Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 1048962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452305

RESUMO

Human babesiosis is a global emerging tick-borne disease caused by infection with intra-erythrocytic parasites of the genus Babesia. With the rise in human babesiosis cases, the discovery and development of new anti-Babesia drugs are essential. Phosphatidylinositol 4-kinase (PI4K) is a widely present eukaryotic enzyme that phosphorylates lipids to regulate intracellular signaling and trafficking. Previously, we have shown that MMV390048, an inhibitor of PI4K, showed potent inhibition against Babesia species, revealing PI4K as a druggable target for babesiosis. However, twice-administered, 7-day regimens failed to clear Babesia microti parasites from the immunocompromised host. Hence, in this study, we wanted to clarify whether targeting PI4K has the potential for the radical cure of babesiosis. In a B. microti-infected SCID mouse model, a 64-day-consecutive treatment with MMV390048 resulted in the clearance of parasites. Meanwhile, an atovaquone (ATO) resistant parasite line was isolated from the group treated with ATO plus azithromycin. A nonsynonymous variant in the Y272C of the cytochrome b gene was confirmed by sequencing. Likewise, MMV390048 showed potent inhibition against ATO-resistant parasites. These results provide evidence of PI4K as a viable drug target for the radical cure of babesiosis, which will contribute to designing new compounds that can eradicate parasites.


Assuntos
Babesia microti , Babesia , Babesiose , Gastrópodes , Camundongos , Humanos , Animais , Babesia microti/genética , Babesiose/tratamento farmacológico , Camundongos SCID , 1-Fosfatidilinositol 4-Quinase , Babesia/genética , Atovaquona , Hospedeiro Imunocomprometido
2.
J Agric Food Chem ; 70(47): 14831-14840, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36383360

RESUMO

Hesperetin-7-O-glucoside (Hes-7-G) is a typical flavonoid monoglucoside, which can be generated from hesperidin with the removal of rhamnose by hydrolysis. Untargeted and targeted metabolomics together with 16S rRNA gene sequencing were employed to explore the exact absorption site of Hes-7-G and its beneficial effect in mice. Intestinal 1H nuclear magnetic resonance (NMR)-based metabolomics screening showed that Hes-7-G is mainly metabolized in the small intestine of mice, especially the ileum segment. Quantification analysis of bile acids (BAs) in the liver, intestinal tract, feces, and serum of mice suggests that Hes-7-G intake accelerates the processes of biosynthesis and excretion of BAs, thus promoting digestion and lowing hepatic cholesterol and triglyceride. 16S rRNA gene sequencing reveals that Hes-7-G significantly elevates the diversity of the gut microbiota in mice, especially those bacteria associated with BA secondary metabolism. These results demonstrated that long-term dietary Hes-7-G plays beneficial roles in health by modulating the gut bacteria and BA metabolism in mice.


Assuntos
Microbioma Gastrointestinal , Hesperidina , Camundongos , Animais , Microbioma Gastrointestinal/genética , Hesperidina/metabolismo , RNA Ribossômico 16S/genética , Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Bactérias/genética , Bactérias/metabolismo , Glucosídeos/metabolismo , Camundongos Endogâmicos C57BL
3.
J Agric Food Chem ; 70(46): 14732-14743, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36351282

RESUMO

The sugar moieties of natural flavonoids determine their absorption, bioavailability, and bioactivity in humans. To explore structure-dependent bioactivities of quercetin, isoquercetin, and rutin, which have the same basic skeleton linking different sugar moieties, we systemically investigated the ameliorative effects of dietary these flavonoids on high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) of mice. Our results revealed that isoquercetin exhibits the strongest capability in improving NAFLD phenotypes of mice, including body and liver weight gain, glucose intolerance, and systemic inflammation in comparison with quercetin and rutin. At the molecular level, dietary isoquercetin markedly ameliorated liver dysfunction and host metabolic disorders in mice with NAFLD. At the microbial level, the three flavonoids compounds, especially isoquercetin, can effectively regulate the gut microbiota composition, such as genera Akkermansia, Bifidobacterium, and Lactobacillus, which were significantly disrupted in NAFLD mice. These comparative findings offer new insights into the structure-dependent activities of natural flavonoids for NAFLD treatment.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Quercetina/farmacologia , Glicosídeos/farmacologia , Camundongos Endogâmicos C57BL , Rutina , Flavonoides/farmacologia , Açúcares
4.
Ticks Tick Borne Dis ; 13(6): 102032, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36088665

RESUMO

Hemolymph infection facilitates pathogen invasion of internal tick tissues. However, the overall protein composition of the hemolymph has not been analyzed for any tick species. Here, a gel based liquid chromatography tandem mass spectrometry method was used to characterize the hemolymph proteome of Hyalomma asiaticum females during blood feeding. A total of 311 proteins were identified. Hemelipoglyco-carrier proteins, apolipophorin-like proteins, and intracellular proteins were the most abundant proteins. Thirteen immunity-related proteins were identified, including peptidoglycan recognition protein (PGRP), Thioester-containing proteins (TEPs), clip­serine proteinases, serpins and Dome. The presence of hemocytin, proclotting enzyme homologs, serpins, TEPs, factor D-like protein and the lack of coagulin, hemocyanin, and prophenoloxidase suggest ticks may possess a unique coagulation system, which is largely different from that of insects. Taken together, the study revealed the constitution, level, and possible functions of global hemolymph proteins in H. asiaticum and could facilitate the discovery of new targets for control of tick-borne pathogens.

5.
Front Bioeng Biotechnol ; 10: 926829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800333

RESUMO

Icariside I, the glycosylation product of icaritin, is a novel effective anti-cancer agent with immunological anti-tumor activity. However, very limited natural icariside I content hinders its direct extraction from plants. Therefore, we employed a computer-aided protein design strategy to improve the catalytic efficiency and substrate specificity of the α-L-rhamnosidase from Thermotoga petrophila DSM 13995, to provide a highly-efficient preparation method. Several beneficial mutants were obtained by expanding the active cavity. The catalytic efficiencies of all mutants were improved 16-200-fold compared with the wild-type TpeRha. The double-point mutant DH was the best mutant and showed the highest catalytic efficiency (k cat /K M : 193.52 s-1 M-1) against icariin, which was a 209.76-fold increase compared with the wild-type TpeRha. Besides, the single-point mutant H570A showed higher substrate specificity than that of the wild-type TpeRha in hydrolysis of different substrates. This study provides enzyme design strategies and principles for the hydrolysis of rhamnosyl natural products.

6.
Biomed Pharmacother ; 153: 113387, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35834991

RESUMO

BACKGROUND: Although therapeutic antibodies against immune checkpoints such as PD-1/PD-L1 have achieved unprecedented success in clinical tumor patients, there are still many patients who are ineffective or have limited responses to immune checkpoint blockade (ICB). Discovery of novel strategies for cancer immunotherapy including natural small molecules is needed. METHODS: Owing to its extremely low content in Epimedium genus, we firstly constructed a microbial cell factory to enzymatically biosynthesize icariside I, a natural flavonoid monosaccharide from Herbal Epimedium. Using a combination of targeted MS-based metabolomics, flow cytometric analysis, and biological assays, the therapeutic potentials of icariside I were subsequently investigated in vivo and in vitro. RESULTS: We find that icariside I markedly downregulates a series of intermediate metabolites such as kynurenine, kynurenic acid and xanthurenic acid and corresponding key enzymes involved in kynurenine-AhR pathway in both tumor cells and tumor-bearing mice. In vivo, oral administration of icariside I downregulates SLC7A8 and PAT4 transporters and AhR, thus inhibiting nuclear PD-1 in CTLs. Moreover, icariside I significantly upregulates CD8 + T cells in both peripheral blood and tumor tissues of tumor-bearing mice. Consequently, interferon-γ (IFN-γ) secreted by CD8 + T cells suppresses tumor growth through activation of JAK1-STAT1 signaling, thus inducing tumor cell apoptosis. CONCLUSIONS: These results suggest that icariside I could be an effective small molecule drug for tumor immunotherapy by blocking kynurenine-AhR pathway and tumor immune escape.


Assuntos
Cinurenina , Neoplasias , Animais , Linhagem Celular Tumoral , Flavonas , Imunoterapia , Camundongos , Neoplasias/patologia , Receptor de Morte Celular Programada 1/metabolismo , Evasão Tumoral , Microambiente Tumoral , Umbeliferonas
7.
Front Cell Infect Microbiol ; 12: 885985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719355

RESUMO

Babesiosis causes high morbidity and mortality in immunocompromised individuals. An earlier study suggested that lethal Babesia rodhaini infection in murine can be evaded by Babesia microti primary infection via activated macrophage-based immune response during the chronic stage of infection. However, whether the same immune dynamics occur during acute B. microti co-infection is not known. Hence, we used the mouse model to investigate the host immunity during simultaneous acute disease caused by two Babesia species of different pathogenicity. Results showed that B. microti primary infection attenuated parasitemia and conferred immunity in challenge-infected mice as early as day 4 post-primary infection. Likewise, acute Babesia co-infection undermined the splenic immune response, characterized by the significant decrease in splenic B and T cells leading to the reduction in antibody levels and decline in humoral immunity. Interestingly, increased macrophage and natural killer splenic cell populations were observed, depicting their subtle role in the protection. Pro-inflammatory cytokines (i.e. IFN-γ, TNF-α) were downregulated, while the anti-inflammatory cytokine IL-10 was upregulated in mouse sera during the acute phase of Babesia co-infection. Herein, the major cytokines implicated in the lethality caused by B. rodhaini infection were IFN- γ and IL-10. Surprisingly, significant differences in the levels of serum IFN- γ and IL-10 between co-infected survival groups (day 4 and 6 challenge) indicated that even a two-day delay in challenge infection was crucial for the resulting pathology. Additionally, oxidative stress in the form of reactive oxygen species contributed to the severity of pathology during acute babesiosis. Histopathological examination of the spleen showed that the erosion of the marginal zone was more pronounced during B. rodhaini infection, while the loss of cellularity of the marginal zone was less evident during co-infection. Future research warrants investigation of the roles of various immune cell subtypes in the mechanism involved in the protection of Babesia co-infected hosts.


Assuntos
Babesia , Babesiose , Coinfecção , Infecções , Animais , Citocinas , Interferon gama , Interleucina-10 , Camundongos , Camundongos Endogâmicos BALB C
8.
Exp Parasitol ; 232: 108190, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34848245

RESUMO

As a widely distributed arthropod and vector for various pathogens, Hyalomma asiaticum presents great risk and potential losses in animal husbandry. Effective measures, including the use of vaccines, are necessary for controlling ticks and tick-borne diseases. A concise understanding of the tick-host interaction associated molecules and pathways is required for vaccine development. In the present study, a protein containing a single-domain von Willebrand factor type C (HaSVC) was isolated from H. asiaticum and was subjected to functional identification. As a result, the full-length sequence of the HaSVC (506 bp) gene was obtained, which putatively encodes 100 amino acids with a predicted molecular mass of 11 kDa, excluding the 23-amino acid signal peptide. HaSVC contains 8 cysteines to form 4 disulfide bonds. The native HaSVC protein was detected in multiple tick organs. HaSVC neither attenuated the anti-coagulation process nor directly affected the blood feeding of adult ticks. However, the purified recombinant protein HaSVC (rHaSVC/GST) significantly increased the proliferation of mice spleen cells. This might suggest a regulatory function for HaSVC on inflammation, thus providing new information that may explain the "crosstalk" between ticks and hosts.


Assuntos
Vetores Aracnídeos/química , Ixodidae/química , Fator de von Willebrand/química , Sequência de Aminoácidos , Animais , Anticorpos/análise , Anticorpos/metabolismo , Sequência de Bases , Coagulação Sanguínea/efeitos dos fármacos , Western Blotting , DNA Complementar/química , Feminino , Interações Hospedeiro-Parasita , Masculino , Camundongos , Interferência de RNA , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Glândulas Salivares/química , Alinhamento de Sequência , Baço/citologia , Baço/efeitos dos fármacos , Fator de von Willebrand/genética , Fator de von Willebrand/isolamento & purificação
9.
Front Genet ; 13: 1039983, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712848

RESUMO

Lung adenocarcinoma is the most common subtype of lung cancer clinically, with high mortality and poor prognosis. Cuproptosis present a newly discovered mode of cell death characterized by aggregation of fatty acylated proteins, depletion of iron-sulfur clusterin, triggering of HSP70, and induction of intracellular toxic oxidative stress. However, the impact of cuproptosis on lung adenocarcinoma development, prognosis, and treatment has not been elucidated. By systematically analyzing the genetic alterations of 10 cuproptosis-related genes in lung adenocarcinoma, we found that CDKN2A, DLAT, LIAS, PDHA1, FDX1, GLS, and MTF1 were differentially expressed between lung cancer tissues and adjacent tissues. Based on the expression levels of 10 cuproptosis-related genes, we classified lung adenocarcinoma patients into two molecular subtypes using the Consensus clustering method, of which subtype 2 had a worse prognosis. Differential expression genes associated with prognosis between the two subtypes were obtained by differential analysis and survival analysis, and cox lasso regression was applied to construct a cuproptosis-related prognostic model. Its survival predicting ability was validated in three extrinsic validation cohorts. The results of multivariate cox analysis indicated that cuproptosis risk score was an independent prognostic predictor, and the mixed model formed by cupproptosis prognostic model combined with stage had more robust prognostic prediction accuracy. We found the differences in cell cycle, mitosis, and p53 signaling pathways between high- and low-risk groups according to GO and KEGG enrichment analysis. The results of immune microenvironment analysis showed that the enrichment score of activated dendritic cells, mast cells, and type 2 interferon response were down-regulated in the high-risk group, while the fraction of neutrophils and M0 macrophages were upregulated in the high-risk group. Compared with the high-risk group, subjects in the low-risk group had higher Immunophenoscore and may be more sensitive to immunotherapy. We identified seven chemotherapy agents may improve the curative effect in LUAD samples with higher risk score. Overall, we discovered that cuproptosis is closely related to the occurrence, prognosis, and treatment of lung adenocarcinoma. The cuproptosis prognostic model is a potential prognostic predictor and may provide new strategies for precision therapy in lung adenocarcinoma.

10.
Parasit Vectors ; 14(1): 612, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930413

RESUMO

BACKGROUND: It is well established that ecdysteroid hormones play an important role in arthropod development and reproduction, mediated by ecdysteroid receptors. Ticks are obligate hematophagous arthropods and vectors of pathogens. The salivary gland plays an essential role in tick growth and reproduction and in the transmission of pathogens to vertebrate hosts. During tick development, the salivary gland undergoes degeneration triggered by ecdysteroid hormones and activated by apoptosis. However, it is unknown how the ecdysteroid receptor and apoptosis regulate salivary gland degeneration. Here, we report the functional ecdysteroid receptor (a heterodimer of the ecdysone receptor [EcR] and ultraspiracle [USP]) isolated from the salivary gland of the tick Rhipicephalus haemaphysaloides and explore the molecular mechanism of ecdysteroid receptor regulation of salivary gland degeneration. METHODS: The full length of RhEcR and RhUSP open reading frames (ORFs) was obtained from the transcriptome. The RhEcR and RhUSP proteins were expressed in a bacterial heterologous system, Escherichia coli. Polyclonal antibodies were produced against synthetic peptides and were able to recognize recombinant and native proteins. Quantitative real-time PCR and western blot were used to detect the distribution of RhEcR, RhUSP, and RhCaspases in the R. haemaphysaloides organs. A proteomics approach was used to analyze the expression profiles of the ecdysteroid receptors, RhCaspases, and other proteins. To analyze the function of the ecdysteroid receptor, RNA interference (RNAi) was used to silence the genes in adult female ticks. Finally, the interaction of RhEcR and RhUSP was identified by heterologous co-expression assays in HEK293T cells. RESULTS: We identified the functional ecdysone receptor (RhEcR/RhUSP) of 20-hydroxyecdysone from the salivary gland of the tick R. haemaphysaloides. The RhEcR and RhUSP genes have three and two isoforms, respectively, and belong to a nuclear receptor family but with variable N-terminal A/B domains. The RhEcR gene silencing inhibited blood-feeding, blocked engorgement, and restrained salivary gland degeneration, showing the biological role of the RhEcR gene in ticks. In the ecdysteroid signaling pathway, RhEcR silencing inhibited salivary gland degeneration by suppressing caspase-dependent apoptosis. The heterologous expression in mammalian HEK293T cells showed that RhEcR1 interacts with RhUSP1 and induces caspase-dependent apoptosis. CONCLUSIONS: These data show that RhEcR has an essential role in tick physiology and represents a putative target for the control of ticks and tick-borne diseases.


Assuntos
Apoptose/fisiologia , Regulação da Expressão Gênica/fisiologia , Receptores de Esteroides/metabolismo , Rhipicephalus/metabolismo , Glândulas Salivares/fisiologia , Animais , Clonagem Molecular , Comportamento Alimentar , Feminino , Células HEK293 , Humanos , Fases de Leitura Aberta , Interferência de RNA , RNA de Cadeia Dupla , Receptores de Esteroides/genética
11.
J Agric Food Chem ; 69(43): 12753-12762, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34693717

RESUMO

Hesperetin-7-O-glucoside (Hes-7-G) is a naturally occurring flavonoid monoglucoside in Citri Reticulatae Pericarpium and exhibits relatively high biological activities. To explore the anti-inflammatory capacity of dietary Hes-7-G, lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and dextran sodium sulfate (DSS)-induced colitis mice were used here as in vitro and in vivo inflammation models. The results showed that Hes-7-G (5 µM) significantly restored cellular metabolic disorders and inflammation in LPS-stimulated RAW264.7 macrophages. In the in vivo study, dietary Hes-7-G (1 mg/kg body weight) markedly alleviated the inflammatory status in DSS-induced colitis mice, manifested by the recovered colon length from 5.91 ± 0.66 to 6.45 ± 0.17 cm, histopathological changes, and mRNA levels of colonic inflammatory factors including Tnf-α and Il-22. Furthermore, dietary Hes-7-G not only profoundly regulated the gut microbiota composition including phyla Bacteroidetes, Cyanobacteria, Desulfobacterota, and Deferribacteres and genus Enterorhabdus, Prevotellaceae, Gastranaerophilales, Enterococcus, Intestinimonas, Ruminococcaceae, and Eubacterium in the cecal contents but also especially adjusted the co-metabolites such as short chain fatty acids and indole metabolites (indole-3-propionic, indole acetic acid), which were markedly altered by DSS treatment in mice. These findings demonstrated that Hes-7-G has strong anti-inflammatory activity in vitro and in vivo and potential preventive or therapeutic effects for chronic inflammation diseases.


Assuntos
Colite , Animais , Anti-Inflamatórios/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo , Citocinas , Sulfato de Dextrana , Modelos Animais de Doenças , Glucosídeos/uso terapêutico , Hesperidina , Camundongos , Camundongos Endogâmicos C57BL
12.
Sensors (Basel) ; 21(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34640785

RESUMO

With the development of more/all electric aircraft, replacement of the traditional hydraulic servo actuator (HSA) with an electromechanical actuator (EMA) is becoming increasingly attractive in the aerospace field. This paper takes an EMA for a trimmable horizontal stabilizer as an example and focuses on how to establish a system model with an appropriate level of complexity to support the model-based system engineering (MBSE) approach. To distinguish the nonlinear effects that dominate the required system performance, an incremental approach is proposed to progressively introduce individual nonlinear effects into models with different complexity levels. Considering the special design and working principle of the mechanical power transmission function for this actuator, the nonlinear dynamics, including friction and backlash from the no-back mechanism, and the nonlinear compliance effect from the mechanical load path are mainly taken into consideration. The modelling principles for each effect are addressed in detail and the parameter identification method is utilized to model these nonlinear effects realistically. Finally, the responses from each model and experimental results are compared to analyze and verify how each individual nonlinearity affects the system's performance.


Assuntos
Fenômenos Fisiológicos Musculoesqueléticos , Dinâmica não Linear , Modelos Biológicos , Análise de Sistemas
14.
BMC Res Notes ; 14(1): 326, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433501

RESUMO

OBJECTIVES: Haemaphysalis longicornis is the most important tick species in Japan and has a wide range of vector capacity. Due to its veterinary and medical importance, this tick species has been used as a model for tick/vector biological studies. To identify the key molecules associated with physiological processes during blood feeding and embryogenesis, full-length cDNA libraries were constructed using the fat body, hemocytes-containing hemolymph, midgut, ovary and salivary glands of fed females and embryos of the laboratory colony of parthenogenetic H. longicornis. The sequences of cDNA from the salivary glands had been already released. However, the related information is still poor, and the other expressed sequence tags have not yet been deposited. DATA DESCRIPTION: A total of 39,113 expressed sequence tags were obtained and deposited at the DNA DataBank of Japan. There were 7745 sequences from embryos, 7385 from the fat body, 8303 from the hemolymph including hemocytes, 7385 from the midgut, and 8295 from the ovary. The data, including expressed sequence tags from the salivary glands was summarized into Microsoft Excel files. Sharing this data resource with the tick research community will be valuable for the identification of novel genes and advance the progress of tick research.


Assuntos
Ixodidae , Sequência de Aminoácidos , Animais , Sequência de Bases , Etiquetas de Sequências Expressas , Feminino , Biblioteca Gênica , Ixodidae/genética
15.
Front Cell Infect Microbiol ; 11: 713466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34414133

RESUMO

Ticks are obligate hematophagous ectoparasites. They are important vectors for many pathogens, of both medical and veterinary importance. Antibiotic residues in animal food are known, but very little is known about the effects of antibiotic residues in animals on the microbiome diversity of ticks and tick-borne pathogen transmission. We used a Haemaphysalis longicornis-infested mouse model to evaluate the effect of antibiotic usage on tick microbiome. Nymphal ticks were fed on an antibiotic cocktail-treated or water control mice. Adult ticks molted from nymphs fed on the antibiotic cocktail-treated mouse had a dysbiosed microbiota. Nymphal ticks were also fed on a B. microti-infected mice that had been treated with antibiotic cocktail or water. We found that the B. microti infection in adult ticks with a dysbiosed microbiota (44.7%) was increased compared with the control adult ticks (24.2%) by using qPCR targeting 18S rRNA gene. This may increase the risk of tick-borne pathogens (TBPs) transmission from adult ticks to a vertebrate host. These results show that an antibiotic-treated mouse can induce tick microbiota dysbiosis. Antibiotic treatment of B. microti-infected mouse poses the possibility of increasing transstadial transmission of B. microti from the nymph to the adult H. longicornis. These findings suggest that B. microti transmission may be exacerbated in high antibiotic usage areas.


Assuntos
Babesia microti , Microbiota , Carrapatos , Animais , Disbiose , Camundongos , Ninfa
16.
Parasit Vectors ; 14(1): 386, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348769

RESUMO

BACKGROUND: The salivary glands of female ticks degenerate rapidly by apoptosis and autophagy after feeding. Bcl-2 family proteins play an important role in the apoptosis pathways, but the functions of these proteins in ticks are unclear. We studied Bcl-2 and Bax homologs from Rhipicephalus haemaphysaloides and determined their functions in the degeneration of the salivary glands. METHODS: Two molecules containing conserved BH (Bcl-2 family homology) domains were identified and named RhBcl-2 and RhBax. After protein purification and mouse immunization, specific polyclonal antibodies (PcAb) were created in response to the recombinant proteins. Reverse transcription quantitative PCR (RT-qPCR) and western blot were used to detect the presence of RhBcl-2 and RhBax in ticks. TUNEL assays were used to determine the level of apoptosis in the salivary glands of female ticks at different feeding times after gene silencing. Co-transfection and GST pull-down assays were used to identify interactions between RhBcl-2 and RhBax. RESULTS: The RT-qPCR assay revealed that RhBax gene transcription increased significantly during feeding at all tick developmental stages (engorged larvae, nymphs, and adult females). Transcriptional levels of RhBcl-2 and RhBax increased more significantly in the female salivary glands than in other tissues post engorgement. RhBcl-2 silencing significantly inhibited tick feeding. In contrast, RhBax interference had no effect on tick feeding. TUNEL staining showed that apoptosis levels were significantly reduced after interference with RhBcl-2 expression. Co-transfection and GST pull-down assays showed that RhBcl-2 and RhBax could interact but not combine in the absence of the BH3 domain. CONCLUSIONS: This study identified the roles of RhBcl-2 and RhBax in tick salivary gland degeneration and finds that the BH3 domain is a key factor in their interactions.


Assuntos
Proteínas Proto-Oncogênicas/isolamento & purificação , Rhipicephalus/metabolismo , Proteína X Associada a bcl-2/isolamento & purificação , Animais , Apoptose , Feminino , Marcação In Situ das Extremidades Cortadas , Camundongos , Proteínas Proto-Oncogênicas/fisiologia , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Proteína X Associada a bcl-2/fisiologia
17.
Biomed Pharmacother ; 140: 111542, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34088571

RESUMO

Recent studies report that the gut microbiome can enhance systemic and antitumor immunity by modulating responses to antibody immunotherapy in melanoma patients. In this study, we found that icariside I, a novel anti-cancer agent isolated from Epimedium, significantly inhibited B16F10 melanoma growth in vivo through regulation of gut microbiota and host immunity. Oral administration of icariside I improved the microbiota community structure with marked restoration of Lactobacillus spp. and Bifidobacterium spp. abundance in the cecal contents of tumor-bearing mice. We also found that icariside I improves the levels of microbiota-derived metabolites such as short-chain fatty acids (SCFAs) and indole derivatives, consequently promoting repair of the intestinal barrier and reducing systemic inflammation of tumor-bearing mice. Icariside I exhibited strong immunological anti-tumor activity, directly manifested by up-regulation of multiple lymphocyte subsets including CD4+ and CD8+ T cells or NK and NKT cells in peripheral blood of tumor-bearing mice. Collectively, these results suggest that icariside I, via its microbiome remodeling and host immune regulation properties, may be developed as an anticancer drug.


Assuntos
Antineoplásicos/farmacologia , Flavonas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Melanoma/imunologia , Melanoma/terapia , Microbiota/efeitos dos fármacos , Umbeliferonas/farmacologia , Animais , Ceco/microbiologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ácidos Graxos Voláteis/imunologia , Fezes/microbiologia , Feminino , Imunoterapia/métodos , Indóis/farmacologia , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
18.
Exp Appl Acarol ; 84(3): 623-636, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34136982

RESUMO

Inhibitors of apoptosis (IAPs) are regulators of cell death and may play a role in the salivary glands of ticks during blood-feeding. We cloned the open reading frame (ORF) sequence of the IAP gene in Rhipicephalus haemaphysaloides (RhIAP). The RhIAP ORF of 1887 bp encodes a predicted protein of 607 amino acids, which contains three baculovirus IAP repeat domains and a RING finger motif. A real-time PCR assay showed that RhIAP mRNA was expressed in all the tick developmental stages (eggs, larvae, nymphs, and adults) and in all tissues examined (midgut, ovary, salivary glands, fat body, and hemolymph). Western blot showed that the protein level of RhIAP in salivary glands increased during tick blood-feeding and decreased towards the end of tick engorgement. RhIAP gene silencing in vitro experiments with salivary glands demonstrated that RhIAP could be effectively knocked down within 48 h after dsRNA treatment, and as a consequence, salivary glands displayed apoptotic morphology. RhIAP gene silencing also inhibited tick blood-feeding and decreased the engorgement rate. These data suggest that RhIAP might be a suitable RNAi target for tick control.


Assuntos
Rhipicephalus , Animais , Apoptose , Feminino , Ninfa , Interferência de RNA , Rhipicephalus/genética , Glândulas Salivares
19.
BMC Cardiovasc Disord ; 21(1): 266, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059001

RESUMO

BACKGROUND: Cardiovascular diseases have become the leading cause of death worldwide, and cardiac hypertrophy is the core mechanism underlying cardiac defect and heart failure. However, the underlying mechanisms of cardiac hypertrophy are not fully understood. Here we investigated the roles of Kallikrein 11 (KLK11) in cardiac hypertrophy. METHODS: Human and mouse hypertrophic heart tissues were used to determine the expression of KLK11 with quantitative real-time PCR and western blot. Mouse cardiac hypertrophy was induced by transverse aortic constriction (TAC), and cardiomyocyte hypertrophy was induced by angiotensin II. Cardiac function was analyzed by echocardiography. The signaling pathway was analyzed by western blot. Protein synthesis was monitored by the incorporation of [3H]-leucine. Gene expression was analyzed by quantitative real-time PCR. RESULTS: The mRNA and protein levels of KLK11 were upregulated in human hypertrophic hearts. We also induced cardiac hypertrophy in mice and observed the upregulation of KLK11 in hypertrophic hearts. Our in vitro experiments demonstrated that KLK11 overexpression promoted whereas KLK11 knockdown repressed cardiomyocytes hypertrophy induced by angiotensin II, as evidenced by cardiomyocyte size and the expression of hypertrophy-related fetal genes. Besides, we knocked down KLK11 expression in mouse hearts with adeno-associated virus 9. Knockdown of KLK11 in mouse hearts inhibited TAC-induced decline in fraction shortening and ejection fraction, reduced the increase in heart weight, cardiomyocyte size, and expression of hypertrophic fetal genes. We also observed that KLK11 promoted protein synthesis, the key feature of cardiomyocyte hypertrophy, by regulating the pivotal machines S6K1 and 4EBP1. Mechanism study demonstrated that KLK11 promoted the activation of AKT-mTOR signaling to promote S6K1 and 4EBP1 pathway and protein synthesis. Repression of mTOR with rapamycin blocked the effects of KLK11 on S6K1 and 4EBP1 as well as protein synthesis. Besides, rapamycin treatment blocked the roles of KLK11 in the regulation of cardiomyocyte hypertrophy. CONCLUSIONS: Our findings demonstrated that KLK11 promoted cardiomyocyte hypertrophy by activating AKT-mTOR signaling to promote protein synthesis.


Assuntos
Cardiomegalia/enzimologia , Miócitos Cardíacos/enzimologia , Biossíntese de Proteínas , Serina Endopeptidases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Idoso , Animais , Cardiomegalia/tratamento farmacológico , Cardiomegalia/genética , Cardiomegalia/patologia , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Inibidores MTOR/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Biossíntese de Proteínas/efeitos dos fármacos , Serina Endopeptidases/genética , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Regulação para Cima
20.
J Agric Food Chem ; 69(13): 3982-3991, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755449

RESUMO

As important signal metabolites within enterohepatic circulation, bile acids (BAs) play a pivotal role during the occurrence and development of diet-induced nonalcoholic fatty liver disease (NAFLD). Here, we evaluated the functional effects of BAs and gut microbiota contributing to sucralose consumption-induced NAFLD of mice. The results showed that sucralose consumption significantly upregulated the abundance of intestinal genera Bacteroides and Clostridium, which produced deoxycholic acid (DCA) accumulating in multiple biological matrixes including feces, serum, and liver of mice. Subsequently, elevated hepatic DCA, one of the endogenous antagonists of the farnesol X receptor (Fxr), inhibited hepatic gene expression including a small heterodimer partner (Shp) and Fxr leading to sucralose-induced NAFLD in mice. Dietary supplements with fructo-oligosaccharide or metformin markedly restored genera Bacteroides and Clostridium abundance and the DCA level of sucralose-consuming mice, which eventually ameliorated NAFLD. These findings highlighted the effects of gut microbiota and its metabolite DCA on sucralose-induced NAFLD of mice.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Ácidos e Sais Biliares , Ácido Desoxicólico , Fígado , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Sacarose/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...