Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 607
Filtrar
1.
Cell Biol Toxicol ; 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35028790

RESUMO

Cervical spondylotic myelopathy (CSM) is a clinically symptomatic entity arising from the spinal cord compression by degenerative diseases. Although endoplasmic reticulum (ER) stress has been commonly observed in several neurodegenerative diseases, the relationship between ER stress and CSM remains unknown. Shikonin is known to protect PC12 by inhibiting apoptosis in vitro. This study hypothesised that ER stress was vital in neuronal apoptosis in CSM. Shikonin might inhibit such responses by regulating ER stress through the protein kinase-like ER kinase-eukaryotic translation initiation factor 2 α-subunit-C/EBP homologous protein (PERK-eIF2α-CHOP) signalling pathway. Thus, the aim of this study was evaluating the neuroprotective effect of shikonin in rats with double-level chronic cervical cord compression, as well as primary rat cortical neurons with glutamate-induced neurotoxicity. The result showed that ER stress-related upregulation of PERK-eIF2α-CHOP resulted in rat neuronal apoptosis after chronic cervical cord compression; then, shikonin promoted motor recovery and inhibited neuronal apoptosis by attenuating PERK-eIF2α-CHOP and prevented Bax translocation from cytoplasm to mitochondrion induced by CHOP of neurons in rats with chronic compression. Also, it was found that shikonin could protect rat primary cortical neuron against glutamate toxicity by regulating ER stress through the PERK-eIF2α-CHOP pathway in vitro. In conclusion, shikonin might inhibit neuronal apoptosis by regulating ER stress through attenuating the activation of PERK-eIF2α-CHOP.

2.
Adv Wound Care (New Rochelle) ; 11(4): 202-214, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34978952

RESUMO

Significance: Tendon injury possesses a high morbidity rate and is difficult to achieve a satisfying prognosis with currently available treatment strategies. Current approaches used for tendon healing always lead to the formation of fibrovascular scar tissue, which significantly compromises the biomechanics of the healed tendon. Moreover, the related functional deficiency deteriorates over time with an increased injury recurrence risk. Small leucine-rich proteoglycans (SLRPs) link and interact with collagen fibrils to regulate tendon structure and biomechanics, which can provide a new and promising method in the field of tendon injury management. Recent Advances: The effect of SLRPs on tendon development has been extensively investigated. SLRP deficiency impairs tendon collagen fibril structure and biomechanic properties, while administration of SLRPs generally benefits tendon wound healing and regains better mechanical properties. Critical Issues: Current knowledge on the role of SLRPs in tendon development and regeneration mostly comes from uninjured knockout mice, and mainly focuses on the morphology description of collagen fibril profile and mechanical properties. Little is known about the regulatory mechanism on the molecular level. Future Directions: This article reviews the current knowledge in this highly translational topic and provides an evidence-based conclusion, thereby encouraging in-depth investigations of SLRPs in tendons and the development of SLRP-based treatments for desired tendon healing.

3.
HLA ; 2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-34997832

RESUMO

HLA-A*69:01:04 differs from HLA-A*69:01:01:01 in exon 2 at position 336 by a single synonymous mutation.

4.
J Biol Chem ; : 101590, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35033535

RESUMO

Ribosomal RNAs (rRNAs) have long been known to carry chemical modifications, including 2'O-methylation, pseudouridylation, N6-methyladenosine (m6A), and N6,6-dimethyladenosine. While the functions of many of these modifications are unclear, some are highly conserved and occur in regions of the ribosome critical for mRNA decoding. Both 28S rRNA and 18S rRNA carry single m6A sites, and while the methyltransferase ZCCHC4 has been identified as the enzyme responsible for the 28S rRNA m6A modification, the methyltransferase responsible for the 18S rRNA m6A modification has remained unclear. Here, we show that the METTL5-TRMT112 methyltransferase complex installs the m6A modification at position 1832 of human 18S rRNA. Our work supports findings that TRMT112 is required for METTL5 stability and reveals that human METTL5 mutations associated with microcephaly and intellectual disability disrupt this interaction. We show that loss of METTL5 in human cancer cell lines and in mice regulates gene expression at the translational level; additionally, Mettl5 knockout mice display reduced body size and evidence of metabolic defects. While recent work has focused heavily on m6A modifications in mRNA and their roles in mRNA processing and translation, we demonstrate here that deorphanizing putative methyltransferase enzymes can reveal previously unappreciated regulatory roles for m6A in noncoding RNAs.

5.
Open Med (Wars) ; 17(1): 96-112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35028418

RESUMO

Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer associated with an unstable prognosis. Thus, there is an urgent demand for the identification of novel diagnostic and prognostic biomarkers as well as targeted drugs for LUAD. The present study aimed to identify potential new biomarkers associated with the pathogenesis and prognosis of LUAD. Three microarray datasets (GSE10072, GSE31210, and GSE40791) from the Gene Expression Omnibus database were integrated to identify the differentially expressed genes (DEGs) in normal and LUAD samples using the limma package. Bioinformatics tools were used to perform functional and signaling pathway enrichment analyses for the DEGs. The expression and prognostic values of the hub genes were further evaluated by Gene Expression Profiling Interactive Analysis and real-time quantitative polymerase chain reaction. Furthermore, we mined the "Connectivity Map" (CMap) to explore candidate small molecules that can reverse the tumoral of LUAD based on the DEGs. A total of 505 DEGs were identified, which included 337 downregulated and 168 upregulated genes. The PPI network was established with 1,860 interactions and 373 nodes. The most significant pathway and functional enrichment associated with the genes were cell adhesion and extracellular matrix-receptor interaction, respectively. Seven DEGs with high connectivity degrees (ZWINT, RRM2, NDC80, KIF4A, CEP55, CENPU, and CENPF) that were significantly associated with worse survival were chosen as hub genes. Lastly, top 20 most important small molecules which reverses the LUAD gene expressions were identified. The findings contribute to revealing the molecular mechanisms of the initiation and progression of LUAD and provide new insights for integrating multiple biomarkers in clinical practice.

6.
HLA ; 2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35000291

RESUMO

HLA-B*35:501 differs from HLA-B*35:02:01:01 by three nucleotides in exon 2 This article is protected by copyright. All rights reserved.

7.
HLA ; 2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35000294

RESUMO

HLA-DRB1*13:306 differs from HLA-DRB1*13:02:01:01 in exon 2 in codon 84 by a single coding change. This article is protected by copyright. All rights reserved.

8.
HLA ; 2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35001543

RESUMO

HLA-B*46:85 differs from HLA-B*46:01:01:01 in exon 3 at position 560 by a single non-synonymous mutation. This article is protected by copyright. All rights reserved.

9.
Nanomaterials (Basel) ; 12(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055283

RESUMO

Because of the dilemma that the current industrial Cu enhancement methods lead to a significant decline in conductivity and ductility, Cu matrix composites reinforced by oriented multi-walled carbon nanotubes (MWCNTs) were prepared through sintering, hot extrusion, and cold drawing. Before sintering, Ni, Cu, and Ni&Cu coatings were electroless plated on MWCNTs as the intermediate transition layer, and then they were mixed with Cu powder through a nitrogen bubbling assisted ultrasonic process. By analyzing the composition, microstructure, and formation mechanism of the interface between MWCNTs and the matrix, the influence and mechanism of the interface on the mechanical properties, conductivity, and ductility of the composites were explored. The results indicated that MWCNTs maintained a highly dispersed and highly consistent orientation in the Cu matrix. The coating on Ni@CNT was the densest, continuous, and complete. The Ni@CNTs/Cu composite had the greatest effect, while the Cu composite reinforced by MWCNT without coating had the smallest reduction in elongation and conductivity. The comprehensive performance of the Cu@CNTs/Cu composite was the most balanced, with an ultimate tensile strength that reached 373 MPa, while the ductility and conductivity were not excessively reduced. The axial electrical and thermal conductivity were 79.9 IACS % (International Annealed Copper Standard) and 376 W/mK, respectively.

10.
HLA ; 2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35067003

RESUMO

HLA-B*51:328 differs from HLA-B*51:01:01:01 in exon 2 at position 241 by a single non-synonymous mutation This article is protected by copyright. All rights reserved.

11.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884839

RESUMO

Skeletal class II and III malocclusions are craniofacial disorders that negatively impact people's quality of life worldwide. Unfortunately, the growth patterns of skeletal malocclusions and their clinical correction prognoses are difficult to predict largely due to lack of knowledge of their precise etiology. Inspired by the strong inheritance pattern of a specific type of skeletal malocclusion, previous genome-wide association studies (GWAS) were reanalyzed, resulting in the identification of 19 skeletal class II malocclusion-associated and 53 skeletal class III malocclusion-associated genes. Functional enrichment of these genes created a signal pathway atlas in which most of the genes were associated with bone and cartilage growth and development, as expected, while some were characterized by functions related to skeletal muscle maturation and construction. Interestingly, several genes and enriched pathways are involved in both skeletal class II and III malocclusions, indicating the key regulatory effects of these genes and pathways in craniofacial development. There is no doubt that further investigation is necessary to validate these recognized genes' and pathways' specific function(s) related to maxillary and mandibular development. In summary, this systematic review provides initial insight on developing novel gene-based treatment strategies for skeletal malocclusions and paves the path for precision medicine where dental care providers can make an accurate prediction of the craniofacial growth of an individual patient based on his/her genetic profile.

12.
J Dairy Res ; : 1-5, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34865665

RESUMO

We characterized the proteome profile of mid-lactation small-tailed Han (STH) and DairyMeade (DM) ovine milk in order to explore physiological variation and differences in milk traits between the two breeds. Methodology combined a tandem mass tag (TMT) proteomic approach with LC-MS/MS technology. A total of 656 proteins were identified in STH and DM ovine milk, of which 17and 29 proteins were significantly upregulated (P < 0.05) in STH and DM, respectively. Immune-related proteins and disease-related proteins were highly expressed in STH milk, whereas S100A2 and AEBP1 were highly expressed in DM milk, which had beneficial effects on mammary gland development and milk yield. Our results provide a theoretical basis for future breeding of dairy sheep.

13.
Front Psychiatry ; 12: 669533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867499

RESUMO

Background and Objective: Acupuncture is used as an alternative treatment for patients with major depressive disorder (MDD). The associated therapeutic effect of acupuncture is often attributed to its modulatory effect on the activity of the pre-frontal cortex (PFC), although the mechanism is not well-studied. We employed a repeated measures design to investigate the brain modulatory effect of acupuncture on the PFC in a group of patients with MDD and investigated whether the modulatory effect is influenced by the severity of the disease. Methods: A total of 47 patients diagnosed with MDD were enrolled in this functional near-infrared spectroscopy experiment. The severity of depressive symptoms was measured at baseline using the Hamilton Depression Rating Scale-24 (HAMD). The cortical activation in the bilateral PFC areas during a verbal fluency task (VFT) was measured before and after a single session of acupuncture in the Baihui acupoint. We further explored the potential correlation between the severity of MDD and task-related activation before and after acupuncture. Results: A single session of acupuncture significantly tended to enhance the activation level of the left frontopolar cortex in patients with severe depression during VFT, but a null effect was found in those with mild to moderate depression. Among patients with severe depression, a strong correlation was observed between HAMD scores and the change in VFT-related activation after acupuncture in the left dorsolateral PFC (DLPFC). Conclusion: A single session of acupuncture did not significantly modulate the activation of the left PFC in patients with mild to moderate depression; however, it demonstrated a tendency to enhance the activation of the frontopolar area in patients with severe depression. Among patients with severe depression, there is a correlation between the activation by acupuncture of left DLPFC during executive functioning and the severity of depressive symptoms, suggesting that the brain activity induced by acupuncture is likely to be influenced by the baseline disease severity in patients with MDD.

14.
Front Endocrinol (Lausanne) ; 12: 763021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867805

RESUMO

Glycosylated hemoglobin A1c (HbA1c) level has strong relevance to microvascular disorders, which are also thought to be the current main aspect of sudden sensorineural hearing loss (SSNHL), so we aim to elucidate the association of the HbA1c level with the severity, types, and prognosis of SSNHL. In this study, comparative analyses based on propensity score matching of the severity, types, and prognosis of SSNHL with the HbA1c level in 116 patients diagnosed as SSNHL were conducted, where they were divided into diabetes mellitus (DM) group and non-DM group. We finally found that, among patients with SSNHL, diabetic patients had a higher HbA1c level, more severe hearing loss, and poorer prognosis than non-diabetic patients. The HbA1c level was found to be significantly correlated with the severity and types of SSNHL, while no strong relevance was found between the higher HbA1c level and the poorer prognosis of SSNHL.

15.
Seizure ; 94: 82-89, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34872021

RESUMO

OBJECTIVES: To identify semiologic features of automatisms correlating to different seizure onset zones (SOZ). METHODS: In total, 204 seizures from 74 patients with either oral or manual automatisms were assessed. Patients were divided into four groups depending on the SOZ into frontal, posterior, neocortical temporal, and mesial temporal cortex groups. A k-means analysis was applied on 11 semiologic features on a multi-criteria scale. Then, the resulting clinical patterns were correlated with the SOZs determined by presurgical anatomy-electroclinical data (25 cases with stereo-EEG). RESULTS: Four clinical patterns of automatisms with different accompanying symptoms were identified. The clinical features of clusters 1 and 4 were mostly found in temporal epilepsy whereas clusters 2 and 3 were more frequent in extratemporal epilepsy. Cluster 1 was significantly correlated with mesial temporal lobe epilepsy (p = .017) and was characterised by aura, postictal confusion, short automatisms delay. Cluster 3 included 1/3 patients with frontal lobe epilepsy and was characterised by emotionality. Cluster 4 was related to neocortical temporal lobe epilepsy and characterised by dystonia and short automatism delay (p = .011). CONCLUSION: The distinct semiologic patterns of automatisms may provide information which may allow clinicians to define the SOZs. These findings could improve diagnostic accuracy and surgical outcome.

17.
Diagnostics (Basel) ; 11(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34943528

RESUMO

Cephalometry is a standard diagnostic tool in orthodontic and orthognathic surgery fields. However, built-in magnification from the cephalometric machine produces double images from left- and right-side craniofacial structures on the film, which poses difficulty for accurate cephalometric tracing and measurements. The cone-beam computed tomography (CBCT) images not only allow three-dimensional (3D) analysis, but also enable the extraction of two-dimensional (2D) images without magnification. To evaluate the most reliable cephalometric analysis method, we extracted 2D lateral cephalometric images with and without magnification from twenty full-cranium CBCT datasets; images were extracted with magnification to mimic traditional lateral cephalograms. Cephalometric tracings were performed on the two types of extracted 2D lateral cephalograms and on the reconstructed 3D full cranium images by two examiners. The intra- and inter-examiner intraclass correlation coefficients (ICC) were compared between linear and angular parameters, as well as between CBCT datasets of adults and children. Our results showed that overall, tracing on 2D cephalometric images without magnification increased intra- and inter-examiner reliability, while 3D tracing reduced inter-examiner reliability. Angular parameters and children's images had the lowest inter- and intra-examiner ICCs compared with adult samples and linear parameters. In summary, using lateral cephalograms extracted from CBCT without magnification for tracing/analysis increased reliability. Special attention is needed when analyzing young patients' images and measuring angular parameters.

18.
Small Methods ; 5(3): e2001086, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34927822

RESUMO

Conical carbon, specifically multi-walled carbon nanocones (CNCs) and single-walled carboncones, is a new class of sp2 -hybridized carbon allotrope, in addition to fullerene, carbon nanotubes (CNTs), and graphene. Characterized by a conical and delocalized aromatic configuration, the conical carbon structure is considered the intermediate structure between planar graphene and open-cage fullerene. CNCs can be stiffer than CNTs and exhibit intriguing physical and chemical properties owing to their unique hollow conical structure, which make these materials promising for application as field emission sources and scanning probes. The research on conical carbon structures is in its nascent stage, mainly because of the limitations in the synthesis and purification of conical carbons. This review summarizes the significant progress in the synthesis of CNCs and carboncones. Particularly, the synthetic methods, which can be divided into traditional physical-chemical synthesis methods for multi-walled CNCs and emerging bottom-up organic synthesis methods for single-walled carboncones, are comprehensively discussed. In addition, the advantages and disadvantages of the various synthetic methods as well as the possible formation and growth mechanisms of CNCs and carboncones are discussed. Finally, some outlooks on the potential solutions to the synthesis of single-walled carboncones with uniform apex angles are presented.

19.
Front Neurosci ; 15: 744959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924928

RESUMO

Objectives: Mandarin-speaking users of cochlear implants (CI) perform poorer than their English counterpart. This may be because present CI speech coding schemes are largely based on English. This study aims to evaluate the relative contributions of temporal envelope (E) cues to Mandarin phoneme (including vowel, and consonant) and lexical tone recognition to provide information for speech coding schemes specific to Mandarin. Design: Eleven normal hearing subjects were studied using acoustic temporal E cues that were extracted from 30 continuous frequency bands between 80 and 7,562 Hz using the Hilbert transform and divided into five frequency regions. Percent-correct recognition scores were obtained with acoustic E cues presented in three, four, and five frequency regions and their relative weights calculated using the least-square approach. Results: For stimuli with three, four, and five frequency regions, percent-correct scores for vowel recognition using E cues were 50.43-84.82%, 76.27-95.24%, and 96.58%, respectively; for consonant recognition 35.49-63.77%, 67.75-78.87%, and 87.87%; for lexical tone recognition 60.80-97.15%, 73.16-96.87%, and 96.73%. For frequency region 1 to frequency region 5, the mean weights in vowel recognition were 0.17, 0.31, 0.22, 0.18, and 0.12, respectively; in consonant recognition 0.10, 0.16, 0.18, 0.23, and 0.33; in lexical tone recognition 0.38, 0.18, 0.14, 0.16, and 0.14. Conclusion: Regions that contributed most for vowel recognition was Region 2 (502-1,022 Hz) that contains first formant (F1) information; Region 5 (3,856-7,562 Hz) contributed most to consonant recognition; Region 1 (80-502 Hz) that contains fundamental frequency (F0) information contributed most to lexical tone recognition.

20.
Adv Mater ; : e2106453, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34734444

RESUMO

As a representative electron transporting layer in organic solar cells, zinc oxide (ZnO) can be fabricated by the meniscus-guided coating with the promotion of sol-gel technology. In order to fabricate stable and flexible organic solar cells (OSCs) based on the printable ZnO layers, here, a new method for simultaneously manipulating fluidics of the sol-gel ZnO precursor and optimizing processability of the ZnO layer for flexible OSCs is developed. It is found that the Marangoni recirculation in meniscus and the annealing temperature of the sol-gel ZnO precursor can be effectively modulated by changing the Lewis base. With the use of propylamine, the high-quality ZnO layer that is suitable for flexible OSCs can be fabricated through blade coating. Under such a condition, the formation of polar facet in ZnO layer is well restrained, which favors the photostability of the cells. As a result, the best 1.00 cm2 flexible cell outputs a power conversion efficiency of 16.71%, which is the best value till now.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...