Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ovarian Res ; 12(1): 92, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601255

RESUMO

AB209371 gene has been characterized as an oncogenic lncRNA in liver cancer. However, its involvement in ovarian carcinoma (OC) is unknown. In the present study, we analyzed the roles of AB209371 in OC. We found that AB209371 gene and Survivin gene were up-regulated in OC and positively correlated with OC development. AB209371 over-expression led to up-regulated Survivin in OC cells, while Survivin over-expression failed to affect AB209371. In addition, AB209371 over-expression led to down-regulated miR-203. However, miR-203 over-expression failed to affect AB209371, but down-regulated the expression of Survivin. In addition, over-expressions of AB209371 and Survivin resulted in the increased proliferation rate of OC cells. Over-expression MiR-203 played the opposite role and attenuated the effects of AB209371 over-expression. Therefore, AB209371 may down-regulate miR-203 to up-regulate Survivin, thereby promoting OC cell proliferation. Our study provided novel insights into the pathogenesis of OC.

2.
J Exp Clin Cancer Res ; 38(1): 237, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171015

RESUMO

BACKGROUND: Liver cancer stem cells (LCSCs) are a small subset of cells characterized by unlimited self-renewal, cell differentiation, and uncontrollable cellular growth. LCSCs are also resistant to conventional therapies and are thus believed to be held responsible for causing treatment failure of hepatocellular carcinoma (HCC). It has been recently found that long non-coding RNAs (lncRNAs) are important regulators in HCC. This present study aims to explore the underlying mechanism of how lncRNA DLX6-AS1 influences the development of LCSCs and HCC. METHODS: A microarray-based analysis was performed to initially screen differentially expressed lncRNAs associated with HCC. We then analyzed the lncRNA DLX6-AS1 levels as well as CADM1 promoter methylation. The mRNA and protein expression of CADM1, STAT3, CD133, CD13, OCT-4, SOX2, and Nanog were then detected. We quantified our results by evaluating the spheroid formation, proliferation, and tumor formation abilities, as well as the proportion of tumor stem cells, and the recruitment of DNA methyltransferase (DNMT) in LCSCs when lncRNA DLX6-AS1 was either overexpressed or silenced. RESULTS: LncRNA DLX6-AS1 was upregulated in HCC. The silencing of lncRNA DLX6-AS1 was shown to reduce and inhibit spheroid formation, colony formation, proliferation, and tumor formation abilities, as well as attenuate CD133, CD13, OCT-4, SOX2, and Nanog expression in LCSCs. Furthermore, downregulation of lncRNA DLX6-AS1 contributed to a reduction in CADM1 promoter methylation via suppression of DNMT1, DNMT3a, and DNMT3b in LCSCs and inactivating the STAT3 signaling pathway. CONCLUSION: This study demonstrated that down-regulated lncRNA DLX6-AS1 may inhibit the stem cell properties of LCSCs through upregulation of CADM1 by suppressing the methylation of the CADM1 promoter and inactivation of the STAT3 signaling pathway.

3.
Mol Med ; 25(1): 29, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31215394

RESUMO

BACKGROUND: Innate immune dysfunction contributes to the development and progression of nonalcoholic fatty liver disease (NAFLD), however, its pathogenesis is still incompletely understood. Identifying the key innate immune component responsible for the pathogenesis of NAFLD and clarifying the underlying mechanisms may provide therapeutic targets for NAFLD. Recently, F-box- and WD repeat domain-containing 7 (FBXW7) exhibits a regulatory role in hepatic glucose and lipid metabolism. This study aims to investigate whether FBXW7 controls high-mobility group box 1 protein (HMGB1)-mediated innate immune signaling to improve NAFLD and the mechanism underlying this action. METHODS: Mice were fed a high-fat diet (HFD) for 12 or 20 weeks to establish NAFLD model. Hepatic overexpression or knockdown of FBXW7 was induced by tail-vein injection of recombinant adenovirus. Some Ad-FBXW7-injected mice fed a HFD were injected intraperitoneally with recombinant mouse HMGB1 to confirm the protective role of FBXW7 in NAFLD via inhibition of HMGB1. RESULTS: FBXW7 improves NAFLD and related metabolic parameters without remarkable influence of body weight and food intake. Moreover, FBXW7 markedly ameliorated hepatic inflammation and insulin resistance in the HFD-fed mice. Furthermore, FBXW7 dramatically attenuated the expression and release of HMGB1 in the livers of HFD-fed mice, which is associated with inhibition of protein kinase R (PKR) signaling. Thereby, FBXW7 restrains Toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE) signaling in HFD-fed mouse livers. In addition, exogenous HMGB1 treatment abolished FBXW7-mediated inhibition of hepatic inflammation and insulin resistance in HFD-fed mouse livers. CONCLUSIONS: Our results demonstrate a protective role of FBXW7 in NAFLD by abating HMGB1-mediated innate immune signaling to suppress inflammation and consequent insulin resistance, suggesting that FBXW7 is a potential target for therapeutic intervention in NAFLD development.

4.
Aging (Albany NY) ; 11(8): 2447-2456, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036774

RESUMO

The patients with spinal cord injury (SCI) suffered significantly higher risk of deep vein thrombosis (DVT) than normal population. The aim was to assess the clinical significance of macrophage migration inhibitory factor (MIF) as the risk factor for DVT in acute SCI patients. 207 Chinese patients were enrolled in this study, including thirty-nine (39) patients (18.8 %; 95 %CI: 13.5 %-24.2 %) diagnosed as DVT at the follow-up of 1 month. Nine (9) of the 39 patients (23.1%) were suspected of thrombosis before the screening. The MIF levels in plasma of DVT patients were significantly higher than DVT-free patients. The risks of DVT would be increased by 11 % (OR unadjusted: 1.11; 95% CI, 1.06-1.17, P<0.001) and 8 % (OR adjusted: 1.08; 1.03-1.14, P=0.001), for each additional 1 ng/ml of MIF level. Furthermore, after MIF was combined with established risk factors, area under the receiver operating characteristic curve (standard error) was increased from 0.82(0.035) to 0.85(0.030). The results showed the potential association between the high MIF levels in plasma and elevated DVT risk in SCI patients, which may assist on early intervention.

5.
Mol Ther Nucleic Acids ; 16: 229-245, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30925451

RESUMO

Pancreatic cancer is a lethal malignancy with relatively few effective therapies. Recent investigations have highlighted the role of microRNAs (miRNAs) as crucial regulators in various tumor processes including tumor progression. Hence the current study aimed to investigate the role of bone marrow mesenchymal stem cell (BMSC)-derived exosomal microRNA-126-3p (miR-126-3p) in pancreatic cancer. Initially, miRNA candidates and related genes associated with pancreatic cancer were screened. PANC-1 cells were transfected with miR-126-3p or silenced a disintegrin and a metalloproteinase-9 (ADAM9) to examine their regulatory roles in pancreatic cancer cells. Additionally, exosomes derived from BMSCs were isolated and co-cultured with pancreatic cancer cells to elucidate the effects of exosomes in pancreatic cancer. Furthermore, the effects of overexpressed miR-126-3p derived from BMSCs exosomes on proliferation, migration, invasion, apoptosis, tumor growth, and metastasis of pancreatic cancer cells were analyzed in connection with lentiviral packaged miR-126-3p in vivo. Restored miR-126-3p was observed to suppress pancreatic cancer through downregulating ADAM9. Notably, overexpressed miR-126-3p derived from BMSCs exosomes inhibited the proliferation, invasion, and metastasis of pancreatic cancer cells, and promoted their apoptosis both in vitro and in vivo. Taken together, the key findings of the study indicated that overexpressed miR-126-3p derived from BMSCs exosomes inhibited the development of pancreatic cancer through the downregulation of ADAM9, highlighting the potential of miR-126-3p as a novel biomarker for pancreatic cancer treatment.

6.
J Cell Physiol ; 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30790266

RESUMO

Long noncoding RNAs, including HOTAIR, are involved in the pathogenesis of a wide range of diseases. This study aimed to explore the mechanism underlying the involvement of HOTAIR in neonatal bronchial hyperresponsiveness (BHR). A total of 105 newborns were recruited in this study to collect their peripheral blood mononuclear cell and serum samples, which were then divided into different genotype groups based on the genotypes of rs4759314, rs874945, and rs7958904. The real-time polymerase chain reaction, western blot analysis, computational analyses, and luciferase assays were performed to establish the regulatory relationships between the HOTAIR, microRNA-126 (miR-126), and interleukin-13 (IL-13). The level of HOTAIR, miR-126, and IL-13 among rs4759314 AA, AG, and GG groups, as well as among rs874945 GG, AG, and AA groups was similar. However, the level of HOTAIR was increased in the rs7958904 GG group, accompanied by a decreased level of miR-126 and IL-13. In addition, the level of airway responsiveness was comparable among rs4759314 AA, AG, and GG groups, as well as among rs874945 GG, AG, and AA groups. However, the airway responsiveness in the groups rs7958904 CG and CC was much stronger than that of the GG group. We also demonstrated that, by directly binding to miR-126, HOTAIR reduced the expression of miR-126, which in turn decreased the expression of IL-13. In summary, we demonstrated the role of HOTAIR-induced downregulation of miR-126 and IL-13 in the development of BHR in neonates.

7.
Oxid Med Cell Longev ; 2019: 5189819, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30805082

RESUMO

Our preliminary data showed that VEGFR2 upregulation promoted renal ROS overproduction in high-fat diet- (HFD-) treated mice. Given that ROS-induced NLRP3 activation plays a central role in the pathogenesis of type 2 diabetic kidney injury, we evaluate whether VEGFR2 upregulation induces type 2 diabetic kidney injury via ROS-mediated NLRP3 activation and further explore the underlying mechanism. Our results showed that VEGFR2 knockdown decreased ROS overproduction, blocked NLRP3-dependent inflammation, and alleviated kidney damage in HFD-treated mice. Treatment with α-lipoic acid, a scavenger of ROS, lowered ROS overproduction and alleviated NLRP3-triggered kidney injury of HFD-treated mice. Collectively, the VEGFR2/ROS/NLRP3 signal is a critical therapeutic strategy for the kidney injury of HFD-treated mice. Purple sweet potato color (PSPC), a natural anthocyanin, can exert renal protection by inhibiting ROS in HFD-treated mice. Here, we provide a novel mechanism of PSPC against renal damage in HFD-treated mice by downregulating VEGFR2 expression.


Assuntos
Ipomoea batatas/química , Rim/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pigmentos Biológicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Dieta Hiperlipídica , Técnicas de Silenciamento de Genes , Inflamação/patologia , Rim/efeitos dos fármacos , Masculino , Camundongos Endogâmicos ICR , Especificidade de Órgãos , Estresse Oxidativo/efeitos dos fármacos , Pigmentos Biológicos/administração & dosagem , Ácido Tióctico/farmacologia
8.
J Nutr Biochem ; 65: 35-45, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30616064

RESUMO

Prevention of obesity-induced cognitive decline is an important public health goal. Purple sweet potato color (PSPC), a class of naturally occurring anthocyanins, has beneficial potentials including antioxidant and neuroprotective activity. Evidence shows that anthocyanins can activate AMP-activated protein kinase (AMPK), a critical mediator of autophagy induction. This study investigated whether PSPC could improve cognitive function through regulating AMPK/autophagy signaling in HFD-fed obese mice. Our results showed that PSPC significantly ameliorated obesity, peripheral insulin resistance and memory impairment in HFD-fed mice. Moreover, enhanced autophagy was observed, along with the decreased levels of protein carbonyls, malondialdehyde and reactive oxygen species (ROS) in the hippocampus of HFD-fed mice due to PSPC administration. PSPC also promoted hippocampal brain-derived neurotrophic factor (BDNF) expression and neuron survival in HFD-fed mouse. These improvements were mediated, at least in part, by the activation of AMPK, which was confirmed by metformin treatment. It is concluded that PSPC has great potential to improve cognitive function in HFD-fed mice via AMPK activation that restores autophagy and protects against hippocampal apoptosis.

9.
Eur J Med Chem ; 164: 252-262, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30597326

RESUMO

Overexpression of pyruvate dehydrogenase kinases (PDKs) has been widely noticed in a variety of human solid tumors, which could be regarded as an attractive therapeutic target for cancer therapy. In this paper, we present an enzymatic screening assay and multiple biological evaluations for the identification of potential PDKs, especially PDK1 inhibitors. We identified 9 potential PDKs inhibitors from the screening of an in-house small molecule library, all of the identified inhibitors reduced pyruvate dehydrogenase (PDH) complex phosphorylation. Among which, 4, 5, and 9 displayed the most potent PDKs inhibitory activities, with EC50 values of 0.34, 1.4, and 1.6 µM in an enzymatic assay, respectively. A kinase inhibition assay suggested that 4, 5, and 9 were pan-isoform PDK inhibitors, but more sensitive to PDK1. Meanwhile, the three compounds inhibited HSP90, with IC50 values of 0.78, 3.58, and 2.70 µM, respectively. The cell viability assay indicated that 4 inhibited all of the tested cancer cells proliferation, with a GC50 value of 2.3 µM against NCIH1975 cell, but has little effect on human normal lung cell BEAS-2B cell. In the NCIH1975 xenograft models, 4 displayed strong antitumor activities at a dose of 10 and 20 mg/kg, but with no negative effect on the mice weight. In addition, 4 decreased the ECAR and lactate formation, increased OCR and ROS level in NCIH1975 cancer cell, which could be used as a promising modulator to reprogram the glucose metabolic pathways in NCIH1975 cancer cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios Enzimáticos , Glucose/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Xenoenxertos , Humanos , Camundongos , Fosforilação , Bibliotecas de Moléculas Pequenas
10.
Biochem J ; 476(2): 385-404, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30568000

RESUMO

ZNF300 plays an important role in the regulation of HBV-related hepatocellular carcinoma. However, little is known about the role of ZNF300 in lipid metabolism and NAFLD. In the present study, we observed that ZNF300 expression was markedly decreased in free fatty acid (FFA)-induced fatty liver. Overexpressed ZNF300 alleviated hepatic lipid accumulation, whereas knockdown of ZNF300 enhanced the FFA-induced lipid accumulation. Investigations of the underlying mechanisms revealed that ZNF300 directly binds to and regulates the PPARα expression, thus promoting fatty acid oxidation. Furthermore, bisulfite pyrosequencing PCR (BSP) analysis identified the hypermethylation status of ZNF300 gene in FFA-treated hepatocytes. Importantly, the suppression of ZNF300 could be blocked by DNA methyltransferase inhibitor (5-azadC) or DNMT3a-siRNA. These results suggested that ZNF300 plays an important role in hepatic lipid metabolism via PPARα promoting fatty acid oxidation and this effect might be blocked by DNMT3a-mediated methylation of ZNF300. Therefore, in addition to ZNF300 expression levels, the methylation status of this gene also has a potential as a prognostic biomarker.


Assuntos
Metilação de DNA , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/metabolismo , Proteínas Repressoras/biossíntese , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Ácidos Graxos/genética , Células HEK293 , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/genética , Fígado/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Oxirredução , PPAR alfa/genética , Proteínas Repressoras/genética
11.
J Cell Physiol ; 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30515782

RESUMO

AIMS: We aimed to explore the impact of long noncoding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) on cell proliferation, invasion, and migration of glioma. METHODS: Differentially expressed genes were screened out from Gene Expression Omnibus data set based on the microarray analysis. The expression levels of lncRNA NEAT1, miR-139-5p, and CDK6 in glioma cells and tissues were examined by quantitative reverse transcription polymerase chain reaction, and the protein level of CDK6 in glioma cells was determined by western blot and immunohistochemistry. Glioma cell viability, cell cycle, and apoptosis were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) and flow cytometry, respectively, whereas cell invasion and migration were analyzed by transwell assay. The target relationships among NEAT1, miR-139-5p, and CDK6 were confirmed by dual-luciferase reporter gene assay. The effects of lncRNA NEAT1 on tumor growth were further testified through glioma xenografts in nude mice. RESULTS: LncRNA NEAT1 and CDK6 were highly expressed in glioma tissues and cells, whereas miR-139-5p was lowly expressed. There were target relationships and correlations on expressions between miR-139-5p and NEAT1/ CDK6. NEAT1 and CDK6 could promote cell proliferation and metastasis of glioma cells and impeded cell apoptosis, whereas miR-139-5p exerted suppressive effects on the biological functions of glioma cells. NEAT1 regulated CDK6 to affect glioma growth through sponging miR-139-5p. CONCLUSIONS: LncRNA NEAT1 promotes cell proliferation, invasion, and migration of glioma through regulating miR-139-5p/CDK6 pathway.

12.
Artigo em Inglês | MEDLINE | ID: mdl-30404560

RESUMO

Myasthenia gravis (MG) is an autoimmune neuromuscular disorder, affecting the quality of life of millions of people worldwide. The current study aims to determine the relationship between microRNA-143 (miR-143) and CXCL13, and whether it influences the pathogenesis of myasthenia gravis (MG). Thymus specimens were resected from patients with thymic hyperplasia combined MG, and then infused into normal mouse cavities to establish MG mice models. Immunohistochemistry, RT-qPCR, in situ hybridization detection, and Western blot analysis were employed to identify the expression of miR-143 and CXCL13 in MG and normal mice. The obtained thymocytes were cultured in vitro and transfected with a series of miR-143 mimic, miR-143 inhibitor, oe-CXCL13 or siRNA against CXCL13. MTT and flow cytometry assays were employed to assess cell viability, cycle entry, and apoptosis of the thymocytes. Dual luciferase reporter assay provided verification, confirming CXCL13 was the target gene of miR-143. Low miR-143 expression in the thymus tissues of the MG mice was detected, which presented with a reciprocal relationship with the expression rate of CLCX13. Observations in relation to the interactions between miR-143 mimic or siRNA CXCL13 exposure resulted in reduced cell viability, with a greater number of cells arrested at the G0/G1 phase, and a greater rate of induced apoptosis. Furthermore, overexpression of CXCL13 rescued miR-143 mimic-induced apoptosis. The findings have identified the potential role of miR-143 as a MG development mediator by targeting CXCL13. The key results obtained provide a promising experimental basis for the targeted intervention treatment of miR-143.

13.
Cell Physiol Biochem ; 51(4): 1600-1615, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30497067

RESUMO

BACKGROUND/AIMS: Parkinson's disease (PD) is a neurodegenerative movement disease with a high annual incidence. Accumulating evidence demonstrates that microRNAs play important roles in the pathogenesis of multiple neurological disorders, including PD. This study aims to investigate how microRNA-200a (miR-200a) regulates striatal dopamine receptor D2 (DRD2) to affect apoptosis of striatum in rats with PD and to explore the associated mechanism. METHODS: After successfully establishing a PD model by 6-hydroxydopamine injections, PD rats were mainly treated with miR-200a mimics, inhibitors, Forskolin or a combination of miR-200a inhibitors and Forskolin. High-performance liquid chromatography-electrochemical detection (HPLC-ECD) was employed to detect the levels of dopamine, 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and chemistry colorimetric methods were applied to detect the levels of malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). A TUNEL assay and immunocytochemical staining were performed to observe apoptosis and tyrosine hydroxylase (TH)-positive cells in the striatum. The expression of miR-200a, DRD2, Bad, Bax, Bcl-2, cAMP and PKA was determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot assays. RESULTS: In the cellular experiments, after transfection with the inhibitor of miR-200a, decreased levels of Bax, GSH-Px, SOD, dopamine, DOPAC and HVA but increased levels of MDA and Bcl-2 were found along with a reduced apoptosis rate and increased TH-positive cell number. In addition, downregulating miR-200a resulted in lower expression of AKT, cAMP and PKA but higher expression of DRD2 and CREB, indicating that the downregulation of miR-200a increases DRD2 expression, which blocks the cAMP/PKA signaling pathway. CONCLUSION: This study provides evidence that the inhibition of miR-200a can repress apoptosis in the striatum via inhibition of the cAMP/PKA signaling pathway by upregulating DRD2 expression in PD rats.

14.
J Cell Physiol ; 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30362546

RESUMO

Development of effective therapeutic drugs for Parkinson's disease (PD) is of great importance. Aberrant microRNA (miRNA) expression has been identified in postmortem human PD brain samples, in vitro and in vivo PD models. However, the role of miR-342-3p in PD has been understudied. The study explores the effects of miR-342-3p on expression of glutamate (Glu) transporter, and dopaminergic neuron apoptosis and proliferation by targeting p21-activated kinase 1 (PAK1) through the Wnt signaling pathway in PD mice. After establishment of PD mouse models, gain- or loss-of-function assay was performed to explore the functional role of miR-342-3p in PD. Number of apoptotic neurons and Glu concentration was then determined. Subsequently, PC12 cells were treated with miR-342-3p mimic, miR-342-3p inhibitor, dickkopf-1 (DKK1), and miR-342-3p inhibitor + DKK1. The expression of miR-342-3p, PAK1, the Wnt signaling pathway-related and apoptosis-related genes, Glutamate transporter subtype 1 (GLT-1), l-glutamate/ l-aspartate transporter (GLAST), tyrosine hydroxylase (TH) was measured. Also, cell viability and apoptosis were evaluated. PD mice exhibited increased miR-342-3p, while decreased expression of PAK1, GLT-1, GLAST, TH, and the Wnt signaling pathway-related and antiapoptosis genes. miR-342-3p downregulation could promote expression of PAK1, the Wnt signaling pathway-related and antiapoptosis genes. GLT-1, GLAST, and TH as well as cell viability, but reduce cell apoptosis rate. The results indicated that suppression of miR-342-3p improves expression of Glu transporter and promotes dopaminergic neuron proliferation while suppressing apoptosis through the Wnt signaling pathway by targeting PAK1 in mice with PD.

15.
IUBMB Life ; 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30296359

RESUMO

Glioma is known to be the most prevalent primary brain tumor. In recent years, there has been evidence indicating myeloid cell leukemia-1 (MCL1) plays a role in brain glioblastoma. Therefore, the present study was conducted with aims of exploring the ability of MCL1 silencing to influence glioma cell senescence and apoptosis through the mediation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Glioma and tumor-adjacent tissues were collected in order to detect the presence of higher levels of MCL1 protein expression. Next, the mRNA and protein expression of MCL1, PI3K, Akt, B cell lymphoma 2 (Bcl2), Bcl2-associated X (Bax), B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1), and phosphatase and tensin homolog (PTEN) were determined. Cell counting kit-8 assay was applied to detect cell proliferation, ß-galactosidase staining for cell senescence, and flow cytometry for cell cycle entry and apoptosis. Initially, the results revealed higher positive expression rate of MCL1 protein, increased mRNA and protein expression of MCL1, PI3K, Akt, Bmi-1, and Bcl-2 and decreased that of Bax and PTEN in human glioma tissues. The silencing of MCL1 resulted in a decrease in mRNA and protein expression of PI3K, Akt, Bmi-1, and Bcl-2 and an increase in Bax and PTEN expressions in glioma cells. Moreover, silencing of MCL1 also inhibited cell proliferation and cell cycle entry in glioma cells, and promoted glioma cell senescence and apoptosis. In conclusion, the aforementioned results collectively suggested that the silencing of MCL1 promotes senescence and apoptosis in glioma cells through inhibiting the PI3K/Akt signaling pathway. Thus, decreasing the expression of MCL1 might have therapeutic functions in glioma. © 2018 IUBMB Life, 2018.

16.
Front Pharmacol ; 9: 929, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210338

RESUMO

Purpose: Gastric cancer is mainly treated by gastrectomy, the results of which were unsatisfactory without any adjuvant treatments. This study aimed to examine the performance of radiotherapy, chemotherapy, and chemoradiotherapy after surgery in order to acquire the optimal adjuvant treatment. Method: Embase and PubMed were retrieved to conduct a systematic research. Hazard ratios (HR) of overall survival (OS) and progression-free survival (PFS) as outcomes were calculated by synthesizing direct and indirect evidence to evaluate the efficacy of three treatments against surgery alone. The P-score ranking was utilized to rank the therapies. Consistency was assessed by heat plot. Begg's test was performed to evaluate publication bias. Results: A total of 35 randomized controlled studies (RCTs) with 8973 patients were included in our network meta-analysis (NMA). As for efficacy outcomes, OS and PFS of 1, 2, 3, and 5 years, all revealed chemoradiotherapy (CRT) as the best of three adjuvant therapies. Meanwhile, P-score ranking results also displayed that CRT was the optimal regimen. Additionally, radiotherapy (RT) and chemotherapy (CT) were two alternative options following CRT since RT performed well in short-term survival while CT could improve the long-term survival. Conclusion: CRT was the most recommended therapy to accompany surgery according to our results. However, no analysis about the safety of these three treatments was mentioned in our study. Further studies including safety outcomes were required to draw a more comprehensive conclusion.

17.
Cell Death Dis ; 9(10): 947, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237435

RESUMO

Over the past decade, lncRNAs have been widely reported in human malignant tumors, including papillary thyroid carcinoma. LncRNA SNHG15 has been validated to be a tumor facilitator in several types of malignancies. The present study focused on the biological role of SNHG15 in papillary thyroid carcinoma. Based on the result of qPCR analysis, we identified the strong expression of SNHG15 in human papillary thyroid carcinoma tissues and cell lines. Moreover, Kaplan-Meier method was utilized to analyze the internal relevance between SNHG15 expression and overall survival rate of patients with papillary thyroid carcinoma. Loss-of-function assays were designed and conducted to determine the inhibitory effects of silenced SNHG15 on the cell growth and migration in papillary thyroid carcinoma. The mechanical investigation indicated that SNHG15 upregulated YAP1 by sponging miR-200a-3p. Moreover, results of gain-of-function assays validated the anti-oncogenic function of miR-200a-3p in papillary thyroid carcinoma. Finally, results of rescue assays validated the function of SNHG15-miR-200a-3p-YAP1 axis in papillary thyroid carcinoma. YAP1 is known as an oncogene and a core factor of Hippo pathway. Here, we demonstrated that SNHG15 inactivated Hippo signaling pathway in papillary thyroid carcinoma. In summary, our findings demonstrated that SNHG15 serves as a competitively endogenous RNA (ceRNA) to regulate YAP1-Hippo signaling pathway by sponging miR-200a-3p in papillary thyroid carcinoma.

18.
Mol Med ; 24(1): 18, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30134805

RESUMO

BACKGROUND: As a form of dementia primarily affecting the elderly, vascular dementia (VD) is characterized by changes in the supply of blood to the brain, resulting in cognitive impairment. The aim of the present study was to explore the effects involved with cyclic adenosine monophosphate (cAMP) response element-binding (CREB)1 gene silencing on cognitive dysfunction through meditation of the protein kinase A (PKA)-CREB signaling pathway in mice with VD. METHODS: Both the Morris water maze test and the step down test were applied to assess the cognitive function of the mice with VD. Immunohistochemical and TUNEL staining techniques were employed to evaluate the positive expression rates of the protein CREB1 and Cleaved Caspase-3, as well as neuronal apoptosis among hippocampal tissues in a respective manner. Flow cytometry was applied to determine the proliferation index and apoptosis rate of the hippocampal cells among each group. Reverse transcription quantitative polymerase chain reaction and Western blot analysis methods were applied to detect the expressions of cAMP, PKA and CREB in hippocampal cells. RESULTS: Compared with the normal group, all the other groups exhibited impaired cognitive function, reduced cell numbers in the CAI area, positive expressions of CREB1 as well as positive optical density (OD) values. Furthermore, increased Cleaved Caspase-3 positive expression, OD value, proliferation index, apoptosis rate of hippocampal cells and neurons, were observed in the other groups when compared with the normal group, as well as lower expressions of cAMP, PKA and CREB1 and p-CREB1 (the shCREB1-1, H89 and shCREB1-1 + H89 groups < the VD group). CONCLUSION: The key findings of the present study demonstrated that CREB1 gene silencing results in aggravated VD that occurs as a result of inhibiting the PKA-CREB signaling pathway, thus exasperating cognitive dysfunction.

19.
Cell Physiol Biochem ; 48(4): 1563-1578, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30071522

RESUMO

BACKGROUND/AIMS: Spinal cord glioma is a highly aggressive malignancy that commonly results in high mortality due to metastasis, high recurrence and limited treatment regimens. This study aims to elucidate the effects of long non-coding RNA LINC01260 (LINC01260) on the proliferation, migration and invasion of spinal cord glioma cells by targeting Caspase recruitment domain family, member 11 (CARD11) via nuclear factor kappa B (NF-κB) signaling. METHODS: The Multi Experiment Matrix (MEM) website was used for target gene prediction, and the DAVID database was used for analysis of the relationship between CARD11 and the NF-κB pathway. In total, 60 cases of glioma tissues and adjacent normal tissues were collected. Human U251 glioma cells were grouped into blank, negative control (NC), LINC01260 vector, CARD11 vector, siRNA-LINC01260, siRNA-CARD11, LINC01260 vector + CARD11 vector and LINC01260 + siRNA-CARD11 groups. A dual-luciferase reporter assay was conducted to verify the target relationship between LINC01260 and CARD11. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were employed to assess expression of LINC01260, E-cadherin, p53, CARD11, Ki67, N-cadherin, matrix metalloproteinase (MMP)-9, NF-κBp65 and NF-κBp50. MTT, flow cytometry, wound-healing and Transwell assays were performed to examine cell viability, the cell cycle, apoptosis, invasion and migration. Tumor growth was assessed through xenografts in nude mice. RESULTS: CARD11 was confirmed to be a target gene of LINC01260 and was found to be involved in regulating the NF-κB pathway. Compared with adjacent normal tissues, glioma tissues showed reduced expression of LINC01260 and elevated expression of CARD11 and genes related to apoptosis, invasion and migration; activation of NF-κB signaling was also observed. In contrast to the blank and NC groups, an elevated number of cells arrested in G1 phase, increased apoptosis and reduced cell proliferation, invasion and number of cells arrested in S and G2 phases, as well as tumor growth were found for the LINC01260 vector and siRNA-CARD11 groups. CONCLUSIONS: Our findings demonstrate that overexpression of LINC01260 inhibits spinal cord glioma cell proliferation, migration and invasion by targeting CARD11 via NF-κB signaling suppression.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proliferação de Células , Guanilato Ciclase/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Animais , Proteínas Adaptadoras de Sinalização CARD/antagonistas & inibidores , Proteínas Adaptadoras de Sinalização CARD/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Pontos de Checagem da Fase G1 do Ciclo Celular , Glioma/metabolismo , Glioma/patologia , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/genética , Humanos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Nus , NF-kappa B/metabolismo , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Neoplasias da Medula Espinal/metabolismo , Neoplasias da Medula Espinal/patologia , Proteína Supressora de Tumor p53/metabolismo
20.
J Cell Mol Med ; 22(10): 4963-4974, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30024092

RESUMO

This study was designed to explore the relationship between miR-1275 and SERPINE1 and its effects on glioma cell proliferation, migration, invasion and apoptosis. Differentially expressed miRNAs and mRNAs in glioma tissues were screened out by bioinformatic analysis. Dual-luciferase reporter gene assay was used to validate the targeted relationship between miR-1275 and SERPINE1. qRT-PCR was used to detect the expression of miR-1275 and SERPINE1 in glioma tissues. The expressions of SERPINE1 and p53 pathway-related proteins in glioma cells were detected by western blot. Glioma cell proliferation, apoptosis, migration and invasion were respectively detected by CCK-8 assay, flow cytometry, wound healing assay and transwell assay. Tumour xenograft model was developed to study the influence of miR-1275 and SERPINE1 on glioma growth in vivo. The results of microarray analysis, qRT-PCR and western blot showed that miR-1275 was low-expressed while SERPINE1 was high-expressed in glioma. Dual-luciferase assay showed that miR-1275 could bind to SERPINE1. Overexpression of miR-1275 could promote the p53 pathway-related proteins' expression. Highly expressed miR-1275 could repress the migration, proliferation and invasion of glioma cells while highly expressed SERPINE1 had inverse effects. Tumour xenograft showed that up-regulated miR-1275 or down-regulated SERPINE1 could repress glioma growth in vivo. Up-regulation of miR-1275 activated p53 signalling pathway via regulating SERPINE1 and therefore suppressed glioma cell proliferation, invasion and migration, whereas promoted cell apoptosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA