Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtros adicionais

Intervalo de ano
Fish Shellfish Immunol ; 93: 580-588, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31398395


Enveloped virus usually utilizes the receptor-mediated multiple endocytic routes to enter permissive host cells for successful infection. Cellular receptors are cell surface molecules, either by helping viral attachment to cell surface followed by internalization or by triggering antiviral immunity, participate in the viral-host interaction. White spot syndrome virus (WSSV), the most lethally viral pathogen with envelope and double strand DNA genome in crustacean farming, including shrimp and crayfish, has been recently found to recruit various endocytic routes for cellular entry into host cells. Meanwhile, other than the typical pattern recognition receptors for recognition of WSSV, more and more putative cellular receptors have lately been characterized to facilitate or inhibit WSSV entry. In this review, recent findings on the endocytosis-dependent WSSV entry, viral entry mediated by putative cellular receptors, the molecular interplay between WSSV and cellular receptors, and the following anti-WSSV immunity are summarized and discussed, which may provide us a better understanding of the WSSV pathogenesis and further possible antiviral control of white spot disease in crustacean farming.

Dev Comp Immunol ; 84: 109-116, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29428488


The ß-thymosins are a group of structurally related, highly conserved intracellular small peptides in vertebrates with various biological functions, including cytoskeletal remodeling, neuronal development, cell migration, cell survival, tissue repair and inhibition of inflammation. In contrast to vertebrates, the function of ß-thymosin is not fully understood in crustaceans. Previously, we found that a thymosin-repeated protein1 (CqTRP1) gene was up-regulated after white spot syndrome virus (WSSV) challenge in hematopoietic tissue (Hpt) cells from the red claw crayfish Cherax quadricarinatus. To further identify the effect of CqTRP1 on WSSV infection, a full length cDNA sequence of ß-thymosin homologue was cloned and analyzed from red claw crayfish followed by functional study. The CqTRP1 cDNA contains an open reading frame of 387 nucleotides encoding a protein of 129 amino acids with a putative molecular mass of 14.3 kDa. The amino acid sequence showed high identity with other ß-thymosins and contained three characteristic thymosin ß actin-binding motifs, suggesting that CqTRP1 was a member of the ß-thymosin family. Tissue distribution analysis revealed a ubiquitous presence of CqTRP1 in all the examined tissues with the highest expression in hemocytes, Hpt and gonad at the transcriptional level. Interestingly, the gene silencing of endogenous CqTRP1 by RNAi enhanced the WSSV replication in Hpt cells. Meanwhile, the WSSV replication was significantly reduced in the Hpt cell cultures if overloaded with a recombinant CqTRP1. Taken together, these data clearly indicated that CqTRP1 was likely to be associated with the anti-WSSV response in a crustacean C. quadricarinatus, which provides new strategy against white spot disease in crustacean aquaculture.

Proteínas de Artrópodes/genética , Astacoidea/imunologia , Infecções por Vírus de DNA/imunologia , Gônadas/metabolismo , Hemócitos/metabolismo , Timosina/genética , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Aquicultura , Proteínas de Artrópodes/metabolismo , Astacoidea/virologia , Clonagem Molecular , Gônadas/imunologia , Gônadas/virologia , Hemócitos/imunologia , Hemócitos/virologia , Proteínas dos Microfilamentos/genética , RNA Interferente Pequeno/genética , Frutos do Mar , Timosina/metabolismo , Replicação Viral
Dev Comp Immunol ; 81: 342-347, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29288063


The gradual increase of CO2 concentration in the atmosphere, absorbed by the ocean surface water through air to sea equilibration termed ocean acidification (OA), leads to the decline of pH in seawater. It is not clear so far how the composition of fatty acids, particular the immune-related, in marine crustacean and the subsequent energy supply in marine ecosystem are affected by OA. The brine shrimp Artemia sinica is an open and common feed that provide essential fatty acids for mariculture. In this study, the fatty acids profiles of brine shrimp cultured under different lower pH levels of CO2 driven seawater were investigated. The results showed a significant reduction of the proportion of total saturated fatty acids under the pH7.6 within one week. Meanwhile, the percentage of total monounsaturated fatty acids was significantly decreased at day 14 under pH7.8, and this percentage gave a significant increase of proportion within one week under pH7.6. Furthermore, the relative content of total polyunsaturated fatty acids (PUFAs) was found to be clearly increased with exposure to different seawater acidification at day 1, suggesting that the brine shrimp immune response was likely to be affected by acidified seawater as the PUFAs have been well known to be involved in immunomodulatory effects through alterations on cell membrane fluidity/lipid mediators and gene expression of cell signaling pathways. Notably, eicosapentaenoic acid and docosahexaenoic acid, which have essential effect on various physiological processes such as inflammatory cytokines production and cell structural stability, were strongly increased under two lower pH treatments within one week and with the significant increase at day 1 under pH7.6. These data clearly supported the hypothesis that OA might affect fatty acids composition, likely also the innate immunity, in crustacean and the subsequent energy transfer by food-chain system in the marine ecosystem.

Artemia/fisiologia , Dióxido de Carbono/química , Membrana Celular/metabolismo , Ácidos Graxos/química , Imunidade Inata , Água do Mar/química , Animais , Membrana Celular/química , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/metabolismo , Ecossistema , Ácido Eicosapentaenoico/química , Ácido Eicosapentaenoico/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Cadeia Alimentar , Concentração de Íons de Hidrogênio , Imunomodulação , Inflamação , Biologia Marinha , Oceanos e Mares , Transdução de Sinais