Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Animals (Basel) ; 12(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36359175

RESUMO

Consumption demands for pork produced by farms that employ strategies to improve animal welfare ("animal welfare pork") will be an important indicator for predicting domestic pig feeding standards and pork industry development. This paper analyzes consumer preferences for animal welfare pork based on the choice experiment data of 1274 pork consumers in Guangdong province, China. The results show that consumers had a significant preference for animal welfare pork and that they were willing to pay a premium of 2.359-10.477 CNY/500 g (5.27-23.39%) on average. There is heterogeneity in consumer preferences regarding age, education level, and income. Producers of animal-derived products can not only adjust the mix of production conditions to improve pig welfare and innovate contractual arrangements for industry chain stakeholder groups, but they can also develop differentiated marketing strategies for animal welfare products to meet consumer demands for animal welfare.

2.
Anal Chem ; 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36440702

RESUMO

We reported a straightforward and low-cost method to fabricate stretchable biofuel cells by using liquid metal-based metal-polymer conductors. The liquid-metal-based metal-polymer conductors had a conductivity of 2.7 × 105 S/m and a stretchability larger than 200%, giving the biofuel cell good conformability to the skin. The glucose biofuel cells (BFCs) yielded a maximum power density as 14.11 µW/cm2 at 0.31 V with 0.2 mM glucose, while the lactate BFCs reached 31.00 µW/cm2 at 0.51 V with 15 mM lactate. The results of 24 h short circuit current density showed that, with enough biofuel, this patch could be used over the course of an entire day for wearable sensors.

3.
Nano Lett ; 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36449360

RESUMO

Here we present an innovative, universal, scalable, and straightforward strategy for cultivating a resilient, flexible lithium-ion battery (LIB) based on the bacterial-based self-growing approach. The electrodes and separator layers are integrated intrinsically into one unity of sandwich bacterial cellulose integrated film (SBCIF), with various active material combinations and tailored mechanical properties. The flexible LIB thereof showcases prominent deformation tolerance and multistage foldability due to the unique self-generated wavy-like structure. The LTO|LFP (Li4Ti5O12 and LiFePO4) SBCIF-based flexible LIB demonstrates reliable long-term electrochemical stability with high flexibility, by exhibiting a high capacity retention (>95%) after 500 cycles at 1C/1C after experiencing a 10 000 bending/flattening treatment. The LTO|LFP SBCIF battery subjected to a simultaneous bending/flattening and cycling experiment shows an extraordinary capacity retention rate (>68%) after 200 cycles at 1C/1C. The biobased self-growing approach offers an exciting and promising pathway toward the tailored, integrated high-performance flexible LIBs.

4.
ACS Nano ; 16(10): 15537-15544, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36200673

RESUMO

Permeable electronics possess the capability of permeating gas and/or liquid while performing the device functionality when attached to human bodies. The permeability of wearable electronics can not only minimize the thermophysiological disturbance to the human body but also ensure a biocompatible human-device interface for long-term, continuous, and real-time health monitoring. To date, how to simultaneously acquire high permeability and multifunctionality is the major challenge of wearable electronics. Here, a critical discussion on the future development of wearable electronics toward permeability is presented. In this perspective, the critical metrics of permeable electronics are discussed, and the historical evolution of wearable technologies is reviewed with highlights of representative examples. The materials and structural strategies for developing high-performance permeable electronics are then analyzed.


Assuntos
Eletrônica , Dispositivos Eletrônicos Vestíveis , Humanos , Permeabilidade
5.
ACS Nano ; 16(11): 17998-18008, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36136126

RESUMO

Conductive polymers have many advanced applications, but there is still an important target in developing a general and straightforward strategy for printable, mechanically stable, and durable organohydrogels with typical conducting polymers of, for example, polypyrrole, polyaniline, or poly(3,4-ethylenedioxythiophene). Here we report a protein crystallization-mediated self-strengthening strategy to fabricate printable conducting organohydrogels with the combination of rational photochemistry design. Such organohydrogels are one-step prepared via rapidly and orthogonally controllable photopolymerizations of pyrroles and gelatin protein in tens of seconds. As-prepared conducting organohydrogels are patterned and printed to complicated structures via shadow-mask lithography and 3D extrusion technology. The mild photocatalytic system gives the transition metal carbide/nitride (MXene) component high stability during the oxidative preparation process and storage. Controlling water evaporation promotes gelatin crystallization in the as-prepared organohydrogels that significantly self-strengthens their mechanical property and stability in a broad temperature range and durability against continuous friction treatment without introducing guest functional materials. Also, these organohydrogels have commercially electromagnetic shielding, thermal conducting properties, and temperature- and light-responsibility. To further demonstrate the merits of this simple strategy and as-prepared organohydrogels, prism arrays, as proofs-of-concept, are printed and applied to make wearable triboelectric nanogenerators. This self-strengthening process and 3D-printability can greatly improve their voltage, charge, and current output performances compared to the undried and flat samples.


Assuntos
Gelatina , Polímeros , Cristalização , Polímeros/química , Pirróis/química , Hidrogéis/química
6.
ACS Appl Mater Interfaces ; 14(36): 41065-41071, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044205

RESUMO

Confining Li metal in a three-dimensional (3D) matrix has been proven effective in improving the Li-metal anodes; however, in most studies, the loading of Li in the 3D matrix is far excessive, resulting in a dense bulk Li-metal anode with a low Li-utilization rate, forfeiting the effect of the 3D matrix. Here, we show that limiting the loading of Li metal within an interface-modified 3D carbon matrix not only increases the Li-utilization rate but also improves the electrochemical performance of the Li-metal anode. We use lithiophilic Fe2O3 granules anchored on a 3D carbon fiber scaffold to guide molten Li dispersion onto the fibers with controlled Li loading. Limiting Li loading maximizes the interface lithiophilic effect of the Fe2O3 granules while preserving sufficient space for electrolyte infusion, collectively ensuring uniform Li deposition and fast Li+ transport kinetics. The Li anode with limited Li dosage achieves remarkably improved Li-anode performances, including long lifespan, low voltage polarization, and low electrochemical resistance in both the symmetric cells and full cells. The improved electrochemical performance of the limited Li anode substantiates the importance to reduce Li loading from a fresh perspective and provides an avenue for building practical Li-metal batteries.

7.
Adv Sci (Weinh) ; 9(30): e2203189, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36026564

RESUMO

Copper ions (Cu2+ ) disposed to the environment at massive scale pose severe threat to human health and waste of resource. Electrochemical deionization (EDI) which captures ions by electrical field is a promising technique for water purification. However, the removal capacity and selectivity toward Cu2+ are unsatisfying, yet the recycling of the captured copper in EDI systems is yet to be explored. Herein, an efficient electrochemical copper pump (ECP) that can deliver Cu2+ from dilute brackish water into much more concentrated solutions is constructed using carbon nanosheets for the first time, which works based on reversible electrosorption and electrodeposition. The trade-off between the removal capacity and reversibility is mediated by the operation voltage. The ECP exhibits a removal capacity of 702.5 mg g-1 toward Cu2+ and a high selectivity coefficient of 64 for Cu2+ /Na+ in the presence of multiple cations; both are the highest reported to date. The energy consumption of 1.79 Wh g-1 is among the lowest for EDI of copper. More importantly, the Cu species captured can be released into a 20-fold higher concentrated solution. Such a high performance is attributed to the optimal potential distribution between the two electrodes that allows reversible electrodeposition and efficient electrosorption.


Assuntos
Cobre , Purificação da Água , Humanos , Purificação da Água/métodos , Águas Salinas , Carbono , Íons
8.
Adv Mater ; 34(38): e2205677, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35924314

RESUMO

The lithium (Li)-metal anode offers a promising solution for high-energy-density lithium-metal batteries (LMBs). However, the significant volume expansion of the Li metal during charging results in poor cycling stability as a result of the dendritic deposition and broken solid electrolyte interphase. Herein, a facile one-step roll-to-roll fabrication of a zero-volume-expansion Li-metal-composite anode (zeroVE-Li) is proposed to realize high-energy-density LMBs with outstanding electrochemical and mechanical stability. The zeroVE-Li possesses a sandwich-like trilayer structure, which consists of an upper electron-insulating layer and a bottom lithiophilic layer that synergistically guides the Li deposition from the bottom up, and a middle porous layer that eliminates volume expansion. This sandwich structure eliminates dendrite formation, prevents volume change during cycling, and provides outstanding flexibility to the Li-metal anode even at a practical areal capacity over 3.0 mAh cm-2 . Pairing zeroVE-Li with a commercial NMC811 or LCO cathode, flexible LMBs that offer a record-breaking figure of merit (FOM, 45.6), large whole-cell energy density (375 Wh L-1 , based on the volume of the anode, separator, cathode, and package), high-capacity retention (> 99.8% per cycle), and remarkable mechanical robustness under practical conditions are demonstrated.

9.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35890110

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative aging disorder that manifests as motor and non-motor symptoms, and its etiopathogenesis is influenced by non-coding RNAs (ncRNAs). Signal pathway and gene sequence studies have proposed that alteration of ncRNAs is relevant to the occurrence and development of PD. Furthermore, many studies on brain tissues and body fluids from patients with PD indicate that variations in ncRNAs and their target genes could trigger or exacerbate neurodegenerative pathogenesis and serve as potential non-invasive biomarkers of PD. Numerous ncRNAs have been considered regulators of apoptosis, α-syn misfolding and aggregation, mitochondrial dysfunction, autophagy, and neuroinflammation in PD etiology, and evidence is mounting for the determination of the role of competing endogenous RNA (ceRNA) mechanisms in disease development. In this review, we discuss the current knowledge regarding the regulation and function of ncRNAs as well as ceRNA networks in PD pathogenesis, focusing on microRNAs, long ncRNAs, and circular RNAs to increase the understanding of the disease and propose potential target identification and treatment in the early stages of PD.

10.
Adv Mater ; 34(36): e2204366, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35867885

RESUMO

The addition of small seeding particles into a supersaturated solution is one among the most effective approaches to obtain high-quality semiconductor materials via increased crystallization rates. However, limited study is conducted on this approach for the fabrication of perovskite solar cells. Here, a new strategy-"heterogenous seeding-induced crystallization (hetero-SiC)" to assist the growth of FAPbI3 -based perovskite is proposed. In this work, di-tert-butyl(methyl)phosphonium tetrafluoroborate is directly introduced into the precursor, which forms a low-solubility complex with PbI2 . The low-solubility complex can serve as the seed to induce crystallization of the perovskite during the solvent-evaporation process. Various in situ measurement tools are used to visualize the hetero-SiC process, which is shown to be an effective way of manipulating the nucleation and crystal growth of perovskites. The hetero-SiC process greatly improves the film quality, reduces film defects, and suppresses nonradiative recombination. A hetero-SIC proof-of-concept device exhibits outstanding performance with 24.0% power conversion efficiency (PCE), well over the control device with 22.2% PCE. Additionally, hetero-SiC perovskite solar cell (PSC) stability under light illumination is enhanced and the PSC retains 84% of its initial performance after 1400 h of light illumination.

11.
Adv Mater ; 34(26): e2201194, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35436380

RESUMO

Phase engineering of nanomaterials (PEN) has demonstrated great potential in the fields of catalysis, electronics, energy storage and conversion, and condensed matter physics. Recently, transition metal dichalcogenides (TMDs) with unconventional metastable phases (e.g., 1T and 1T') have attracted increasing research interest due to their unique and appealing physicochemical properties. However, there is still a lack of a simple, universal, and controlled method for the preparation of large-scale and high-purity unconventional-phase TMD crystals, restricting their further fundamental study and practical applications. Here, a facile, one-step salt-assisted general strategy is reported for the controlled phase transformation of commercially available TMDs with conventional 2H phase, yielding a large amount of metastable 1T'-phase TMDs, including WS2 , WSe2 , MoS2 , and MoSe2 . It is found that the easily accessible metal salts, such as K2 C2 O4 ·H2 O, K2 CO3 , Na2 CO3 , Rb2 CO3 , Cs2 CO3 , KHCO3 , NaHCO3 , and NaC2 O4 , can be used to assist the 2H-to-1T' phase transformation, greatly simplifying the synthetic process for producing metastable 1T'-TMDs. Importantly, this method can also be used to prepare 1T'-TMD alloys, such as 1T'-WS2 x Se2(1- x ) . This newly developed strategy is robust and highly effective, which can also be used for the phase engineering of other materials with various polymorphs.

12.
Nanomicro Lett ; 14(1): 61, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35165824

RESUMO

Wearable strain sensors are arousing increasing research interests in recent years on account of their potentials in motion detection, personal and public healthcare, future entertainment, man-machine interaction, artificial intelligence, and so forth. Much research has focused on fiber-based sensors due to the appealing performance of fibers, including processing flexibility, wearing comfortability, outstanding lifetime and serviceability, low-cost and large-scale capacity. Herein, we review the latest advances in functionalization and device fabrication of fiber materials toward applications in fiber-based wearable strain sensors. We describe the approaches for preparing conductive fibers such as spinning, surface modification, and structural transformation. We also introduce the fabrication and sensing mechanisms of state-of-the-art sensors and analyze their merits and demerits. The applications toward motion detection, healthcare, man-machine interaction, future entertainment, and multifunctional sensing are summarized with typical examples. We finally critically analyze tough challenges and future remarks of fiber-based strain sensors, aiming to implement them in real applications.

13.
Adv Healthc Mater ; 11(12): e2102696, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35182463

RESUMO

Recapitulation of 3D multicellular tissues in vitro is of great interest to the field of tumor biology to study the integrated effect of local biochemical and biophysical signals on tumor cell migration and invasion. However, most microengineered tissues and spheroids are unable to recapitulate in vitro the complexities of 3D geometries found in vivo. Here, lithographically defined degradable alginate microniches are presented to produce free-standing tumor microtissues, with precisely controlled geometry, high viability, and allowing for high cell proliferation. The role of microtissue geometry and TGF-ß signaling in tumor cell migration is further investigated. TGF-ß is found to induce the expression of p-myosin II, vimentin, and YAP/TAZ nuclear localization at the periphery of the microtissue, where enhanced nuclear stiffness and orientation are also observed. Upon embedding in a collagen matrix, microtissues treated with TGF-ß maintain their geometric integrity, possibly due to the higher cell tension observed around the periphery. In contrast, cells in microtissues not treated with TGF-ß are highly mobile and invade the surrounding matrix rapidly, with the initial migration strongly dependent on the local geometry. The microtissues presented here are promising model systems for studying the influence of biophysical properties and soluble factors on tumor cell migration.


Assuntos
Colágeno , Neoplasias , Alginatos , Movimento Celular , Humanos , Fator de Crescimento Transformador beta
14.
Adv Sci (Weinh) ; 9(9): e2105213, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35098702

RESUMO

Lithium batteries are key components of portable devices and electric vehicles due to their high energy density and long cycle life. To meet the increasing requirements of electric devices, however, energy density of Li batteries needs to be further improved. Anode materials, as a key component of the Li batteries, have a remarkable effect on the increase of the overall energy density. At present, various anode materials including Li anodes, high-capacity alloy-type anode materials, phosphorus-based anodes, and silicon anodes have shown great potential for Li batteries. Composite-structure anode materials will be further developed to cater to the growing demands for electrochemical storage devices with high-energy-density and high-power-density. In this review, the latest progress in the development of high-energy Li batteries focusing on high-energy-capacity anode materials has been summarized in detail. In addition, the challenges for the rational design of current Li battery anodes and the future trends are also presented.

15.
Small ; 18(2): e2105308, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741427

RESUMO

The ever-increasing development of flexible and wearable electronics has imposed unprecedented demand on flexible batteries of high energy density and excellent mechanical stability. Rechargeable lithium (Li) metal battery shows great advantages in terms of its high theoretical energy density. However, the use of Li metal anode for flexible batteries faces huge challenges in terms of its undesirable dendrite growth, poor mechanical flexibility, and slow fabrication speed. Here, a highly scalable Li-wicking strategy is reported that allows ultrafast fabrication of mechanically flexible and electrochemically stable Li metal anodes. Through the rational design of the interface and structure of the wicking host, the mean speed of Li-wicking reaches 10 m2 min-1 , which is 1000 to 100 000 fold faster than the reported electrochemical deposition or thermal infusion methods and meets the industrial fabrication speed. Importantly, the Li-wicking process results in a unique 3D Li metal structure, which not only offers remarkable flexibility but also suppresses the dendrite formation. Paring the Li metal anode with lithium-iron phosphate or sulfur cathode yields flexible full cells that possess a high charging rate (8.0 mA cm-2 ), high energy density (300-380 Wh kg-1 ), long cycling stability (over 550 cycles), and excellent mechanical robustness (500 bending cycles).


Assuntos
Eletrônica , Lítio , Ação Capilar , Eletrodos
16.
Virulence ; 13(1): 77-88, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34951562

RESUMO

The extensive use of tetracycline antibiotics has led to the widespread presence of tetracycline-resistance genes in Gram-negative bacteria and this poses serious threats to human and animal health. In our previous study, we reported a method for rapid detection of Tet(X)-producers using MALDI-TOF MS. However, there have been multiple machineries involved in tetracycline resistance including efflux pump, and ribosomal protection protein. Our previous demonstrated the limitation in probing the non-Tet(X)-producing tetracycline-resistant strains. In this regard, we further developed a MALDI-TOF MS method to detect and differentiate Tet(X)-producers and non-Tet(X)-producing tetracycline-resistant strains. Test strains were incubated with tigecycline and oxytetracycline in separate tubes for 3 h and then analyzed spectral peaks of tigecycline, oxytetracycline, and their metabolite. Strains were distinguished using MS ratio for [metabolite/(metabolite+ tigecycline or oxytetracycline)]. Four control strains and 319 test strains were analyzed and the sensitivity was 98.90% and specificity was 98.34%. This was consistent with the results obtained from LC-MS/MS analysis. Interestingly, we also found that the reactive oxygen species (ROS) produced by tetracycline-susceptible strains were able to promote the degradation of oxytetracycline. Overall, the MALDITet(X)-plus test represents a rapid and reliable method to detect Tet(X)-producers, non-Tet(X)-producing tetracycline-resistant strains, and tetracycline-susceptible strains.


Assuntos
Oxitetraciclina , Tetraciclina , Animais , Antibacterianos/farmacologia , Cromatografia Líquida , Bactérias Gram-Negativas/genética , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem , Tetraciclina/farmacologia , Tigeciclina/farmacologia
17.
Front Hum Neurosci ; 15: 757579, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899219

RESUMO

Background: Deep brain stimulation (DBS) is a typical intervention treating drug-refractory dystonia. Currently, the selection of the better target, the GPi or STN, is debatable. The outcomes of DBS treating dystonia classified by body distribution and etiology is also a popular question. Objective: To comprehensively compare the efficacy, quality of life, mood, and adverse effects (AEs) of GPi-DBS vs. STN-DBS in dystonia as well as in specific types of dystonia classified by body distribution and etiology. Methods: PubMed, Embase, the Cochrane Library, and Google Scholar were searched to identify studies of GPi-DBS and STN-DBS in populations with dystonia. The efficacy, quality of life, mood, and adverse effects were quantitatively compared. Meta-regression analyses were also performed. This analysis has been registered in PROSPERO under the number CRD42020146145. Results: Thirty five studies were included in the main analysis, in which 319 patients underwent GPI-DBS and 113 patients underwent STN-DBS. The average follow-up duration was 12.48 months (range, 3-49 months). The GPI and STN groups were equivalent in terms of efficacy, quality of life, mood, and occurrence of AEs. The focal group demonstrated significantly better disability symptom improvement (P = 0.012) than the segmental and generalized groups but showed less SF-36 enhancement than the segmental group (P < 0.001). The primary groups exhibited significantly better movement and disability symptom improvements than the secondary non-hereditary group (P < 0.005), which demonstrated only disability symptom improvement compared with the secondary hereditary group (P < 0.005). The primary hereditary and idiopathic groups had a significantly lower frequency of AEs than the secondary non-hereditary group (P < 0.005). The correlation between disability symptom improvement and movement symptom improvement was also significant (P < 0.05). Conclusion: GPi-DBS and STN-DBS were both safe and resulted in excellent improvement in efficacy and quality of life in patients with dystonia. Compared with patients with segmental dystonia, patients with focal dystonia demonstrated better improvement in dystonia symptoms but less enhancement of quality of life. Those with primary dystonia had a better response to DBS in terms of efficacy than those with secondary dystonia. Patients who exhibit a significant improvement in movement symptoms might also exhibit excellent improvement in disability symptoms.

18.
Small Methods ; 5(7): e2100215, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34928005

RESUMO

The use of a conducting interlayer between separator and cathode is one of the most promising methods to trap lithium polysulfides (LiPSs) for enhancing the performance of lithium-sulfur (Li-S) batteries. Red phosphorus nanoparticles (RPEN )-coated carbon nanotube (CNT) film (RPEN @CF) is reported herein as a novel interlayer for Li-S batteries, which shows strong chemisorption of LiPSs, good flexibility, and excellent electric conductivity. A pulsed laser ablation method is engaged for the ultrafast production of RPEN of uniform morphology, which are deposited on the CNT film by a direct spinning method. The RPEN @CF interlayer provides pathways for effective Li+ and electron transfer and strong chemical interaction with LiPSs. The S/RPEN @CF electrode shows a superior specific capacity of 782.3 mAh g-1 (3 C-rate) and good cycling performances (769.5 mAh g-1 after 500 cycles at 1 C-rate). Density functional theory calculations reveal that the morphology and dispersibility of RPEN are crucial in enhancing Li+ and electron transfer kinetics and effective trap of LiPSs. This work demonstrates the possibility of using the RPEN @CF interlayer for the enhanced electrochemical performances of Li-S batteries and other flexible energy storage devices.

19.
Neural Plast ; 2021: 4762027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721568

RESUMO

Background: The relationship between the levodopa challenge test (LDCT) and postoperative subthalamic nucleus-deep brain stimulation (STN-DBS) benefits is controversial in patients with Parkinson's disease (PD). We aim to evaluate the value of total levodopa response (TLR) and symptom levodopa response (SLR) in predicting postoperative improvement in different PD motor subtypes. Methods: Studies were split into a training set (147 patients) and a validation set (304 patients). We retrospectively collected data from 147 patients who received the Unified Parkinson's Disease Rating Scale- (UPDRS-) III and the Parkinson's Disease Questionnaire- (PDQ-) 39 evaluation. Patients were classified into tremor-dominant (TD), akinetic-rigid-dominant (AR), and mixed (MX) groups. Clinically important difference (CID) was employed to dichotomize DBS effects. For patients in each subtype group from the training set, we used the correlation and receiver operator characteristic (ROC) curve analyses to explore the strength of their relations. Areas under the curve (AUCs) were calculated and compared through the DeLong test. Results developed from the training set were applied into the validation set to predict postoperative improvement in different PD motor subtypes. Results: In the validation cohort, TLR significantly correlated with postoperative motor (p < 0.001) and quality of life (QOL) (p < 0.001) improvement in the MX group. The AUC between TLR and UPDRS-III (TU) is 0.800. The AUC between TLR and PDQ-39 (TP) is 0.770. An associated criterion in both TU and TP is around 50%. In the AR group, strong correlation was only found in SLR and PDQ-39 (SP) (p < 0.001). And the AUC of SP is significantly larger than that in TLR and PDQ-39 (TP) (p = 0.034). An associated criterion in SP is around 37%. No significant correlation was found in the TD group. Conclusions: We provide a more accurate judgment for LDCT. TLR strongly correlated with postoperative UPDRS-III and PDQ-39 improvement in MX patients. A TLR > 50% may indicate a higher possibility of clinically meaningful benefits from STN-DBS comparing to medication only. SLR can well predict QOL improvement in AR patients. Similarly, a SLR > 37% may indicate a higher possibility of clinically significant benefits from STN-DBS. LDCT provides limited information for TD patients.


Assuntos
Antiparkinsonianos/administração & dosagem , Estimulação Encefálica Profunda/normas , Julgamento , Levodopa/administração & dosagem , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Idoso , Estudos de Coortes , Estimulação Encefálica Profunda/métodos , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estudos Retrospectivos , Resultado do Tratamento
20.
J Am Chem Soc ; 143(41): 17292-17299, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34613737

RESUMO

Crystal phase engineering of noble-metal-based alloy nanomaterials paves a new way to the rational synthesis of high-performance catalysts for various applications. However, the controlled preparation of noble-metal-based alloy nanomaterials with unconventional crystal phases still remains a great challenge due to their thermodynamically unstable nature. Herein, we develop a robust and general seeded method to synthesize PdCu alloy nanomaterials with unconventional hexagonal close-packed (hcp, 2H type) phase and also tunable Cu contents. Moreover, galvanic replacement of Cu by Pt can be further conducted to prepare unconventional trimetallic 2H-PdCuPt nanomaterials. Impressively, 2H-Pd67Cu33 nanoparticles possess a high mass activity of 0.87 A mg-1Pd at 0.9 V (vs reversible hydrogen electrode (RHE)) in electrochemical oxygen reduction reaction (ORR) under alkaline condition, which is 2.5 times that of the conventional face-centered cubic (fcc) Pd69Cu31 counterpart, revealing the important role of crystal phase on determining the ORR performance. After the incorporation of Pt, the obtained 2H-Pd71Cu22Pt7 catalyst shows a significantly enhanced mass activity of 1.92 A mg-1Pd+Pt at 0.9 V (vs RHE), which is 19.2 and 8.7 times those of commercial Pt/C and Pd/C, placing it among the best reported Pd-based ORR electrocatalysts under alkaline conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...