Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562315

RESUMO

Plasma membrane intrinsic proteins (PIPs) transport water, CO2 and small neutral solutes across the plasma membranes. In this study, we used the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 system (CRISPR/Cas9) to mutate PIP1;4 and PIP1;5 in a pip1;1,2,3 triple mutant to generate a pip1;1,2,3,4,5 (pip1s-) quintuple mutant. Compared to the wild-type (WT) plant, the pip1s- mutants had smaller sized rosette leaves and flowers, less rosette leaf number, more undeveloped siliques, shorter silique and less seeds. The pollen germination rate of the pip1s- mutant was significantly lower than that of the WT and the outer wall of the pip1s- mutant's pollen was deformed. The transcriptomic analysis showed significant alterations in the expression of many key genes and transcription factors (TFs) in the pip1s- mutant which involved in the development of leaf, flower and pollen, suggesting that the mutant of PIP1s not only directly affects hydraulics and carbon fixation, but also regulates the expression of related genes to affect plant growth and development.

2.
J Plant Physiol ; 257: 153328, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33373828

RESUMO

Anthocyanidins are important pigments that cause plant tissues to develop colors. They have attracted much attention due to their crucial regulatory roles in plant growth as well as their health benefits. In order to reveal the molecular mechanism of anthocyanidin synthesis and regulation in purple corn (Zea mays L.) in this study, purple corn 963 was used to compare differences in gene expression during three stages of grain development by transcriptome analysis. A total of 17,168 differentially expressed genes (DEGs) (7564 up-regulated and 9604 down-regulated DGEs) were identified. The DEGs were significantly enriched in "Phenylpropanoid biosynthesis", "Biosynthesis of secondary metabolites", and "Plant hormone signal transduction". In addition, 72 % of the structural genes that regulate anthocyanidin synthesis were up-regulated, and the transcription factors related to the accumulation of anthocyanidins were enriched during grain development. Moreover, the differential expression of phytohormone genes might also be an important factor in anthocyanidin accumulation. Transcriptomic analysis presents a molecular basis for the study of grain color changes in the three stages of grain development, and provides information for further research on the mechanism of anthocyanidin synthesis.

3.
Front Plant Sci ; 11: 574316, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983222

RESUMO

Arabidopsis thaliana ENO2 (AtENO2) encodes two proteins AtENO2 (enolase) and AtMBP-1 (c-Myc binding protein 1-like). The loss of AtENO2 function causes the constitutive developmental defects which are correlated with reduced enolase activity, but not AtMBP-1 transcript abundance. However, the regulation mechanism of AtENO2 on the seed properties is still not clear. In this study, we found that the mutation of AtENO2 reduced the seed size and weight. The level of glucose in seed was significantly elevated but that of starch was decreased in AtENO2 mutants compared to WT plants. We also found that AtENO2 mutation reduced the content of cytokinin which resulted in smaller cotyledons. The RNA-seq data showed that there were 1892 differentially expressed genes and secondary metabolic pathways were significantly enriched. Instead of AtMBP-1, AtENO2 protein interacted with AtbZIP75 which may mediate the secondary metabolism. Therefore, ENO2 alters the size and weight of seeds which is not only regulated by the content of cytokinin and secondary metabolism, but may be affected by the interaction of ENO2 and bZIP57. These results are helpful to understand the novel function of AtENO2 which provide a foundation for further exploration of the key candidate genes for crop breeding.

4.
Phytomedicine ; 59: 152803, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31005811

RESUMO

BACKGROUND: Chrysanthemi Flos (CF), as a popular traditional Chinese medicine (TCM), has five main cultivars in China, namely "Chuju", "Boju", "Gongju", "Huaiju" and "Hangju". Due to their habitats and processing methods, great quality variations occur yet no systematical study has ever been carried out to evaluate such variations. PURPOSE: In this study, we aim to establish a new approach that can serve both as a quality control method and as an identification method for cultivars of CF. METHOD: The components in CF samples were identified by a combination of UPLC-ESI-Q-TOF/MS and GC/MS. Furthermore, a multimodal quantitative method was established by UPLC-UV coupled with principal component analysis (PCA) and the similarity evaluation system (SES), which was used to control and identify four cultivars of CF. RESULTS: 18 compounds of flavonoids and caffeoylquinic acids were identified and ten of them were quantified using UPLC-ESI-Q-TOF/MS. Different cultivars of CF could be clearly distinguished with the fingerprints evaluation and principal component analysis (PCA). A total of 74 volatile compounds were detected by GC/MS. The distinctness of volatile components was observed. By the combination of UPLC-ESI-Q-TOF/MS and GC/MS, an identification and quality control method for CF was successfully established. CONCLUSION: The combination of UPLC-ESI-Q-TOF/MS and GC/MS could act as a comprehensive multimodal method for both identification and quality control of herbal medicines. This study provided new insights into the overall evaluation method for herbal medicines possessing different cultivars.


Assuntos
Chrysanthemum/química , Medicamentos de Ervas Chinesas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , China , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Flavonoides/análise , Flores/química , Cromatografia Gasosa-Espectrometria de Massas/estatística & dados numéricos , Análise de Componente Principal , Controle de Qualidade , Ácido Quínico/análogos & derivados , Ácido Quínico/análise , Espectrometria de Massas por Ionização por Electrospray/estatística & dados numéricos , Compostos Orgânicos Voláteis/análise
5.
Int J Mol Sci ; 19(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518090

RESUMO

Alternatively translated from the ENO gene and expressed in an array of vertebrate and plant tissues, c-Myc binding protein 1 (MBP-1) participates in the regulation of growth in organisms, their development and their environmental responses. As a transcriptional repressor of multiple proto-oncogenes, vertebrate MBP-1 interacts with other cellular factors to attenuate the proliferation and metastasis of lung, breast, esophageal, gastric, bone, prostrate, colorectal, and cervical cancer cells. Due to its tumor-suppressive property, MBP-1 and its downstream targets have been investigated as potential prognostic markers and therapeutic targets for various cancers. In plants, MBP-1 plays an integral role in regulating growth and development, fertility and abiotic stress responses. A better understanding of the functions and regulatory factors of MBP-1 in plants may advance current efforts to maximize plant resistance against drought, high salinity, low temperature, and oxidative stress, thus optimizing land use and crop yields. In this review article, we summarize the research advances in biological functions and mechanistic pathways underlying MBP-1, describe our current knowledge of the ENO product and propose future research directions on vertebrate health as well as plant growth, development and abiotic stress responses.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Neoplasias/metabolismo , Preparações Farmacêuticas , Desenvolvimento Vegetal , Vertebrados/metabolismo
6.
J Ethnopharmacol ; 194: 1078-1086, 2016 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-27840082

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Schisandra glaucescens Diels (SGD) is used in a subclass of traditional Chinese medicine known as "Tujia drugs". It has been long used for the treatment of rheumatoid arthritis (RA), cough with dyspnea, spontaneous sweating, night sweating, chronic diarrhea, and neurasthenia. As a woody liana growing in mountain jungles at the altitudes of 750-1800m, it is mainly distributed in Sichuan and Hubei Provinces of China. AIM OF THE STUDY: To evaluate the antiarthritic activity of acetate (EA) and n-butanol (Bu) fractions of SGD extract on a collagen-induced arthritis mice model. MATERIALS AND METHODS: Acute toxicity of EA and Bu fractions of SGD extract was evaluated by gavage on normal mice. Pharmacological investigations were conducted on arthritis male Balb/c mice. The animal model was induced by immunization with type II bovine collagen (CII) on the 1st and the 14th day of the experimental schedule. EA fraction (104, 312, 936mg/kg), Bu fraction (156, 469, 1407mg/kg) of SGD extract was orally administered every two days since the 15th day for 3 weeks. Progression of edema in the paws was measured using a vernier caliper every 3 days since the 10th day. At the end of the experiment, the spleen index and histological changes of the hind knee joints were investigated. Additionally, to explore the possible antirheumatic mechanisms of the EA and Bu fractions, ELISA was carried out to analyze TNF-α, IL-10, IL-6 and IL-1ß in the serum. RESULTS: The half lethal doses of both EA and Bu fractions were much higher than the dose administered in the pharmacological investigations. Oral administration of EA fraction and Bu fraction of SGD extract significantly and does-dependently inhibited type ІІ collagen induced arthritis (CIA) in mice, as indicated by the effects on paws swelling and spleen index. Histopathological examinations demonstrated that SGD effectively protected the bones and cartilages of knee joints from erosion, lesion and deformation. Besides, the serum concentrations of cytokines TNF-α, IL-1ß and IL-6 were significantly lower than the ones from the vehicle control group. Respectively, while cytokine IL-10 was remarkably higher compare with the vehicle control group. CONCLUSIONS: SGD might be a safe and effective candidate for the treatment of RA, and deserves further investigation on the chemical components in both EA and Bu fractions of SGD extract.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Colágeno Tipo II/farmacologia , Extratos Vegetais/farmacologia , Caules de Planta/química , Schisandra/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antirreumáticos/química , Antirreumáticos/farmacologia , Artrite Experimental/induzido quimicamente , Artrite Experimental/metabolismo , Artrite Reumatoide/induzido quimicamente , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Feminino , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Medicina Tradicional Chinesa/métodos , Camundongos , Camundongos Endogâmicos BALB C , Fitoterapia/métodos , Extratos Vegetais/química , Baço/efeitos dos fármacos , Baço/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Zhongguo Zhong Yao Za Zhi ; 41(16): 3049-3054, 2016 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-28920347

RESUMO

The dried stems of Schisandra henryi var. henryi were extracted with 95% ethanol and the extracts were further subjected to partition, affording the ethyl acetate extracts(EtOAc Extrs.).The EtOAc Extrs.were separated and purified with silica gel and octadecyl-silylated silica gel column chromatography, preparative HPLC and preparative TLC. Thirteen known compounds were obtained and identified by spectral methods including MS and NMR, all of which were elucidated as t-cadinol(1), cadinane-4ß,5α,10ß-triol(2), cadinane-5α, 10α-diol-2-ene(3), oxyphyllenodiols A(4), 1ß, 4ß-dihydroxyeudesman-11-ene(5), cyperusol C(6), (7R)-opposit-4(15)-ene-1ß,7-diol(7), dysodensiol E(8), epi-guaidiol A(9), aromadendrane-4ß,10ß-diol(10), tricyclohumuladiol(11), caryolane-1,9ß-diol(12), and guaidiol A(13). Compounds 3, 5-10, and 13 were separated from the genus for the first time, while compounds 1-13 were separated from this species for the first time.


Assuntos
Schisandra/química , Sesquiterpenos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Caules de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA