2%), glimepiride (13.1%), and co-prescription of potassium-sparing diuretics and renin-angiotensin system (RAS) inhibitors (9.7%). Individuals with frailty syndrome, polypharmacy, multiple comorbidities, atrial fibrillation, psychiatric disorders and greater NYHA class severity were more likely to receive PIMs. Conclusion: Prescription of PIMs was a common burden in older adults. A CCS multidisciplinary team is needed to control PIMs, especially in vulnerable older patients.


Assuntos
Anti-Hipertensivos/efeitos adversos , Doenças Cardiovasculares/tratamento farmacológico , Idoso Fragilizado/estatística & dados numéricos , Prescrição Inadequada/efeitos adversos , Lista de Medicamentos Potencialmente Inapropriados/estatística & dados numéricos , Idoso , Idoso de 80 Anos ou mais , Anti-Hipertensivos/uso terapêutico , Pequim , Doenças Cardiovasculares/epidemiologia , Estudos Transversais , Humanos , Prescrição Inadequada/estatística & dados numéricos , Modelos Logísticos , Masculino , Alta do Paciente/estatística & dados numéricos , Polimedicação , Prevalência , Fatores de Risco , Centros de Atenção Terciária
16.
Infect Dis Ther ; 10(3): 1391-1405, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34110618

RESUMO

INTRODUCTION: The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread throughout China and worldwide. Little is known about the dynamic changes in the patient immune responses to SARS-CoV-2 and how different responses are correlated with disease severity and outcomes. METHODS: Seventy-four patients with confirmed COVID-19 were enrolled in this prospective research. The demographic information, medical history, symptoms, signs and laboratory results were analyzed and compared between severe and non-severe patients. The leukocytes, lymphocyte subsets and inflammatory cytokines were longitudinally collected. RESULTS: Of the 74 patients included, 17 suffered from severe disease. The severe patients tended be older (65.29 ± 12.33 years vs. 45.37 ± 18.66 years) and had a greater degree of underlying disease (41.18% vs. 24.56%), lower baseline lymphocyte counts [0.64 (0.46-0.95) × 109 vs. 1.27 (0.95-1.70) × 109], higher neutrophil-lymphocyte ratios [NLRs; 3.76 (3.15-5.51) vs. 2.07 (1.48-2.93)] and lower baseline eosinophil counts [0 (0-0.01) × 109 vs. 0.03 (0.01-0.06) × 109] than those in non-severe patients. The baseline helper T (Th) cells (335.47 vs. 666.46/µl), suppressor T(Ts) cells (158 vs. 334/µl), B cells (95 vs. 210/µl) and natural killer (NK) cells (52 vs. 122/µl) were significantly decreased in severe cases compared to that in non-severe cases. In addition, the baseline neutrophils were positively correlated with the severity of COVID-19, and the baseline lymphocytes were negatively correlated with the severity of COVID-19. The dynamic change of T cells, Th cells and IFN-γ in the severe cases were parallel to the amelioration of the disease. CONCLUSIONS: Collectively, our study provides novel information on the kinetics of the immune responses in a cohort of COVID-19 patients with different disease severities. Furthermore, our study indicates that both innate and adaptive immune responses correlate with better clinical outcomes.

17.
Front Cardiovasc Med ; 8: 654405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055936

RESUMO

Background: Accumulating evidence has revealed that coronavirus disease 2019 (COVID-19) patients may be complicated with myocardial injury during hospitalization. However, data regarding persistent cardiac involvement in patients who recovered from COVID-19 are limited. Our goal is to further explore the sustained impact of COVID-19 during follow-up, focusing on the cardiac involvement in the recovered patients. Methods: In this prospective observational follow-up study, we enrolled a total of 40 COVID-19 patients (20 with and 20 without cardiac injury during hospitalization) who were discharged from Zhongnan Hospital of Wuhan University for more than 6 months, and 27 patients (13 with and 14 without cardiac injury during hospitalization) were finally included in the analysis. Clinical information including self-reported symptoms, medications, laboratory findings, Short Form 36-item scores, 6-min walk test, clinical events, electrocardiogram assessment, echocardiography measurement, and cardiac magnetic resonance imaging was collected and analyzed. Results: Among 27 patients finally included, none of patients reported any obvious cardiopulmonary symptoms at the 6-month follow-up. There were no statistically significant differences in terms of the quality of life and exercise capacity between the patients with and without cardiac injury. No significant abnormalities were detected in electrocardiogram manifestations in both groups, except for nonspecific ST-T changes, premature beats, sinus tachycardia/bradycardia, PR interval prolongation, and bundle-branch block. All patients showed normal cardiac structure and function, without any statistical differences between patients with and without cardiac injury by echocardiography. Compared with patients without cardiac injury, patients with cardiac injury exhibited a significantly higher positive proportion in late gadolinium enhancement sequences [7/13 (53.8%) vs. 1/14 (7.1%), p = 0.013], accompanied by the elevation of circulating ST2 level [median (interquartile range) = 16.6 (12.1, 22.5) vs. 12.5 (9.5, 16.7); p = 0.044]. Patients with cardiac injury presented higher levels of aspartate aminotransferase, creatinine, high-sensitivity troponin I, lactate dehydrogenase, and N-terminal pro-B-type natriuretic peptide than those without cardiac injury, although these indexes were within the normal range for all recovered patients at the 6-month follow-up. Among patients with cardiac injury, patients with positive late gadolinium enhancement presented higher cardiac biomarker (high-sensitivity troponin I) and inflammatory factor (high-sensitivity C-reactive protein) on admission than the late gadolinium enhancement-negative subgroup. Conclusions: Our preliminary 6-month follow-up study with a limited number of patients revealed persistent cardiac involvement in 29.6% (8/27) of recovered patients from COVID-19 after discharge. Patients with cardiac injury during hospitalization were more prone to develop cardiac fibrosis during their recovery. Among patients with cardiac injury, those with relatively higher cardiac biomarkers and inflammatory factors on admission appeared more likely to have cardiac involvement in the convalescence phase.

18.
Carbohydr Polym ; 263: 117994, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33858581

RESUMO

This research evaluates the elicitors activity and structure characterization of four Chrysanthemum indicum polysaccharides (CIPs) which were isolated from C. indicum, obtained CIP1, CIP2, CIP3, CIP4. Results demonstrated that there was a distinct difference in inducibility and CIP3 was significantly stronger than other CIPs through bioactivity-tests. Taking CIP3 with total carbohydrate content 91.93 % as a representative, its structure was elucidated as a relative molecular weight of 8. 741 × 103 g/mol and mainly composed of xylose, galacturonic acid, galactose and glucuronic acid. Through GC, IR and NMR, CIP3 was determined to possess a backbone comprised of T-α-d-GalpA, 1,4-α-d-GlcpA, 1,2-α-d-Xylp, 1,3-α-l-Rhap, 1,2,4-α-l-Rhap and sidechains comprised of 1,3-ß-d-Galp, 1,6-α-d-Galp, T-α-Glcp, 1,3-ß-d-Glcp, 1,4-α-d-Glcp, 1,3,4-α-d-Manp, T-α-l-Fucp. Further results indicated that CIP3 with active sidechains could significantly increase the expression of defense genes in Atractylodes macrocephala Koidz (AM). It is believed that the sidechains of CIP3 were necessary to its elicitor activity via bioactivity tests.


Assuntos
Chrysanthemum/química , Índio/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Atractylodes/química , Atractylodes/efeitos dos fármacos , Atractylodes/genética , Atractylodes/imunologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hidrólise , Metilação , Peso Molecular , Monossacarídeos/análise , Ácido Periódico/metabolismo , Polissacarídeos/isolamento & purificação , Relação Estrutura-Atividade
19.
Front Immunol ; 12: 657803, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815420

RESUMO

The role of IL-33/ST2 signaling in cardiac allograft vasculopathy (CAV) is not fully addressed. Here, we investigated the role of IL-33/ST2 signaling in allograft or recipient in CAV respectively using MHC-mismatch murine chronic cardiac allograft rejection model. We found that recipients ST2 deficiency significantly exacerbated allograft vascular occlusion and fibrosis, accompanied by increased F4/80+ macrophages and CD3+ T cells infiltration in allografts. In contrast, allografts ST2 deficiency resulted in decreased infiltration of F4/80+ macrophages, CD3+ T cells and CD20+ B cells and thus alleviated vascular occlusion and fibrosis of allografts. These findings indicated that allografts or recipients ST2 deficiency oppositely affected cardiac allograft vasculopathy/fibrosis via differentially altering immune cells infiltration, which suggest that interrupting IL-33/ST2 signaling locally or systematically after heart transplantation leads different outcome.


Assuntos
Doença das Coronárias/etiologia , Doença das Coronárias/patologia , Transplante de Coração , Proteína 1 Semelhante a Receptor de Interleucina-1/deficiência , Leucócitos/patologia , Aloenxertos , Animais , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Subpopulações de Linfócitos B/patologia , Doença das Coronárias/metabolismo , Modelos Animais de Doenças , Fibrose , Rejeição de Enxerto , Sobrevivência de Enxerto , Transplante de Coração/efeitos adversos , Transplante de Coração/métodos , Imuno-Histoquímica , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Complicações Pós-Operatórias , Subpopulações de Linfócitos T/metabolismo
20.
Front Med (Lausanne) ; 8: 645816, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928105

RESUMO

Evidences have suggested that Sjogren's syndrome (SS) is associated with viral infection. The aim of this study was to investigate the involvement of respiratory viral poly(I:C) in the pathogenesis of SS and potential mechanisms using a SS-like NOD/ShiLtJ (NOD) mouse model. 5-week female NOD mice were intratracheally administered poly(I:C) every other day for 5 times to mimic viral infection. Pilocarpine induced saliva secretion was determined every 8 days. Submandibular glands (SMG) and lungs were harvested for the detection of pathological changes. We found that intratracheal administration of poly(I:C) significantly advanced and enhanced the reduction of saliva flow rate in NOD mice. Furthermore, poly(I:C) treatment aggravated the histopathological lesions and inflammatory cells infiltration in SMG. Accompanied by elevated expression of IFN cytokines and IL-33, Th1 activation was enhanced in SMG of poly(I:C)-treated NOD mice, but Th17 cells activation was unchanged among the groups. In addition, intratracheal poly(I:C) exposure promoted the expression of IL-33 and increased T cells proportion in the lung, which were consistent with the change in SMG. Therefore, intratracheal poly(I:C) exposure aggravated the immunological and function disorder of SMG in NOD mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...