Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 5(11): eaav4355, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31700996

RESUMO

Recently, several captivating topological structures of electric dipole moments (e.g., vortex, flux closure) have been reported in ferroelectrics with reduced size/dimensions. However, accurate polarization distribution of these topological ferroelectric structures has never been experimentally obtained. We precisely measure the polarization distribution of an individual ferroelectric vortex in PbTiO3/SrTiO3 superlattices at the subunit cell level by using the atomically resolved integrated differential phase contrast imaging in an aberration-corrected scanning transmission electron microscope. We find, in vortices, that out-of-plane polarization is larger than in-plane polarization, and that downward polarization is larger than upward polarization. The polarization magnitude is closely related to tetragonality. Moreover, the contribution of the Pb─O bond to total polarization is highly inhomogeneous in vortices. Our precise measurement at the subunit cell scale provides a sound foundation for mechanistic understanding of the structure and properties of a ferroelectric vortex and lattice-charge coupling phenomena in these topological ferroelectric structures.

2.
Phys Chem Chem Phys ; 21(38): 21381-21388, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31531469

RESUMO

In multiferroics, electromagnons have been recognized as a noticeable topic due to their indispensable role in magnetoelectric, magnetodielectric, and magnetocapacitance effects. Here, the electromagnons of Bi1-xNdxFeO3 (x = 0-0.2) nanoparticles are studied via terahertz time-domain spectroscopy, and the impacts of doping concentrations on electromagnons have been discussed. We found that the electromagnons in Bi1-xNdxFeO3 nanoparticles are associated with their phase transition. The total coupling weight of electromagnons is gradually increased in polar R3c structures and then reduces in the antipolar Pbam phase, and the weight in the antipolar phase is less than that of the pure R3c phase. Interestingly, a colossal electromagnon is observed at polar-antipolar and antiferromagnetic-ferromagnetic phase boundaries. Our work offers an avenue for designing and choosing materials with better magnetodielectric and magnetocapacitance properties.

3.
Ultramicroscopy ; 197: 1-10, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30439555

RESUMO

Pigment distributions have a critical role in the corrosion protection properties of organic paint coatings, but they are difficult to image in 3D over statistically significant volumes and at sufficiently high spatial resolutions required for detailed analysis. Here we report, for the first time, large volume analytical serial sectioning tomography of an organic composite coating using a xenon Plasma Focused Ion Beam (PFIB) combined with secondary electron imaging, energy dispersive X-ray (EDX) spectrum imaging (SI) and electron backscattered diffraction (EBSD). Together these techniques provide a comprehensive quantitative description of the physical orientation and distribution of the pigments within a model marine ballast tank coating, as well as their crystallographic and elemental characterisation. Polymers and organic materials are challenging because of their propensity for ion beam damage and possible beam heating effects. Our novel, optimised block preparation technique permits automated data acquisition with minimal operator intervention, and can have significant applications for the structural and chemical characterisation of a wide range of organic materials. Our results revealed that the paint contained 7.5 vol% aluminium flakes and 25 vol% quartz particles. The aluminium flakes were oriented parallel to the substrate surface, which is beneficial in terms of the corrosion protection capability of the coating.

4.
Small ; 14(44): e1803143, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30284372

RESUMO

In this paper, for the first time, a laser direct writing technique is reported to form S- and N-doped graphene patterns on thin (0.3 mm thickness) polyethylene terephthalate (PET) and glass substrates from a specially formulated organic polybenzimidazole (PBI) ink, without thermally affecting the substrates and without the need for a metallic precursor. Unlike standard graphene ink printing, postcuring at high temperatures is not needed here, thus avoiding potential substrate distortion and damages. A UV laser beam of 355 nm wavelength is used to generate photochemical reactions to break the CS bond (2.8 eV) from dimethyl sulfoxide (DMSO, a component of the PBI ink) and the CN bond (3.14 eV) of PBI and form N- and S-doped graphene on the substrates. The sheet resistance of the laser-induced graphene is as low as 12 Ω sq-1 on PET, matching that of indium-tin oxide (ITO). The laser-written doped graphene shows hydrophilic characteristics, unlike pristine graphene. The S- and N-doped graphene allows the tailoring of bandgaps and thus controlling electrical and chemical properties. The optical transparency of the written graphene is below 10% which could be improved in the future. Potential applications include printing of flexible circuits and sensors, and smart wearables.

5.
ACS Nano ; 12(9): 9558-9567, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30138564

RESUMO

The ability to electrically write magnetic bits is highly desirable for future magnetic memories and spintronic devices, though fully deterministic, reversible, and nonvolatile switching of magnetic moments by electric field remains elusive despite extensive research. In this work, we develop a concept to electrically switch magnetization via polarization modulated oxygen vacancies, and we demonstrate the idea in a multiferroic epitaxial heterostructure of BaTiO3/Fe3O4 fabricated by pulsed laser deposition. The piezoelectricity and ferroelectricity of BaTiO3 have been confirmed by macro- and microscale measurements, for which Fe3O4 serves as the top electrode for switching the polarization. X-ray absorption spectroscopy and X-ray magnetic circular dichroism spectra indicate a mixture of Fe2+ and Fe3+ at O h sites and Fe3+ at T d sites in Fe3O4, while the room-temperature magnetic domains of Fe3O4 are revealed by microscopic magnetic force microscopy measurements. It is demonstrated that the magnetic domains of Fe3O4 can be switched by not only magnetic fields but also electric fields in a deterministic, reversible, and nonvolatile manner, wherein polarization reversal by electric field modulates the oxygen vacancy distribution in Fe3O4, and thus its magnetic state, making it attractive for electrically written magnetic memories.

6.
Sci Rep ; 7(1): 4525, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28674444

RESUMO

Multilevel data ferroelectric tunnel junction is a breakthrough for further improving the storage density of ferroelectric random access memories. However, the application of these ferroelectric tunnel junctions is limited by high cost of epitaxial perovskite heterostructures, unsatisfactory retention and difficulty of exactly controlling the middle polarization states. In order to overcome the issues, we develop a ferroelectric tunnel junction with smooth ultrathin polycrystalline BiFeO3 (BFO) film. Through controlling the polarization state and oxygen vacancy migration using voltage pulses, we demonstrate that voltage-controlled barrier yields a memristive behavior in the device, in which the resistance variations exceed over two orders of magnitude. And we achieve multi logic states written and read easily using voltage pulses in the device. Especially the device is integrated with the silicon technology in modern microelectronics. Our results suggest new opportunity for ferroelectrics as high storage density nonvolatile memories.

7.
J Phys Chem Lett ; 8(8): 1804-1809, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28387118

RESUMO

Lead halide perovskite solar cells have recently emerged as a very promising photovoltaic technology due to their excellent power conversion efficiencies; however, the toxicity of lead and the poor stability of perovskite materials remain two main challenges that need to be addressed. Here, for the first time, we report a lead-free, highly stable C6H4NH2CuBr2I compound. The C6H4NH2CuBr2I films exhibit extraordinary hydrophobic behavior with a contact angle of ∼90°, and their X-ray diffraction patterns remain unchanged even after 4 h of water immersion. UV/vis absorption spectrum shows that C6H4NH2CuBr2I compound has an excellent optical absorption over the entire visible spectrum. We applied this copper-based light absorber in printable mesoscopic solar cell for the initial trial and achieved a power conversion efficiency of ∼0.5%. Our study represents an alternative pathway to develop low-toxic and highly stable organic-inorganic hybrid materials for photovoltaic application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA