Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
1.
Int J Cancer ; 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31577838

RESUMO

Peritoneal metastasis is a critical feature and clinical challenge in epithelial ovarian cancer (EOC). We previously identified a novel long noncoding RNA (lncRNA, TC0101441) in epithelial ovarian cancer (EOC) using microarrays. However, the impact of TC0101441 on EOC metastasis and prognosis remains unclear. TC0101441 expression in EOC tissues and its correlation with clinicopathological factors and prognosis were examined. A series of in vitro and in vivo assays were performed to elucidate the roles and mechanism of TC0101441 in EOC metastasis. We found that TC0101441 levels were elevated in EOC tissues compared with those in normal controls and significantly correlated with an advanced clinical stage and lymph node metastasis. TC0101441 was determined to be an independent prognostic predictor of overall survival (OS) and disease-free survival (DFS). Furthermore, loss-of-function assays showed that TC0101441 promoted the invasive and metastatic capacities of EOC cells both in vitro and in vivo. Mechanistically, the prometastatic effects of TC0101441 were linked to the induction of epithelial-mesenchymal transition (EMT). Importantly, KiSS1 was identified as a downstream target gene of TC0101441 and was downregulated by TC0101441 in EOC cells. After TC0101441 was silenced, the corresponding phenotypes of EOC cell invasion and EMT were reversed by the overexpression of KiSS1. Taken together, our data suggest that TC0101441 functions as a potential promigratory/invasive oncogene by promoting EMT and metastasis in EOC through downregulation of KiSS1, which may represent a novel prognostic marker and therapeutic target in EOC. This article is protected by copyright. All rights reserved.

2.
Eur Spine J ; 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31522274

RESUMO

OBJECTIVES: To systematically evaluate the impact of topical vancomycin powder for microbial profile in spinal surgical site infections. METHODS: All available literature regarding the topical use of vancomycin powder to prevent postoperative spinal infections was retrieved from the MEDLINE, EMBASE, and Cochrane databases starting from the creation date and up until September 30, 2018. RESULTS: A total of 21 studies involving 15,548 patients were reviewed. The combined odds ratio showed that topical use of vancomycin powder was effective for reducing the incidence of gram-positive bacterial infections in spinal surgical sites (OR 0.41, P < 0.00001) without affecting its efficacy in the prevention of polymicrobial infections (OR 0.30, P = 0.03). Additionally, it could significantly reduce the infection rate of methicillin-resistant staphylococcus (OR 0.34, P < 0.0001). However, topical vancomycin powder showed no advantage for preventing gram-negative bacterial infections (OR 0.94, P = 0.75). CONCLUSIONS: Topical administration of vancomycin powder may not increase the rates of gram-negative bacterial or polymicrobial infections in spinal surgical sites. On the contrary, it can significantly reduce the infection rates of gram-positive bacteria, methicillin-resistant staphylococcus (MRS) and microorganism. Of course, the topical vancomycin powder cannot change the rates of gram-negative bacterial infections, which may be related to the antimicrobial spectrum of vancomycin. Due to the limited number of articles included in this study, additional large-scale and high-quality studies are needed to provide more reliable clinical evidence.

3.
ACS Appl Mater Interfaces ; 11(34): 31520-31531, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31369238

RESUMO

Studies on carbon fiber (CF)/poly(ether ether ketone) (PEEK) fiber hybrid textiles were initiated several decades ago because their flexibility and conformability make them a promising alternative to traditional prepregs. The adhesion between the CFs and PEEK is mostly controlled by their inherent surface properties and mutual wettability. However, details of these properties remain largely unknown, especially those of PEEK. Therefore, to determine the surface and interfacial properties of these fibers, we performed a comprehensive study and characterized their surface topography (atomic force microscopy, scanning electron microscopy), surface chemistry [X-ray photoelectron spectrometry (XPS), acid-base titration], surface energies (wetting tests, acid-base approach), and interfacial mechanical properties [droplet test, interfacial shear strength (IFSS)]. These experiments were complemented by a theoretical approach to the prediction of the surface energy components (parachor) and contact angles of PEEK. We found good agreement between the results obtained by XPS and wetting tests (base-to-acid surface energy component ratio), as well as between the predicted and measured surface energy and contact angles. The results highlight the consistency and reliability of the proposed methodology. We found that both CFs and PEEK fibers appear to be smooth at the nanoscale and have large dispersive and basic surface energy components. The IFSS of CF/PEEK is significantly higher (44.87 ± 5.76 MPa) compared to that of other thermoplastic systems. The findings not only demonstrate the potential of CF/PEEK hybrid textiles but also emphasize the need to further increase the compatibility between CFs and PEEK fibers by increasing the acidic component of CF surfaces. Surface treatments and the design of a suitable sizing are potential methods to achieve this objective in future studies.

4.
Plant Cell Physiol ; 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31290980

RESUMO

Brassinosteroids (BRs), a group of plant steroid hormones, participate in the regulation of plant growth and developmental processes. BR functions through the BES1/BZR1 family of transcription factors, however the regulation of the BES1 activity by posttranslational modifications remains largely unknown. Here, we presents evidence that the SUMO E3 ligase SIZ1 negatively regulates BR signaling pathway. T-DNA insertion mutant siz1-2 shows BL (Brassinolide, the most active BR) hypersensitivity and BRZ (Brassinazole, a BR biosynthesis inhibitor) insensitivity during hypocotyl elongation. In addition, expression of BES1-dependent BR-response genes is hyper-regulated in siz1-2 seedlings. The siz1-2bes1-D double mutant exhibits longer hypocotyl than bes1-D. Moreover, SIZ1 physically interacts with BES1 in vivo and in vitro and mediates the sumoylation of BES1. A K302R substitution in BES1 blocks its sumoylation mediated by SIZ1 in plants, indicating that K302 is the principal site for SUMO conjugation. Consistently, we find that sumoylation inhibits BES1 protein stability and activity. Taken together, our data show that the sumoylation of BES1 via SIZ1 negatively regulates BR signaling pathway.

5.
Int J Mol Sci ; 20(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261768

RESUMO

In pectin regulation, polygalacturonases (PGs) and pectin methylesterases (PMEs) are critical components in the transformation, disassembly network, and remodeling of plant primary cell walls. In the current study, we identified 36 PG and 47 PME genes using the available genomic resources of grapevine. Herein, we provide a comprehensive overview of PGs and PMEs, including phylogenetic and collinearity relationships, motif and gene structure compositions, gene duplications, principal component analysis, and expression profiling during developmental stages. Phylogenetic analysis of PGs and PMEs revealed similar domain composition patterns with Arabidopsis. The collinearity analysis showed high conservation and gene duplications with purifying selection. The type of duplications also varied in terms of gene numbers in PGs (10 dispersed, 1 proximal, 12 tandem, and 13 segmental, respectively) and PMEs (23 dispersed, 1 proximal, 16 tandem, and 7 segmental, respectively). The tissue-specific response of PG and PME genes based on the reported transcriptomic data exhibited diverged expression patterns in various organs during different developmental stages. Among PGs, VvPG8, VvPG10, VvPG13, VvPG17, VvPG18, VvPG19, VvPG20, VvPG22, and VvPG23 showed tissue- or organ-specific expression in majority of the tissues during development. Similarly, in PMEs, VvPME3, VvPME4, VvPME5, VvPME6, VvPME19, VvPME21, VvPME23, VvPME29, VvPME31, and VvPME32 suggested high tissue-specific response. The gene ontology (GO), Kyoto Encyclopedia of Genes and Genomics (KEGG) enrichment, and cis-elements prediction analysis also suggested the putative functions of PGs and PMEs in plant development, such as pectin and carbohydrate metabolism, and stress activities. Moreover, qRT-PCR validation of 32 PG and PME genes revealed their role in various organs of grapevines (i.e., root, stem, tendril, inflorescence, flesh, skins, and leaves). Therefore, these findings will lead to novel insights and encourage cutting-edge research on functional characterization of PGs and PMEs in fruit crop species.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31269774

RESUMO

Hepatitis C remains a significant public health threat. However, the main routes of transmission have changed since the early 1990s. Currently, drug use is the main source of hepatitis C virus (HCV) infection, and some measures have been successively implemented and additional studies have been published. However, the factors correlating with HCV infection failed to clearly define. Our study pooled the odds ratios (ORs) with 95% confidence intervals (CIs) and analyzed sensitivity by searching data in the PubMed, Elsevier, Springer, Wiley, and EBSCO databases. Publication bias was determined by Egger's test. In our meta-analysis, HCV-infected and non-HCV-infected patients from 49 studies were analyzed. The pooled ORs with 95% CIs for study factors were as follows: Injecting drug use 10.11 (8.54, 11.97); sharing needles and syringes 2.24 (1.78, 2.83); duration of drug use >5 years 2.39 (1.54, 3.71); unemployment 1.50 (1.22, 1.85); commercial sexual behavior 1.00 (0.73, 1.38); married or cohabiting with a regular partner 0.88 (0.79, 0.98), and sexual behavior without a condom 1.72 (1.07, 2.78). This study found that drug users with histories of injecting drug use, sharing needles and syringes, drug use duration of >5 years, and unemployment, were at increased risk of HCV infection. Our findings indicate that sterile needles and syringes should be made available to ensure safe injection. In view of that, methadone maintenance treatment can reduce or put an end to risky drug-use behaviors, and should be scaled up further, thereby reducing HCV infection.

7.
Chin J Integr Med ; 25(4): 246-251, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31236888

RESUMO

OBJECTIVE: To assess the efficacy and safety of the Chinese medicine Dingkun Pill (, DKP) on insulin resistance in women with polycystic ovary syndrome (PCOS). METHODS: A total of 117 women with PCOS were randomly assigned to Group A (38 women), Group B (40 women), or Group C (39 women) in a randomization sequence with SAS software and a 1:1:1 allocation ratio using random block sizes of 6, and were given 7 g of oral DKP daily (Group A), 1 tablet of Diane-35 orally daily (Group B), or 7 g of oral DKP daily plus 1 tablet of Diane-35 orally daily (Group C). Patients took all drugs cyclically for 21 consecutive days, followed by 7 drug-free days. The treatment course for the 3 groups was continued for 3 consecutive months. Oral glucose tolerance tests (OGTT) were performed before treatment and again after 2 and 3 months of therapy, respectively, and homeostasis model assessment for insulin resistance (HOMA-IR) and quantitative insulin sensitivity check index (QUICKI) were calculated. RESULTS: Of 117 women with PCOS, 110 completed the entire course of therapy: 35 in Group A, 36 in Group B, and 39 in Group C. After treatment, all three groups showed significant decreases in fasting glucose: at 1 h glucose decreased significantly in Group A (by 0.5 ± 1.4 mmol/L, P=0.028) and Group C (by 0.5 ± 1.2 mmol/L, P=0.045); while showing a tendency to increase in Group B (by 0.4 ± 1.9 mmol/L, P=0.238). HOMA-IR decreased significantly in Group C [by 0.5 (-2.2 to 0.5) mIU mmol/L2, P=0.034]. QUICKI was significantly increased in Groups A and C (by 0.009 ± 0.02, P=0.033 and by 0.009 ± 0.027, P=0.049, respectively), while no change was observed in Group B. Repeated-measure ANOVA showed that the absolute changes in all parameters (except for glucose at 1 h), including glucose and insulin levels at all time-points during OGTT and in HbA1c, HOMA-IR, and QUICKI, were not significantly different among the 3 groups after treatment (P>0.05). CONCLUSION: DKP or DKP combined with Diane-35 produce a slight improvement in insulin sensitivity compared with Diane-35 alone in PCOS patients (Trial Registration: ClinicalTrials.gov, NCT03264638).

9.
J Zhejiang Univ Sci B ; 20(7): 563-575, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31168970

RESUMO

To explore the volatile profiles and the contents of ten bioactive components (polyphenols and caffeine) of sun-dried Pu-erh tea leaves from ancient tea plants on Bulang Mountain, 17 samples of three tea varieties were analyzed by headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and high-performance liquid chromatography (HPLC). A total of 75 volatile components were tentatively identified. Laomaner (LME), Laobanzhang (LBZ), and other teas on Bulang Mountain (BL) contained 70, 53, and 71 volatile compounds, respectively. Among the volatile compounds, alcohols (30.2%-45.8%), hydrocarbons (13.7%-17.5%), and ketones (12.4%-23.4%) were qualitatively the most dominant volatile compounds in the different tea varieties. The average content of polyphenol was highest in LME (102.1 mg/g), followed by BL (98.7 mg/g) and LBZ (88.0 mg/g), while caffeine showed the opposite trend, 27.3 mg/g in LME, 33.5 mg/g in BL, and 38.1 mg/g in LBZ. Principal component analysis applied to both the volatile compounds and ten bioactive components showed a poor separation of samples according to varieties, while partial least squares-discriminant analysis (PLS-DA) showed satisfactory discrimination. Thirty-four volatile components and five bioactive compounds were selected as major discriminators (variable importance in projection (VIP) >1) among the tea varieties. These results suggest that chromatographic data combined with multivariate analysis could provide a useful technique to characterize and distinguish the sun-dried Pu-erh tea leaves from ancient tea varieties on Bulang Mountain.

10.
Genes Genomics ; 41(9): 1095-1111, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31236870

RESUMO

BACKGROUND: The xylem sap of fruit trees ensures the survival during the dormant period, and its flow during the bleeding period is correlated with the start of a new life cycle. Though the simple exploration on ingredients in the sap was carried out in the early years, the specific life activities and physiology functions of the sap during bleeding period have not been reported yet and the bleeding period is still a fruit tree development period worthy of attention. OBJECTIVES: In this study, the microbial community composition during bleeding period were revealed by metatranscriptome and transcriptomic data. For the first time, the microorganism genome and grape genome in xylem sap were analyzed on transcriptional level, based on which the main physiological functions of the sap were also determined. METHODS: The genomic RNA in the sap was isolated and sequenced. Kyoto Encyclopedia of Gene and Genome (KEGG), Evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) and Carbohydrate-Active enzymes Database (CAZy) functional annotation were used to analysis the function of micro-organisms in xylem sap. DEGs were analyzed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The genes responsive to biotic and abiotic stresses were finally screened by transcriptome screening, stress data analysis and vitro validation experiments. RESULTS: The analysis exhibited 36,144,564 micro-related clean reads and 244,213 unigene. KEGG, eggNOG and CAZy functional annotation analysis indicated that signal transduction and material metabolism were the most important function of xylem sap. DEGs analysis were mainly about disease resistance, carbon source metabolism and hormone signal transduction, especially in P3 vs P1, enriched in the plant-pathogen interaction pathway. Analysis on grape genome information revealed xylem sap had little RNA with weak life activity. Metabolic pathways, biosynthesis of secondary metabolites, plant hormone signal transduction and plant-pathogen interaction were the four pathways with the largest number of enriched genes. Moreover, 16 genes responsive to biotic and abiotic stresses were screened out. CONCLUSION: Promoting plant growth and resisting pathogens were the most important function of xylem sap during the bleeding period, and the function of microbial community were closely related to microorganisms growth and disease resistance. The 16 stress-related genes might be used for the future grape resistance research.

11.
Toxicology ; 424: 152230, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31170431

RESUMO

T-2 toxin is a trichothecene mycotoxin that widely contaminates food and has a variety of toxic effects. However, the underlying mechanism of T-2 toxin on intestinal mucin remains unclear. In present study, human intestinal Caco-2 cells and HT-29 cells were treated with 100 ng/mL T-2 toxin at one-quarter of the IC50 for 24 h, which caused the inhibition of MUC2 and adhesion of E. coli O157:H7. We found T-2 toxin induced endoplasmic reticulum stress and activated the IRE1/XBP1 pathway, which may be related to the inhibition of MUC2. Interestingly, T-2 toxin activated IRE1α to inhibit IRE1ß, which optimized mucin production. Furthermore, overexpression of IRE1ß in the cells apparently alleviated the inhibition of MUC2 caused by T-2 toxin. IRE1α knock-down blocked the down-regulation of IRE1ß and MUC2 induced by T-2 toxin. We revealed the critical role of IRE1α in the inhibition of intestinal mucin. This finding was confirmed in BALB/c mice which were exposed to T-2 toxin (0.5 mg/kg bw) for 4 weeks. T-2 toxin activated the IRE1/XBP1 pathway to disrupt intestinal mucin, which lead to the imbalance of gut microbiota and an increased risk of host infection by E. coli O157:H7. T-2 toxin exposure also increased the expressions of pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α in mice, which might respond to IRE1α activation. Importantly, IRE1α activation was a therapeutic target for intestinal inflammation caused by T-2 toxin. This study provided a new perspective to understand the intestinal toxicity of T-2 toxin.

12.
Int J Biol Macromol ; 134: 56-62, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31071394

RESUMO

Suture is an important part of surgical operation, and closure of the wound associated with this procedure continuous to be a challenge in postoperative care. Currently, oxidized regenerated cellulose (ORC) is widely used in the absorption of hemostatic materials. However, there is no ORC medical suture product in the market. The objective of this article was to prepare novel braided sutures by TEMPO-mediated oxidation regenerated cellulose (TORC) to achieve a suturable material with biodegradability and ideal mechanical properties. Regenerated cellulose (RC) strands were made into sutures on a circular braiding machine, and TEMPO-mediated oxidation treatment was introduced alternatively after braiding. The RC sutures under different oxidation time were characterized by ATR-FTIR, electrical conductivity, XRD analysis, physical properties and in vitro degradation property. We further demonstrate that the RC sutures were oxidized and formed the carboxylic (-COOH) functional group. With the extension of oxidation duration, the carboxyl content in TORC sutures increased gradually from 5.1 to 10.4% and the strength, weight, and diameter of TORC sutures decreased gradually. Moreover, we proved that the knot-pull strength of TORC-45 declined by 77.8% after 28 days, thus this sutures fulfilled U.S. Pharmacopeia requirement of knot-pull strength. We have shown that TEMPO oxidation reaction significantly promoted the degradation of TORC sutures. Overall, TORC sutures were successfully produced with favorable biodegradability, revealing potential prospects of clinical applications.

13.
J Hered ; 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31102441

RESUMO

The South China tiger (Panthera tigris amoyensis) is endemic to China and also the most critically endangered subspecies of living tigers. It is considered extinct in the wild and only about 150 individuals survive in captivity to date, whose genetic heritage, however, is ambiguous and controversial. Here, we conducted an explicit genetic assessment of 92 studbook-registered South China tigers from 14 captive facilities using a subspecies-diagnostic system in the context of comparison with other voucher specimens to evaluate the genetic ancestry and level of distinctiveness of the last surviving P. t. amoyensis. Three mtDNA haplotypes were identified from South China tigers sampled in this study, including a unique P. t. amoyensis AMO1 haplotype not found in other subspecies, a COR1 haplotype that is widespread in Indochinese tigers (P. t. corbetti), and an ALT haplotype that is characteristic of Amur tigers (P. t. altaica). Bayesian STRUCTURE analysis and parentage verification confirmed the Verified Subspecies Ancestry (VSA) as the South China tiger in 74 individuals. Genetic introgression from other tigers was detected in 18 tigers, and subsequent exclusion of these and their offspring from the breeding program is recommended. Both STRUCTURE clustering and microsatellite-based phylogenetic analyses demonstrated a close genetic association of the VSA South China tigers to Indochinese tigers, an issue that could only be elucidated by analysis of historical South China tiger specimens with wild origin. Our results also indicated a moderate level of genetic diversity in the captive South China tiger population, suggesting a potential for genetic restoration.

14.
ACS Appl Mater Interfaces ; 11(23): 20615-20627, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31050404

RESUMO

Biocompatible, electrically conductive microfibers with superior mechanical properties have received a great attention due to their potential applications in various biomedical applications such as implantable medical devices, biosensors, artificial muscles, and microactuators. Here, we developed an electrically conductive and mechanically stable carbon nanotube-based microactuator with a low degradability that makes it usable for an implantable device in the body or biological environments. The microfiber was composed of hyaluronic acid (HA) hydrogel and single-wall carbon nanotubes (SWCNTs) (HA/SWCNT). HA hydrogel acts as biosurfactant and ion-conducting binder to improve the dispersion of SWCNTs resulting in enhanced electrical and mechanical properties of the hybrid microfiber. In addition, HA was crosslinked to prevent the leaking of the nanotubes from the composite. Crosslinking of HA hydrogel significantly enhances Young's modulus, the failure strain, the toughness, the stability of the electrical conductivity, and the resistance to biodegradation and creep of hybrid microfibers. The obtained crosslinked HA/SWCNT hybrid microfibers show an excellent capacitance and actuation behavior under mechanical loading with a low potential of ±1 V in a biological environment. Furthermore, the HA/SWCNT microfibers exhibit an excellent in vitro viability. Finally, the biocompatibility is shown through the resolution of an early inflammatory response in less than 3 weeks after the implantation of the microfibers in the subcutaneous tissue of mice.

15.
J Microencapsul ; 36(1): 62-71, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30916610

RESUMO

Polyurethane modified with polylactic acid microcapsules were fabricated for controlled release of chlorpyrifos (one of the high usage solid phosphorous insecticides) via interfacial polymerisation with diphenylmethane diisocyanate, polyether triol, 1,4-butanediol and polylactic acid as modifier. The structure, morphology and release properties of synthesised microcapsules were characterised by Fourier transform infra-red spectroscopy, thermogravimetric analyser, scanning electron microscope, particle size analyser and high-performance liquid chromatography. More benign solvents, namely ethyl acetate and n-butyl acetate were used as replacement for toxic solvents commonly used in the preparation of polyurethane microcapsules, namely xylene. The spherical microcapsules prepared in this study were 1-20 µm in diameter. Fourier transform infra-red spectroscopy indicated that polylactic acid had successfully participated in the interfacial polymerisation of polyurethane. Encapsulation efficiency of microcapsules can amount up to 71.0% w/w with a loading efficiency of 26.2% w/w. The microcapsules exhibited a sustained release period above 60 days. Combining polylactic acid into the soft segment of polyurethane proves to effectively accelerate the release rate.

16.
BMC Plant Biol ; 19(1): 111, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30898085

RESUMO

BACKGROUND: Grape (Vitis vinifera) is highly sensitive to gibberellin (GA), which effectively induce grape parthenocarpy. Studies showed that miR160s and their target AUXIN RESPONSIVE FACTOR (ARF) responding hormones are indispensable for various aspects of plant growth and development, but their functions in GA-induced grape parthenocarpy remain elusive. RESULTS: In this study, the morphological changes during flower development in response to GA treatments were examined in the 'Rosario Bianco' cultivar. The precise sequences of VvmiR160a/b/c/d/e and their VvARF10/16/17 target genes were cloned, sequenced and characterized. The phylogenetic relationship and intron-exon structure of VvARFs and other ARF family members derived from different species were investigated. All VvmiR160s (except VvmiR160b) and VvARF10/16/17 had the common cis-elements responsive to GA, which support their function in GA-mediated grape parthenocarpy. The cleavage role of VvmiR160s-mediated VvARF10/16/17 was verified in grape flowers. Moreover, spatio-temporal expression analysis demonstrated that among VvmiR160 family, VvmiR160a/b/c highly expressed at late stage of flower/berry development, while VvARF10/16/17showed a reverse expression trend. Interestingly, GA exhibited a long-term effect through inducing the expression of VvmiR160a/b/c/e to increase their cleavage product accumulations from 5 to 9 days after treatment, but GA enhanced the expressions of VvARF10/16/17 only at short term. Pearson correlation analysis based on expression data revealed a negative correlation between VvmiR160a/b/c and VvARF10/16/17 in flowers not berries during GA-induced grape parthenocarpy. CONCLUSIONS: This work demonstrated that the negative regulation of VvARF10/16/17 expression by VvmiR160a/b/c as key regulatory factors is critical for GA-mediated grape parthenocarpy, and provide significant implications for molecular breeding of high-quality seedless berry.


Assuntos
Frutas/crescimento & desenvolvimento , Giberelinas/farmacologia , MicroRNAs/genética , Proteínas de Plantas/genética , Vitis/genética , Mapeamento Cromossômico , Flores/efeitos dos fármacos , Flores/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA de Plantas , Sementes/genética , Análise Espaço-Temporal , Tabaco/efeitos dos fármacos , Tabaco/genética , Vitis/efeitos dos fármacos , Vitis/fisiologia
17.
PLoS Genet ; 15(3): e1007993, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30875369

RESUMO

Anthocyanin is part of secondary metabolites, which is induced by environmental stimuli and developmental signals, such as high light and sucrose. Anthocyanin accumulation is activated by the MYB-bHLH-WD40 (MBW) protein complex in plants. But the evidence of how plants maintain anthocyanin in response to signals is lacking. Here we perform molecular and genetic evidence to display that HAT1 plays a new breaker of anthocyanin accumulation via post-translational regulations of MBW protein complex. Loss of function of HAT1 in the Arabidopsis seedlings exhibits increased anthocyanin accumulation, whereas overexpression of HAT1 significantly repressed anthocyanin accumulation. We found that HAT1 interacted with MYB75 and thereby interfered with MBW protein complex. Overexpression of HAT1 suppresses abundant anthocyanin phenotype of pap1-D plant. HAT1 is characterized as a transcriptional repressor possessing an N-terminal EAR motif, which determines to interact with TOPLESS corepressor. Repression activity of HAT1 in regulation of gene expression and anthocyanin accumulation can be abolished by deletion or mutation of the EAR motif 1. Chromatin immunoprecipitation assays revealed that MYB75 formed a transcriptional repressor complex with HAT1-TPL by histone H3 deacetylation in target genes. We proposed that HAT1 restrained anthocyanin accumulation by inhibiting the activities of MBW protein complex through blocking the formation of MBW protein complex and recruiting the TPL corepressor to epigenetically modulate the anthocyanin late biosynthetic genes (LBGs).


Assuntos
Antocianinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Mutação , Fenótipo , Plântula/fisiologia , Transdução de Sinais
18.
Biomed Pharmacother ; 112: 108618, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30798118

RESUMO

Cardiomyocyte hypertrophy, a prevalent clinical condition is deeply associated with many physiological factors. The underlying mechanisms of cardiomyocyte hypertrophy are not yet fully understood. In this study, H9C2 cells were treated with genistein, miR-451 mimic, miR-451 inhibitor and isoproterenol for 24 h, to study the effect of genistein on isoproterenol-induced myocardial hypertrophy in vitro. Simultaneously, ICR mice were treated with genistein for 21 days to evaluate the effects of the phytochemical on isoproterenol-induced myocardial hypertrophy in vivo. Results showed that isoproterenol induced cardiac hypertrophy and down-regulated the expression of miR-451 and up-regulated miR-451's target gene TIMP2. Genistein increased the expression of miR-451 and inhibited the isoproterenol-induced cardiac hypertrophy. This study explored the function of genistein from the epigenetic level, suggesting that miR-451 may play a significant role in the genistein-assisted amelioration of isoproterenol-induced cardiac hypertrophy both in vitro and in vivo.


Assuntos
Cardiomegalia/metabolismo , Genisteína/uso terapêutico , Isoproterenol/toxicidade , MicroRNAs/biossíntese , Inibidores de Proteínas Quinases/uso terapêutico , Inibidor Tecidual de Metaloproteinase-2/biossíntese , Agonistas Adrenérgicos beta/toxicidade , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Feminino , Genisteína/farmacologia , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos ICR , MicroRNAs/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Inibidor Tecidual de Metaloproteinase-2/antagonistas & inibidores
19.
Mikrochim Acta ; 186(3): 158, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30715613

RESUMO

An electrochemical biosensor is described for highly sensitive determination of tDNA, an Alzheimer's disease (AD)-related biomarker. Electroactive molybdophosphate anions were precipitated in-situ on a glassy carbon electrode (GCE) via catalytic hydrolysis by alkaline phosphatase (ALP). This is followed by recycling amplification of tDNA. Four DNA strands (referred to as S1, S2, S3 and S4) were designed to assemble X-shape DNA (X-DNA) building blocks. These were further extended into four directions under the action of DNA polymerase. The resultant two X-DNA motifs were polymerize. Simultaneously, ALP is encapsulated into a hydrogels network to obtain a porous material of type ALP@DNAhg. The GCE was modified with reduced graphene oxide functionalized with gold nanoparticles (Au@rGO). If ALP@DNAhg are captured via strand displacement, tDNA recycling assembly for signal amplification is initiated. This results in the immobilization of large amounts of ALP. On introduction of pyrophosphate and molybdate (MoO42-), ALP will catalyze the hydrolysis of pyrophosphate to produce phosphate. It will react with molybdate to form redox active phosphomolybdate anions (PMo12O403-). Its amperometrical signal depends on the concentration of tDNA in the 1.0 × 10-2 to 1.0 × 104 pM concentration range, and the detection limit is 3.4 × 10-3 pM. Graphical abstract Schematic presentation of (a) preparation of alkaline phosphatase-encapsulated DNA hydrogel (ALP@DNAhg). (b) fabrication of the biosensor for target DNA (tDNA) based on ALP@DNAhg to catalyze in situ precipitation of electroactive molybdophosphate anion (PMo12O403-) and tDNA recycling amplification, achieving tDNA-dependent electrochemical signal readout (X-DNA: X-shape DNA building block. TdT: terminal deoxynucleotidyl transferase. dATP: deoxyadenosine triphosphate. dTTP: deoxythymidine triphosphate. X-DNA-pAn and X-DNA-pTn: X-DNA motifs with poly-A and poly-T tails. ALP: alkaline phosphatase. ALP@DNAhg: ALP-encapsulated DNA hydrogels. Au@rGO: gold nanoparticles-functionalized reduced graphene oxide. GCE: glass carbon electrode. HP1, 2: hairpin DNA 1, 2. MCH: 6-mercaptohexanol. tDNA: target DNA. CV: cyclic voltammetry).


Assuntos
Doença de Alzheimer/diagnóstico , DNA/análise , Técnicas Eletroquímicas/métodos , Fosfatase Alcalina/metabolismo , Doença de Alzheimer/genética , Biomarcadores , Catálise , Eletrodos , Humanos , Hidrogéis , Molibdênio , Ácidos Fosfóricos
20.
Reprod Sci ; : 1933719119831775, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808247

RESUMO

OBJECTIVE:: The transfer of long noncoding RNAs (lncRNAs) via exosomes to modulate recipient cells represents an important mechanism for disease progression. Antisense hypoxia-inducible factor (aHIF) is a well-known angiogenesis-related lncRNA. Here, we aimed to investigate the clinical implications of aHIF and exosomal aHIF in endometriosis and the involvement of exosome-shuttled aHIF in endometriosis angiogenesis. STUDY DESIGN:: The distribution and expression of aHIF in ectopic, eutopic, and normal endometria was evaluated. Serum exosomal aHIF levels in patients with endometriosis were tested. The correlation between serum exosomal aHIF and aHIF expression in ectopic endometria was analyzed. Endometriotic cyst stromal cells (ECSCs)-derived exosomes were characterized. The internalization of exosomes by human umbilical vein endothelial cells (HUVECs) was observed. A series of in vitro assays were conducted to investigate the roles and mechanisms of exosomal aHIF in endometriosis angiogenesis. RESULTS:: Clinically, aHIF was highly expressed in ectopic endometria and serum exosomes in patients with endometriosis. Serum exosomal aHIF was significantly correlated to aHIF expression in matched ectopic endometria. In vitro, PKH67-labeled exosomes derived from aHIF high expression ECSCs were effectively internalized by recipient HUVECs. Notably, exosome-shuttled aHIF was transferred from ECSCs to HUVECs, which in turn elicited proangiogenic behavior in HUVECs by activating vascular endothelial growth factor (VEGF)-A, VEGF-D, and basic fibroblast growth factor, thereby facilitating endometriosis angiogenesis. CONCLUSION:: Our study illustrates a potential cell-cell communication between ECSCs and HUVECs in an ectopic environment, provides a novel mechanistic model explaining how ECSCs induce angiogenesis from the perspective of the "exosomal transfer of aHIF," and highlights the clinical value of circulating exosomal aHIF in endometriosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA