Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 981
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-33461473

RESUMO

BACKGROUND: Bone metastasis is one of the most common complications of Prostate cancer (PCa). The detection of distal bone metastasis at the time of initial PCa diagnosis is valuable for the determination of therapeutic methods and for the prognosis of PCa. Many current therapeutic methods target PCa bone metastasis, but no uniform evaluation standard for therapeutic efficacy has been established; in addition, traditional therapeutic evaluation standards that rely on changes in the measured tumor volume are quite controversial. In clinical practice, the volumes of some tumors often change nonsignificantly at the early stage of therapy (especially targeted therapy),while the volumes of other tumors, such as metastatic bone lesions, are difficult to measure. Diffusion-weighted imaging (DWI) not only reflects the diffusion characteristics of tissues but can also allow the analysis of microstructural and functional changes in tissues. Therefore, DWI is suitable for evaluations of early responses to tumor therapy. OBJECTIVE: This study mainly reviews the principle of DWI and its progress in the detection and therapy evaluation of PCa bone metastasis. METHODS: PubMed was searched to identify eligible articles up to December 26, 2020. The keywords of the analysis included DWI, PCa, bone metastasis, therapeutic response, targeted therapy, bone scintigraphy (BS), positron emission tomography/computed tomography (PET/CT) and metastatic castration-resistant prostate cancer (mCRPC). RESULTS: This review based on collected articles achieved an imaging biomarker for detection and therapy evaluation of PCa bone metastasis. CONCLUSION: DWI is a promising imaging method for the detection and therapeutic evaluation of PCa bone metastases.

2.
Nat Nanotechnol ; 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432205

RESUMO

Active matters are out-of-equilibrium systems that convert energy from the environment to mechanical motion. Non-reciprocal interaction between active matters may lead to collective intelligence beyond the capability of individuals. In nature, such emergent behaviours are ubiquitously observed in animal colonies, giving these species remarkable adaptive capability. In artificial systems, however, the emergence of non-trivial collective intelligent dynamics remains undiscovered. Here we show that a simple ion-exchange reaction can couple self-propelled ZnO nanorods and sulfonated polystyrene microbeads together. Chemical communication is established that enhances the reactivity and motion of both nanorods and the microbeads, resulting in the formation of an active swarm of nanorod-microbead complexes. We demonstrate that the swarm is capable of macroscopic phase segregation and intelligent consensus decision-making.

3.
Pharmacol Res Perspect ; 9(1): e00699, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33448699

RESUMO

Cardiomyocyte apoptosis is a key factor in the deterioration of cardiac function after coronary microembolization (CME). Nicorandil (NIC) affects myocardial injury, which may be related to the inhibition of apoptosis. However, the specific mechanism of cardioprotection has not been elucidated. Therefore, we analyzed the impact of NIC on cardiac function in rats subjected to CME and its effect on the high-temperature requirement peptidase 2/X-linked inhibitor of apoptosis protein/poly ADP-ribose polymerase (HtrA2/XIAP/PARP) pathway. Sprague Dawley rats were divided into four groups: Sham, CME, CME + NIC, and CME + UCF. Echocardiography was performed 9 hours after CME. Myocardial injury markers were evaluated in blood samples, and the heart tissue was collected for hematoxylin-eosin staining, hematoxylin basic fuchsin picric acid staining staining, TdT-mediated DUTP nick end labeling (TUNEL) staining, Western blot analysis of the HtrA2/XIAP/PARP pathway, and transmission electron microscopy. NIC ameliorated cardiac dysfunctioncaused by CME and reduced serum levels of CK-MB and LDH. In addition, NIC decreased myocardial microinfarct size and apoptotic index. NIC reduced the Bax/Bcl-2 ratio, levels of cleaved caspase 3/9, cytoplasmic HtrA2, and cleaved PARP, and increased the level of XIAP. The effects of NIC were similar to those of the HtrA2 inhibitor, UCF101. This study demonstrated that NIC reduces CME-induced myocardial injury, reduces mitochondrial damage, and improves myocardial function. The reduction in cardiomyocyte apoptosis by NIC may be mediated by the HtrA2/XIAP/PARP signaling pathway.

4.
Nucleic Acids Res ; 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398350

RESUMO

Defects in the posttranscriptional modifications of mitochondrial tRNAs have been linked to human diseases, but their pathophysiology remains elusive. In this report, we investigated the molecular mechanism underlying a deafness-associated tRNAIle 4295A>G mutation affecting a highly conserved adenosine at position 37, 3' adjacent to the tRNA's anticodon. Primer extension and methylation activity assays revealed that the m.4295A>G mutation introduced a tRNA methyltransferase 5 (TRMT5)-catalyzed m1G37 modification of tRNAIle. Molecular dynamics simulations suggested that the m.4295A>G mutation affected tRNAIle structure and function, supported by increased melting temperature, conformational changes and instability of mutated tRNA. An in vitro processing experiment revealed that the m.4295A>G mutation reduced the 5' end processing efficiency of tRNAIle precursors, catalyzed by RNase P. We demonstrated that cybrid cell lines carrying the m.4295A>G mutation exhibited significant alterations in aminoacylation and steady-state levels of tRNAIle. The aberrant tRNA metabolism resulted in the impairment of mitochondrial translation, respiratory deficiency, decreasing membrane potentials and ATP production, increasing production of reactive oxygen species and promoting autophagy. These demonstrated the pleiotropic effects of m.4295A>G mutation on tRNAIle and mitochondrial functions. Our findings highlighted the essential role of deficient posttranscriptional modifications in the structure and function of tRNA and their pathogenic consequence of deafness.

5.
Int J Med Sci ; 18(2): 314-324, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390800

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is the largest health crisis ever faced worldwide. It has resulted in great health and economic costs because no effective treatment is currently available. Since infected persons vary in presentation from healthy asymptomatic mild symptoms to those who need intensive care support and eventually succumb to the disease, this illness is considered to depend primarily on individual immunity. Demographic distribution and disease severity in several regions of the world vary; therefore, it is believed that natural inherent immunity provided through dietary sources and traditional medicines could play an important role in infection prevention and disease progression. People can boost their immunity to prevent them from infection after COVID-19 exposure and can reduce their inflammatory reactions to protect their organ deterioration in case suffering from the disease. Some drugs with in-situ immunomodulatory and anti-inflammatory activity are also identified as adjunctive therapy in the COVID-19 era. This review discusses the importance of COVID-19 interactions with immune cells and inflammatory cells; and further emphasizes the possible pathways related with traditional herbs, medications and nutritional products. We believe that such pathophysiological pathway approach treatment is rational and important for future development of new therapeutic agents for prevention or cure of COVID-19 infection.


Assuntos
/tratamento farmacológico , Interações Hospedeiro-Patógeno , Medicina Tradicional , /prevenção & controle , Quimioterapia Combinada , Humanos , Imunomodulação , Terapia de Alvo Molecular , Fitoterapia , Extratos Vegetais/uso terapêutico , Vitaminas/uso terapêutico , Zinco/uso terapêutico
6.
J Dairy Sci ; 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33455776

RESUMO

Chymosin is a predominant enzyme in rennet and is used in cheese production because of its excellent milk-clotting activity. Herein, we proposed a facile and label-free electrochemical method for determining chymosin activity based on a peptide-based enzyme substrate. The synthesized substrate peptide for chymosin was assembled onto the surface of the Au-deposited grassy carbon electrode. The current was proportional to chymosin activity, and thus chymosin activity could be determined. The detection ranges of chymosin activity were 2.5 to 25 U mL-1. The detection limit of chymosin activity was 0.8 U mL-1. The sensing platform was used to quantify chymosin activity in commercial rennet with high selectivity, excellent stability, and satisfactory reproducibility. We developed a facile, fast, and effective electrochemical assay for detecting chymosin activity, which has potential applications in cheesemaking.

7.
Biochem Biophys Res Commun ; 537: 125-131, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33401146

RESUMO

Four-and-a-half LIM domain protein 1 (FHL1) is a member of the FHL protein family that serves as a scaffold protein to maintain normal cellular structure and function. Its mutations have been implicated in multiple muscular diseases. These FHL1 related myopathies are characterized by symptoms such as progressive muscle loss, rigid or bent spine, even cardiac or respiratory failure in some patients, which implies pathological problems not only in muscles, but also in the nervous system. Moreover, decreased FHL1 protein level has been found in patients with FHL1 mutations, indicating the protein loss-of-function as a pathological cause of such diseases. These findings suggest the significance of understanding the systemic role of FHL1 in the homeostasis of nervous system and muscle. Here we reported that Fhl1 loss in C2C12 myotubes obscured acetylcholine receptor (AChR) clustering in addition to myotube fusion, which was associated with impaired MuSK phosphorylation. Mechanistically, myostatin-SMAD2/3 signaling was enhanced, whereas IGF-PI3K-AKT signaling was suppressed in Fhl1-/- C2C12 myotubes. Reversion of these molecular alterations rescued AChR clustering and differentiation deficits. These data outline a systemic regulation of AChR clustering and myotube fusion by FHL1, which may offer clues for mechanism study and development of therapeutic strategies to treat FHL1 related myopathies.

8.
Eur J Pharmacol ; 892: 173734, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33220272

RESUMO

Perioperative neurocognitive disorder (PND) is a common complication of elderly patients after surgery and lacks effective prevention and treatment measures. We investigated the effect and mechanism of gastrodin (GAS), a natural plant ingredient, on postoperative cognition induced by laparotomy in aged mice. Male aged (18 months) mice were subjected to laparotomy and orally treated with GAS (25, 50, and 100 mg/kg) 3 weeks before surgery and 1 week after surgery. In addition, some male aged (18 months) mice were subjected to viral vector or GSK-3ß expression virus injection followed by laparotomy with or without 100 mg/kg GAS treatment. GAS improved learning and memory in aged mice after surgery. Surgery increased the levels of pro-inflammatory factors (TNF-α, IL-1ß and IL-6) and decreased the level of an anti-inflammatory factor (IL-10) in the mouse hippocampus, and these changes were reversed by GAS treatment. GAS also suppressed the activation of microglia. GAS inhibited the phosphorylation of GSK-3ß and Tau. Furthermore, surgery induced more serious cognitive dysfunction, inflammatory factors, activation of microglia, and phosphorylation of GSK-3ß and Tau in GSK-3ß overexpressing aged mice. The improvement of learning and memory, the reduction of inflammation and microglia activation, and the suppression of GSK-3ß and Tau phosphorylation by GAS were prevented when GSK-3ß was overexpressed in aged mice subjected to surgery. Our finding suggested that GAS exerts neuroprotective effects in aged mice subjected to laparotomy by suppressing neuroinflammation and GSK-3ß and Tau phosphorylation. Thus, these findings suggest that GAS may be a promising agent for PND.

9.
Environ Int ; 146: 106256, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33232877

RESUMO

BACKGROUND: Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) has been frequently detected in environmental media and biological samples. However, knowledge of its adverse health consequences is limited, and its impacts on the human gut microbiota, which play a key role in health and disease, remain unexplored. OBJECTIVES: To better evaluate the potential risk of TDCIPP exposure in human health, we investigated the effects of TDCIPP on gut microbiome and gut metabolites in C57BL/6 mice. METHODS: We applied an integrated analytical approach by combing 16S rRNA gene sequencing, metagenomic sequencing and 1H NMR metabolomics analysis in fecal samples collected from mouse with TDCIPP exposure as well as those from controls. RESULTS: Both 16S rRNA sequencing and metagenome sequencing showed that TDCIPP exposure significantly changed the gut microbiome, with a remarkable increased Firmicutes at the expense of Bacteroidetes after exposure. Perturbed gut metabolic profiles in the treated group were also observed and closely related with altered gut microbiome. Gene functional annotation analysis further suggested perturbed gut metabolites could be directly caused by altered gut microbiome. CONCLUSION: TDCIPP exposure has great influence on the gut ecosystem as reflected by perturbation of microbiome community structure, microbial species, gut microbe associated gene expression and gut metabolites, which may contribute to the progression of certain uncharacterized gut microbiota related host diseases. Our findings provide novel insights into adverse effects of TDCIPP exposure on human health.

11.
Chemosphere ; 262: 127807, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32763577

RESUMO

Human hair has been identified as a non-invasive alternative matrix for assessing the human exposure to specific organic contaminants. In the present study, a solvent-saving analytical method for the simultaneous determination of 8 polybrominated diphenyl ethers (PBDEs), 3 hexabromocyclododecanes (HBCDDs), 12 phosphorus flame retardants (PFRs), and 4 emerging PFRs (ePFRs) has been developed and validated for the first time. Hair sample preparation protocols include precleaning with Milli-Q water, digestion with HNO3/H2O2 (1:1, v/v), liquid-liquid extraction with hexane:dichloromethane (4:1, v/v), and fractionation and cleanup on a Florisil cartridge. The method was validated by using two levels of spiked hair samples of 3 replicates for each spiking group. Limits of quantification (LOQs) were 0.12-22.4 ng/g for all analytes, average values of accuracies were ranging between 88 and 115%, 82-117%, 81-128%, and 81-95% for PBDEs, HBCDDs, PFRs, and ePFRs, respectively; and precision was also acceptable (RSD < 20%) for all analytes. Eventually, this method was applied to measure the levels of the targeted analytes in hair samples of e-waste dismantling workers (n = 14) from Qingyuan, South China. Median values ranged between 3.00 and 18.1 ng/g for PBDEs, 0.84-4.04 ng/g for HBCDDs, 2.13-131 ng/g PFRs, and 1.49-29.4 ng/g for ePFRs, respectively. PFRs/ePFRs constitute the major compounds in human hair samples, implying the wide use of PFRs/ePFRs as replacements of PBDEs and HBCDDs, as well the potential high human exposure risks of PFRs/ePFRs. Overall, this work will allow to a comprehensive assessment of human exposure to multiple groups of FRs using hair as a non-invasive bioindicator.


Assuntos
Retardadores de Chama/análise , Cabelo/química , Éteres Difenil Halogenados/análise , Hidrocarbonetos Bromados/análise , China , Monitoramento Ambiental/métodos , Humanos , Peróxido de Hidrogênio/análise , Extração Líquido-Líquido , Fósforo/análise
12.
J Clin Med ; 9(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297431

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly evolved into a global pandemic. The hyperglycemia in patients with diabetes mellitus (DM) substantially compromises their innate immune system. SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) receptors to enter the affected cell. Uncontrolled hyperglycemia-induced glycosylation of ACE2 and the S protein of SARS-CoV-2 could facilitate the binding of S protein to ACE2, enabling viral entry. Downregulation of ACE2 activity secondary to SARS-CoV-2 infection, with consequent accumulation of angiotensin II and metabolites, eventually leads to poor outcomes. The altered binding of ACE2 with SARS-CoV-2 and the compromised innate immunity of patients with DM increase their susceptibility to COVID-19; COVID-19 induces pancreatic ß-cell injury and poor glycemic control, which further compromises the immune response and aggravates hyperglycemia and COVID-19 progression, forming a vicious cycle. Sequential cleavage of viral S protein by furin and transmembrane serine protease 2 (TMPRSS2) triggers viral entry to release the viral genome into the target cell. Hence, TMPRSS2 and furin are possible drug targets. As type 1 DM exhibits a Th1-driven autoimmune process, the relatively lower mortality of COVID-19 in type 1 DM compared to type 2 DM might be attributed to an imbalance between Th1 and Th2 immunity. The anti-inflammatory effects of dipeptidyl peptidase-4 inhibitor may benefit patients with DM and COVID-19. The potential protective effects of sodium-glucose cotransporter-2 inhibitor (SGLT2i), including reduction in lactate level, prevention of lowering of cytosolic pH and reduction in pro-inflammatory cytokine levels may justify the provision of SGLT2i to patients with DM and mild or asymptomatic COVID-19. For patients with DM and COVID-19 who require hospitalization, insulin-based treatment is recommended with cessation of metformin and SGLT2i. Further evidence from randomized or case-control clinical trials is necessary to elucidate the effectiveness and pitfalls of different types of medication for DM.

13.
ACS Sens ; 5(12): 4009-4016, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33284591

RESUMO

The abnormal expression of some miRNAs is often closely related to the development of tumors. Available detection methods or biosensors that can simultaneously quantify multiple miRNAs in a single sample have rarely been reported. Herein, a novel catalytic hairpin self-assembly (CHA)-based surface-enhanced Raman scattering (SERS) sensor array was developed to simultaneously measure multiple miRNAs associated with cancer in one sample. The sensor array with four different sensing units was constructed by immobilizing one of four different hairpin-structured DNA sequence 1 (hp1) onto one of four Au/Ag alloy nanoparticle (AuAgNP)-coated detection wells. When target miRNA is present, the SERS tags, which were prepared by modifying AuAgNPs with a Raman reporter molecule of 4-mercaptobenzonitrile (MPBN) and the related hairpin-structured DNA sequence 2 (hp2), were captured onto the corresponding sensor unit through a repeated specific CHA reaction. This generated many "hot spots" because of interactions between the SERS tags and the AuAgNP layer-coated surface of the sensor, which ultimately produced a strong SERS signal that allowed the detection of target miRNAs with the detection limit of 0.15 pM. Using this SERS sensor array, multiple cancer-associated miRNAs (miR-1246, miR-221, miR-133a, and miR-21) were successfully determined in buffer, serum, and cellular RNA extracts.

14.
JCI Insight ; 5(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33268592

RESUMO

The pathophysiology underlying spiral ganglion cell defect-induced deafness remains elusive. Using the whole exome sequencing approach, in combination with functional assays and a mouse disease model, we identified the potentially novel deafness-causative MAP1B gene encoding a highly conserved microtubule-associated protein. Three novel heterozygous MAP1B mutations (c.4198A>G, p.1400S>G; c.2768T>C, p.923I>T; c.5512T>C, p.1838F>L) were cosegregated with autosomal dominant inheritance of nonsyndromic sensorineural hearing loss in 3 unrelated Chinese families. Here, we show that MAP1B is highly expressed in the spiral ganglion neurons in the mouse cochlea. Using otic sensory neuron-like cells, generated by pluripotent stem cells from patients carrying the MAP1B mutation and control subject, we demonstrated that the p.1400S>G mutation caused the reduced levels and deficient phosphorylation of MAP1B, which are involved in the microtubule stability and dynamics. Strikingly, otic sensory neuron-like cells exhibited disturbed dynamics of microtubules, axonal elongation, and defects in electrophysiological properties. Dysfunctions of these derived otic sensory neuron-like cells were rescued by genetically correcting MAP1B mutation using CRISPR/Cas9 technology. Involvement of MAP1B in hearing was confirmed by audiometric evaluation of Map1b heterozygous KO mice. These mutant mice displayed late-onset progressive sensorineural hearing loss that was more pronounced in the high frequencies. The spiral ganglion neurons isolated from Map1b mutant mice exhibited the deficient phosphorylation and disturbed dynamics of microtubules. Map1b deficiency yielded defects in the morphology and electrophysiology of spiral ganglion neurons, but it did not affect the morphologies of cochlea in mice. Therefore, our data demonstrate that dysfunctions of spiral ganglion neurons induced by MAP1B deficiency caused hearing loss.

15.
Genome Biol ; 21(1): 296, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33292531

RESUMO

INTRODUCTION: Despite the long-observed correlation between H3K9me3, chromatin architecture, and transcriptional repression, how H3K9me3 regulates genome higher-order organization and transcriptional activity in living cells remains unclear. RESULT: Here, we develop EpiGo (Epigenetic perturbation induced Genome organization)-KRAB to introduce H3K9me3 at hundreds of loci spanning megabases on human chromosome 19 and simultaneously track genome organization. EpiGo-KRAB is sufficient to induce genomic clustering and de novo heterochromatin-like domain formation, which requires SETDB1, a methyltransferase of H3K9me3. Unexpectedly, EpiGo-KRAB-induced heterochromatin-like domain does not result in widespread gene repression except a small set of genes with concurrent loss of H3K4me3 and H3K27ac. Ectopic H3K9me3 appears to spread in inactive regions but is largely restricted from transcriptional initiation sites in active regions. Finally, Hi-C analysis showed that EpiGo-KRAB reshapes existing compartments mainly at compartment boundaries. CONCLUSIONS: These results reveal the role of H3K9me3 in genome organization could be partially separated from its function in gene repression.

16.
BMC Surg ; 20(1): 311, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267807

RESUMO

BACKGROUND: Anomalous aortic origin of the coronary artery (AAOCA) is a rare congenital cardiac disease that can cause sudden cardiac death. This condition may be corrected with surgery. Among the different surgical techniques used to correct this malformation, the most common are unroofing and lateral pulmonary translocation. CASE PRESENTATION: Herein, we present a multimodal imaging approach to identifying AAOCA in a 12-year-old male. We also successfully adopted a new operative method, neo-ostium creation combined with lateral pulmonary translocation to correct AAOCA. The detailed imaging and intraoperative data has not been reported in the literature. CONCLUSIONS: Although several surgical methods exist to reverse the complications of AAOCA, we offer an innovative surgical technique that is easier, faster, and effective.

17.
Phytopathology ; 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258412

RESUMO

MAPKKK is the largest family of mitogen-activated protein kinase (MAPK) cascade, which is known to play important roles in plant pathogen interaction by regulating fungal cell proliferation, growth and pathogenicity. So far, only a few of them have been characterized due to the functional redundancy of MAPKKKs. In this study, it is interesting that PbMAPKKK7, a MAPKKK from Plasmodiophora brassicae, was clustered into the A3 subgroup of plant MAPKKKs by a phylogenetic analysis and BCK1 and STE group of fungal MAPKKKs. The function of PbMAPKKK7 in accumulation of reactive oxygen species (ROS) and cell death in Nicotiana benthamiana were characterized. Agroinfiltrated with PbMAPKKK7 mutated protein kinase domain relieved the symptoms. Interestingly, the induction of cell death was dependent on the light intensity. Transcriptional profiling analysis demonstrated that PbMAPKKK7 highly expressed during the cortex infection stages, indicating its important role in P. brassicae infection. These functional analyses of PbMAPKKK7 would build our knowledge of new roles of the MAPK cascade pathway in N. benthamiana and P. brassicae interactions.

18.
Am J Transl Res ; 12(10): 6975, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194088

RESUMO

[This corrects the article on p. 2570 in vol. 12, PMID: 32655791.].

19.
Toxicol Res (Camb) ; 9(5): 636-651, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33178424

RESUMO

Fine particulate matter (PM2.5) in the ambient atmosphere is strongly associated with detrimental health effects. However, these particles from various sources and regions are unlikely equally toxic. While animal studies are impractical for high-throughput toxicity testing, appropriate in vitro models are urgently needed. Co-culture of A549 and THP-1 macrophages grown at air-liquid interface (ALI) or under submerged conditions was exposed to same concentrations of ambient PM2.5 to provide accurate comparisons between culture methods. Following 24-h incubation with PM2.5 collected in Harbin in China, biological endpoints being investigated include cytotoxicity, reactive oxygen species (ROS) levels and pro-inflammatory mediators. The co-culture grown under submerged condition demonstrated a significant increase in ROS levels and all tested pro-inflammatory indicators [interleukin (IL)-1ß, IL-6, IL-8 and tumor necrosis factor-α] in mRNA expression and released protein levels. Similar but a declining response trend was observed using the same PM2.5 incubation after grown at ALI. We further observed a significant increase of PM2.5-induced phosphorylation of p38 MAPK and activation of NF-κB p65 in a dose-dependent trend for co-cultures grown under submerged condition. These results provide important implications that culture conditions (ALI versus submerged) can induce different extents of biological responses to ambient PM2.5; the co-culture grown at ALI is less likely to produce false-positive results than submerged culture. Hence, culture conditions should be discussed when comparing in vitro methods used for high-throughput PM2.5 toxicity assessment in future.

20.
AMB Express ; 10(1): 207, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33236244

RESUMO

Salmonella spp. is a high-risk bacterial pathogen that is monitored in imported animal-derived feedstuffs. Serratia fonticola is the bacterial species most frequently confused with Salmonella spp. in traditional identification methods based on biochemical characteristics, which are time-consuming and labor-intensive, and thus unsuitable for daily inspection and quarantine work. In this study, we established a duplex real-time qPCR method with invA- and gyrB-specific primers and probes corresponding to Salmonella spp. and S. fonticola. The method could simultaneously detect both pathogens in imported feedstuffs, with a minimum limit of detection for Salmonella spp. and S. fonticola of 197 copies/µL and 145 copies/µL, respectively (correlation coefficient R2 = 0.999 in both cases). The amplification efficiency for Salmonella spp. and S. fonticola was 98.346% and 96.49%, respectively. Detection of fishmeal was consistent with method GB/T 13091-2018, and all seven artificially contaminated imported feed samples were positively identified. Thus, the developed duplex real-time qPCR assay displays high specificity and sensitivity, and can be used for the rapid and accurate detection of genomic DNA from Salmonella spp. and S. fonticola within hours. This represents a significant improvement in the efficiency of detection of both pathogens in imported feedstuffs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA