Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2021: 8387382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475949

RESUMO

Image style transfer can realize the mutual transfer between different styles of images and is an essential application for big data systems. The use of neural network-based image data mining technology can effectively mine the useful information in the image and improve the utilization rate of information. However, when using the deep learning method to transform the image style, the content information is often lost. To address this problem, this paper introduces L1 loss on the basis of the VGG-19 network to reduce the difference between image style and content and adds perceptual loss to calculate the semantic information of the feature map to improve the model's perceptual ability. Experiments show that the proposal in this paper improves the ability of style transfer, while maintaining image content information. The stylization of the improved model can better meet people's requirements for stylization, and the evaluation indexes of structural similarity, cosine similarity, and mutual information value have increased by 0.323%, 0.094%, and 3.591%, respectively.


Assuntos
Sistemas de Dados , Redes Neurais de Computação , Humanos , Semântica
2.
Math Biosci Eng ; 18(5): 6652-6671, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34517550

RESUMO

The image super-resolution reconstruction method can improve the image quality in the Internet of Things (IoT). It improves the data transmission efficiency, and is of great significance to data transmission encryption. Aiming at the problem of low image quality in image super-resolution using neural networks, a self-attention-based image reconstruction method is proposed for secure data transmission in IoT environment. The network model is improved, and the residual network structure and sub-pixel convolution are used to extract the feature of the image. The self-attention module is used extract detailed information in the image. Using generative confrontation method and image feature perception method to improve the image reconstruction effect. The experimental results on the public data set show that the improved network model improves the quality of the reconstructed image and can effectively restore the details of the image.


Assuntos
Processamento de Imagem Assistida por Computador , Internet das Coisas , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...