Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(46): 51835-51845, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36346927

RESUMO

Ultrahigh Ni-rich quaternary layered oxides LiNi1-x-y-zCoxMnyAlzO2 (1 - x - y - z ≥ 0.9) are regarded as some of the most promising cathode candidates for lithium-ion batteries (LIBs) because of their high energy density and low cost. However, poor rate capacity and cycling performance severely limit their further commercial applications. Herein, an in situ coating strategy is developed to construct a uniform LiAlO2 layer. The NH4HCO3 solution is added to a NaAlO2 solution to form a weak alkaline condition, which can reduce the hydrolysis rate of NaAlO2, thus enabling uniform deposition of Al(OH)3 on the surface of a Ni0.9Co0.07Mn0.01Al0.02(OH)2 (NCMA) precursor. The LiAlO2-coated samples show enhanced cycling stability and rate capacity. The capacity retention of NCMA increases from 70.7% to 88.3% after 100 cycles at 1 C with an optimized LiAlO2 coating amount of 3 wt %. Moreover, the 3 wt % LiAlO2-coated sample also delivers a better rate capacity of 162 mAh g-1 at 5 C, while that of an uncoated sample is only 144 mAh g-1. Such a large improvement of the electrochemical performance should be attributed to the fact that a uniform LiAlO2 coating relieves harmful interfacial parasitic reactions and stabilizes the interface structure. Therefore, this in situ coating approach is a viable idea for the design of higher-energy-density cathode materials.

2.
Sensors (Basel) ; 22(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36016042

RESUMO

A rolling bearing fault diagnosis method based on whale gray wolf optimization algorithm-variational mode decomposition-support vector machine (WGWOA-VMD-SVM) was proposed to solve the unclear fault characterization of rolling bearing vibration signal due to its nonlinear and nonstationary characteristics. A whale gray wolf optimization algorithm (WGWOA) was proposed by combining whale optimization algorithm (WOA) and gray wolf optimization (GWO), and the rolling bearing signal was decomposed by using variational mode decomposition (VMD). Each eigenvalue was extracted as eigenvector after VMD, and the training and test sets of the fault diagnosis model were divided accordingly. The support vector machine (SVM) was used as the fault diagnosis model and optimized by using WGWOA. The validity of this method was verified by two cases of Case Western Reserve University bearing data set and laboratory test. The test results show that in the bearing data set of Case Western Reserve University, compared with the existing VMD-SVM method, the fault diagnosis accuracy rate of the WGWOA-VMD-SVM method in five repeated tests reaches 100.00%, which preliminarily verifies the feasibility of this algorithm. In the laboratory test case, the diagnostic effect of the proposed fault diagnosis method is compared with backpropagation neural network, SVM, VMD-SVM, WOA-VMD-SVM, GWO-VMD-SVM, and WGWOA-VMD-SVM. Test results show that the accuracy rate of WGWOA-VMD-SVM fault diagnosis is the highest, the accuracy rate of a single test reaches 100.00%, and the accuracy rate of five repeated tests reaches 99.75%, which is the highest compared with the above six methods. WGWOA plays a good optimization role in optimizing VMD and SVM. The signal decomposed by VMD is optimized by using the WGWOA algorithm without mode overlap. WGWOA has the better convergence performance than WOA and GWO, which further verifies its superiority among the compared methods. The research results can provide an effective improvement method for the existing rolling bearing fault diagnosis technology.


Assuntos
Algoritmos , Máquina de Vetores de Suporte , Humanos , Redes Neurais de Computação , Vibração
3.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166498, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35868483

RESUMO

BACKGROUND: Previous studies have suggested an important role for N6-methyladenosine (m6A) modification in the proliferation of glioma cells. N6, 2'-O-dimethyladenosine (m6Am) is another methylated form affecting the fate and function of most RNA. PCIF1 has recently been identified as the sole m6Am methyltransferase in mammalian mRNA. However, it remains unknown about the role of PCIF1 in the growth and survival of glioma cells. METHODS: We constructed glioma cell lines that stably downregulated/upregulated PCIF1, established intracranial xenograft models using these cell lines, and employed the following methods for investigations: CCK-8, EdU, colony formation, flow cytometry, qRT-PCR, Western blot, and immunohistochemistry. FINDINGS: Downregulating PCIF1 promoted glioma cell proliferation, while overexpressing PCIF1 showed the opposite effects. Overexpression of PCIF1 blocked cell cycle progression and induced apoptosis in glioma cells, which was further confirmed by alterations in the expression of cell checkpoint proteins and apoptotic markers. Interestingly, disruption of PCIF1 methyltransferase activity slightly reversed the effect of PCIF1 overexpression on cell proliferation, but had no significant reversal effects on cell cycle progression or apoptosis. Knockdown of PCIF1 promoted the growth of gliomas, while overexpressing PCIF1 inhibited tumor growth and prolonged the survival time of tumor-bearing mice. In addition, the mRNA and protein levels of PCIF1 were gradually decreased with the increase of WHO grade in glioma tissues, but there was no significant correlation with patient survival. INTERPRETATION: These results indicated that PCIF1 played a suppressing role in glioma growth and survival, which may not entirely depend on its methyltransferase activity.


Assuntos
Neoplasias Encefálicas , Glioma , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Glioma/metabolismo , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , Sincalida/metabolismo
5.
Biomed Pharmacother ; 151: 113098, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35594714

RESUMO

Urinary tract infections (UTI) are recognized as one of the most common infectious diseases worldwide, and uropathogenic Escherichia coli (UPEC) is the main causative agent of UTI. Dendrobium officinale polysaccharides (DOPs), the main effective ingredient in Dendrobium officinale, have been reported to possess an anti-inflammatory role. Whether DOPs can attenuate the inflammatory injury (pyroptosis) induced by UPEC remains unknown. The present study aimed to assess the protective effect and potential mechanism of DOPs in UPEC-induced pyroptosis. Cell viability of THP-1 differentiated macrophage cells with DOPs was determined using MTT assay. Pyroptosis by UPEC in macrophage cells with or not DOPs pre-treatment was evaluated with flow cytometry analysis, lactate dehydrogenase (LDH) assay, and proinflammatory cytokines secretion. Expression level of key proteins in the NLRP3/Caspase-1/GSDMD pyroptotic pathway was analyzed with western blot. Furthermore the effect of DOPs on ROS activation was investigated. Results indicated that DOPs attenuated UPEC-induced cell damage in macrophage cells, inhibited the activation of NLRP3 mediated inflammasome, subsequently decreased induction and activation of caspase-1/GSDMD, and reduced the secretion of pro-inflammatory cytokine (IL-1ß et al.). Moreover, pretreatment with DOPs significantly reduces ROS production, an important/putative pyroptosis stimulus signal. These results suggested that DOPs successfully mitigate UPEC-promoted pyroptosis in macrophage cells. The protective effects of DOPs are associated with the inhibition of the NLRP3/Caspase-1/GSDMD pathway and ROS signal activation.


Assuntos
Dendrobium , Macrófagos , Polissacarídeos , Piroptose , Escherichia coli Uropatogênica , Caspase 1/metabolismo , Dendrobium/química , Humanos , Inflamassomos/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Piroptose/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Escherichia coli Uropatogênica/metabolismo , Escherichia coli Uropatogênica/patogenicidade
6.
Cell Death Differ ; 29(10): 1941-1954, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35347234

RESUMO

Semaphorin 3A (Sema3A) has been recognized as a crucial regulator of morphogenesis and homeostasis over a wide range of organ systems. However, its function in cutaneous wound healing is poorly understood. In our study, we demonstrated that Sema3A adenovirus plasmids transfection limited keratinocyte proliferation and decreased migrative capacity as assessed by in vitro wound healing assay. Sema3A transduction inhibited TGF-ß1-mediated keratinocyte migration and EMT process. Besides, we applied mice with K14-Cre-mediated deletion of Sema3A and found that Sema3A depletion postponed wound closure with decreased re-epithelialization and matrix growth. Contrary to the results obtained with full-length Sema3A plasmids transfection, increased keratinocyte migration with recombinant Sema3A proteins resulted in quicker closure of the wounding area after a scratch. Further, exogenously applied recombinant Sema3A worked with EGF to maintain the activation of EGFR by interacting with NRP1 and thereby regulated the internalization of the EGFR-NRP1 complex. Taken together, these results indicated a paradoxical role of autonomous and non-autonomous Sema3A expression during wound healing. Combined administration of recombinant EGF and Sema3A proteins could accelerate the process of wound repair, thus providing promising treatment prospects in the future.


Assuntos
Semaforina-3A , Fator de Crescimento Transformador beta1 , Animais , Fator de Crescimento Epidérmico , Receptores ErbB , Camundongos , Semaforina-3A/genética , Semaforina-3A/metabolismo , Semaforina-3A/farmacologia , Cicatrização
7.
Int J Gen Med ; 15: 2361-2376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35264874

RESUMO

Background: Oral squamous cell carcinoma (OSCC) is one of the most prevalent malignancies worldwide. More recently, the administration of immune checkpoint inhibitors has opened up more possibilities for cancer treatment. Methods: We utilized a weighted gene co-expression network and the single sample gene set enrichment analysis (ssGSEA) algorithm in the TCGA database and identified a module highly correlated with regulatory T cell (Treg) abundance in OSCC. Subsequently, we verified the results by tissue microarrays and utilized immunohistochemical staining (IHC) to test the relationship between the expression level and clinicopathological staging. CCK-8, transwell, and wound healing assays were utilized to detect the functions of OSCC cells. Results: LCK, IL10RA, and TNFRSF1B were selected as biomarkers related to regulatory T cell infiltration. IHC staining showed significantly increased expression of LCK, IL10RA or TNFRSF1B in OSCC patients, and the expression levels were associated with tumor stage, lymph node metastasis, pathological stage, clinical status and the overall survival. In vitro experiments showed that LCK, IL10RA or TNFRSF1B knockdown efficiently impaired the proliferative, migrative, and invasive capacity in OSCC cell lines. Conclusion: We performed a series of bioinformatics analyses in OSCC and identified three oncogenic indicators: LCK, IL10RA, TNFRSF1B. These findings uncovered the potential prognostic values of hub genes, thus laying foundations for in-depth research in OSCC.

8.
Clin Oral Investig ; 26(1): 969-979, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34363102

RESUMO

OBJECTIVE: In the present study, we intend to assess the function of Sema3A in osteointegration of titanium implants both in vivo and in vitro. MATERIAL AND METHODS: Briefly, Sema3A was transfected in HBMSCs cells to detect its effect on osteogenesis. Subsequently, an in vivo rabbit model was established. Eighteen female rabbits were randomly assigned into three groups (n=6), and rabbits in the two treatment groups (OVX groups) were subjected to bilateral ovariectomy, while those in the control group were treated with sham operation. Twelve weeks later, we first examined expression levels of Sema3A in rabbits of the three groups. Titanium implants were implanted in rabbit proximal tibia. Specifically, rabbits in sham group were implanted with Matrigel, while the remaining in the OVX experimental group (OVX+Sema3A group) and OVX group were implanted with Matrigel containing Sema3A adeno-associated virus or empty vector, respectively. RESULTS: Histomorphometry results uncovered that rabbits in the OVX+Sema3A group had a significantly higher BIC compared with those of the OVX group on the 12th week of post-implantation. And compared with the OVX group, the maximum push-out force increased by 89.4%, and the stiffness increased by 39.4%, the toughness increased by 63.8% in the OVX+Sema3A group at 12 weeks. CONCLUSION: Sema3A has a positive effect on promoting early osseointegration of titanium implants in osteoporotic rabbits. CLINICAL RELEVANCE: Our research found that Sema3A can improve the osteogenic ability of bone marrow stem cells and promotes osseointegration during osteoporosis.


Assuntos
Implantes Dentários , Osteoporose , Animais , Feminino , Humanos , Osseointegração , Osteoporose/cirurgia , Ovariectomia , Coelhos , Tíbia , Titânio
9.
Cell Commun Signal ; 19(1): 121, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922580

RESUMO

BACKGROUND: Eukaryotic translation initiation factor 6 (eIF6), also known as integrin ß4 binding protein, is involved in ribosome formation and mRNA translation, acting as an anti-association factor. It is also essential for the growth and reproduction of cells, including tumor cells. Yet, its role in oral squamous cell carcinoma (OSCC) remains unclear. METHODS: The expression characteristics of eIF6 in 233 samples were comprehensively analyzed by immunohistochemical staining (IHC). Effects of eIF6 over-expression and knockdown on cell proliferation, migration and invasion were determined by CCK-8, wound healing and Transwell assays. Western blot, immunofluorescence (IF) and co-immunoprecipitation (co-IP) were performed for mechanical verification. RESULTS: We found that cytoplasmic eIF6 was abnormally highly expressed in OSCC tissues, and its expression was associated with tumor size and the clinical grade. Amplification of eIF6 promoted the growth, migration and invasion capabilities of OSCC cell lines in vitro and tumor growth in vivo. Through Western blot analysis, we further discovered that eIF6 significantly promotes epithelial-mesenchymal transformation (EMT) in OSCC cells, while depletion of eIF6 can reverse this process. Mechanistically, eIF6 promoted tumor progression by activating the AKT signaling pathway. By performing co-immunoprecipitation, we discovered a direct interaction between endogenous eIF6 and AKT protein in the cytoplasm. CONCLUSION: These results demonstrated that eIF6 could be a new therapeutic target in OSCC, thus providing a new basis for the prognosis of OSCC patients in the future. Video abstract.


Assuntos
Proteínas Proto-Oncogênicas c-akt
10.
Biochem Pharmacol ; 194: 114795, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34687671

RESUMO

AB38b is a novel biphenyl diester derivative synthesized in our laboratory, and it has been shown to improve the pathology of nephropathy and encephalopathy in diabetic mice. Glioblastoma (GBM) is the most lethal brain tumor, without effective drugs to date. The present study aims at investigating the role of AB38b in GBM growth and revealing the underlying molecular mechanisms. We found that AB38b administration showed a dose- and time-dependent inhibition on cell proliferation in multiple immortalized and primary GBM cell lines, but it had no significant effects on human astrocyte cell line. More importantly, AB38b blocked cell cycle progression, induced early apoptosis, decreased the activity of AKT/mTOR pathway, and increased the generation of reactive oxygen species (ROS) in GBM cells. Interestingly, antioxidant treatments could reverse the AB38b-mediated abovementioned effects; overexpression of constitutively active AKT could partially rescue the suppressive effects of Ab38b on GBM cell proliferation. In addition, AB38b administration inhibited the tumor growth, decreased the activity of AKT/mTOR pathway, and prolonged the survival time in GBM animal models, without any adverse influences on the important organs. These findings suggest that AB38b exerts anti-glioma activity via elevating the ROS generation followed by inhibiting the activity of AKT/mTOR pathway.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Inibidores do Crescimento/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Idoso , Animais , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Inibidores do Crescimento/química , Inibidores do Crescimento/uso terapêutico , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Huan Jing Ke Xue ; 42(8): 4005-4014, 2021 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-34309287

RESUMO

Fungi are important drivers of soil biogeochemical cycles. However, the characteristics of fungal community structures and functional groups within karst area (KA) soils remain understudied. Top soil samples were collected from paddy fields within a KA and non-karst area (NKA) containing red soil, in the Maocun karst experimental site of Guilin. The fungal community structure was analyzed via high-throughput sequencing, and FUNGuild was used to predict the function of fungi. The average relative abundance of Mucormycota in KA was 4.87%, which was significantly lower than that in NKA (29.92%); The average relative abundance of Mortierellomycetes in KA was 3.36%, which was significantly lower than that in NKA (29.15%). However, in KA, the average relative abundances of Glomeromycetes, Chytridiomycetes, and Exobasidiomycetes were 0.91%, 0.98%, and 0.23%, respectively, significantly higher than those in NKA (0.47%, 0.28%, and 0.04%). In KA, the average relative abundances of Ramophialophora and Emericellopsis were 2.39% and 1.25%, respectively, significantly higher than those in NKA (0.05% and 0.09%). However, the average relative abundance of Mortierella was 3.04% in KA, which was lower than that in NKA (28.34%). KA contained 32 dominant OTUs, including OTU141, 99, and 192. There was more connectivity between OTU69 (Emericellopsis terricola) and OTU138 (Westerdykella globosa) with the cation exchange capacity (CEC), exchangeable Ca2+, and total phosphorus (TP) in the correlation network. In KA, the average abundances of symbiotroph and pathotroph-saprotroph fungi were 1.29% and 1.50%, respectively, significantly higher than those in NKA (0.08% and 0.09%). The average abundance of the saprotroph-symbiotroph fungi in KA was 10.81%, which was significantly lower than that in NKA (63.69%). In KA, dung saprotroph-wood saprotroph fungi were dominant, with an abundance of 9.73%, whereas in NKA, endophyte-litter saprotroph-soil saprotroph-undefined saprotroph fungi were dominant, with an abundance of 45.93%. The above results suggest that the soil factors of KA, such as CEC, exchangeable Ca2+, and TP, alter the structures and functions of fungi.


Assuntos
Micobioma , Ascomicetos , Fungos , Hypocreales , Solo , Microbiologia do Solo
12.
Mol Cells ; 44(7): 468-480, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34230226

RESUMO

Ubiquitin D (UBD) is highly upregulated in many cancers, and plays a pivotal role in the pathophysiological processes of cancers. However, its roles and underlying mechanisms in oral squamous cell carcinoma (OSCC) are still unclear. In the present study, we investigated the role of UBD in patients with OSCC. Quantitative real-time polymerase chain reaction and Western blot were used to measure the expression of UBD in OSCC tissues. Immunohistochemistry assay was used to detect the differential expressions of UBD in 244 OSCC patients and 32 cases of normal oral mucosae. In addition, CCK-8, colony formation, wound healing and Transwell assays were performed to evaluate the effect of UBD on the cell proliferation, migration, and invasion in OSCC. Furthermore, a xenograft tumor model was established to verify the role of UBD on tumor formation in vivo. We found that UBD was upregulated in human OSCC tissues and cell lines and was associated with clinical and pathological features of patients. Moreover, the overexpression of UBD promoted the proliferation, migration and invasion of OSCC cells; however, the knockdown of UBD exerted the opposite effects. In this study, our results also suggested that UBD promoted OSCC progression through NF-κB signaling. Our findings indicated that UBD played a critical role in OSCC and may serve as a prognostic biomarker and potential therapeutic target for OSCC treatment.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Bucais/genética , NF-kappa B/metabolismo , Ubiquitinas/metabolismo , Animais , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Transdução de Sinais
13.
Food Res Int ; 143: 110313, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992332

RESUMO

Marine organisms have received mounting attention in antiaging activity due to their exclusive chemicals. This review aims at revealing and discussing prospective antiaging substance from marine macroalgae, micaroalgae, invertebrate and vertebrate. The activity and mechanism of the carbohydrate, protein, pigment, flavonoids, fatty acids, phenols from marine organisms were revealed through a variety of antiaging experimental models such as rats, Drosophila melanogaster and Caenorhabditis elegans. And meanwhile, the problems and prospects aspects were discussed for future research in this field. It was suggested that the antiaging functional ingredients from these marine organisms are alternative sources for synthetic ingredients that can contribute to consumer's well-being, as part of nutraceuticals, functional foods and cosmetics.


Assuntos
Organismos Aquáticos , Drosophila melanogaster , Animais , Suplementos Nutricionais , Alimento Funcional , Estudos Prospectivos , Ratos
15.
J Am Dent Assoc ; 152(9): 763-769, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33810831

RESUMO

BACKGROUND: Impacted maxillary canines are likely to be extracted in adult patients once orthodontic treatment is ruled out. The missing teeth are generally replaced with dental implants. CASE DESCRIPTION: The authors report the clinical case of a 45-year-old man who was missing the maxillary left canine for 30 years. Radiographic examination revealed that the maxillary permanent left canine was palatally impacted. The tooth was transplanted into the prepared socket on the missing tooth site and secured in the desired position with a flexible wire splint. During the 7-year follow-up, the tooth remained clinically sound with no radiographic manifestation of inflammatory or root resorption. PRACTICAL IMPLICATIONS: The prognosis for the transplanted tooth was favorable after long-term follow-up observation. This result suggests that autotransplantation of impacted maxillary canines can be a viable treatment option for some adult patients who expect to retain their natural teeth.


Assuntos
Maxila , Dente Impactado , Dente Canino/diagnóstico por imagem , Dente Canino/cirurgia , Seguimentos , Humanos , Masculino , Maxila/diagnóstico por imagem , Maxila/cirurgia , Pessoa de Meia-Idade , Dente Impactado/diagnóstico por imagem , Dente Impactado/cirurgia , Transplante Autólogo
16.
Int J Biol Sci ; 17(2): 430-447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613103

RESUMO

MicroRNAs are major post-transcriptional regulators responsible for the development of human cancers, including OSCC. The specific role of miR-619-5p in OSCC, however, is rarely reported. Cisplatin is one of the mostly applied chemotherapy drugs of OSCC. Nevertheless, drug resistance of cisplatin following the initial chemotherapy largely restricts its clinical benefits, and the mechanism of cisplatin resistance is unclear. This study intends to explore the biological function of miR-619-5p in the development of cisplatin resistance in OSCC cell lines and a xenograft model, as well as the potential molecular mechanism. Our results showed that miR-619-5p was down-regulated in OSCC samples and cisplatin-resistant OSCC cells. Ectopically expressed miR-619-5p inhibited proliferative, migratory and invasive abilities of OSCC cisplatin-resistant cells. The putative target gene ATXN3 was predicted by bioinformatic analysis and confirmed by dual-luciferase reporter assay. Importantly, ATXN3 was responsible for the regulatory effects of miR-619-5p on biological behaviors of cisplatin-resistant OSCC cells. Moreover, miR-619-5p mimics and ATXN3-siRNA significantly enhanced ATXN3 knockdown in both HN6/CDDPR and CAL27/CDDPR cells and inhibited expression of PI3K and AKT. In vivo evidences demonstrated that intratumoral injection of miR-619-5p agomir remarkably slowed down the growth of OSCC in xenograft mice. Collectively, microRNA-619-5p was the vital regulator for regulating cisplatin resistance of OSCC, which may be served as a potential therapeutic target.


Assuntos
Antineoplásicos/farmacologia , Ataxina-3/metabolismo , Cisplatino/uso terapêutico , MicroRNAs/fisiologia , Neoplasias Bucais/tratamento farmacológico , Proteínas Repressoras/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Adulto , Idoso , Linhagem Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
17.
Cancer Biol Med ; 18(1): 88-104, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33628587

RESUMO

Objective: BYSL, which encodes the Bystin protein in humans, is upregulated in reactive astrocytes following brain damage and/or inflammation. We aimed to determine the role and mechanism of BYSL in glioma cell growth and survival. Methods: BYSL expression in glioma tissues was measured by quantitative real-time PCR, Western blot, and immunohistochemistry. In vitro assays were performed to assess the role of BYSL in cell proliferation and apoptosis. Protein interactions and co-localization were determined by co-immunoprecipitation and double immunofluorescence. The expression and activity of the AKT/mTOR signaling molecules were determined by Western blot analysis, and the role of BYSL in glioma growth was confirmed in an orthotopic xenograft model. Results: The BYSL mRNA and protein levels were elevated in glioma tissues. Silencing BYSL inhibited glioma cell proliferation, impeded cell cycle progression, and induced apoptosis, whereas overexpressing BYSL protein led to the opposite effects. We identified a complex consisting of BYSL, RIOK2, and mTOR, and observed co-localization and positive correlations between BYSL and RIOK2 in glioma cells and tissues. Overexpressing BYSL or RIOK2 increased the expression and activity of AKT/mTOR signaling molecules, whereas downregulation of BYSL or RIOK2 decreased the activity of AKT/mTOR signaling molecules. Silencing BYSL or RIOK2 decreased the growth of the tumors and prolonged the lifespan of the animals in an orthotopic xenograft model. Conclusions: High expression of BYSL in gliomas promoted tumor cell growth and survival both in vitro and in vivo. These effects could be attributed to the association of BYSL with RIOK2 and mTOR, and the subsequent activation of AKT signaling.


Assuntos
Neoplasias Encefálicas/genética , Moléculas de Adesão Celular/genética , Glioma/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glioma/patologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Nanomaterials (Basel) ; 11(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34578521

RESUMO

MoS2/C nanocomposite coatings were deposited on a 304 stainless steel plate by unbalanced magnetron sputtering from carbon and molybdenum disulfide targets, and the target current of MoS2 was varied to prepare for coating with different carbon contents. The mechanical and tribological properties of the MoS2/C nanocomposite coating with different carbon contents were studied using a low-velocity impact wear machine based on kinetic energy control, and the substrate was used as the comparison material. The atomic content ratio of Mo to S in the MoS2/C coating prepared by unbalanced magnetron sputtering was approximately 1.3. The dynamic response and damage analysis revealed that the coating exhibited good impact wear resistance. Under the same experimental conditions, the wear depth of the MoS2/C coating was lower than that of the substrate, and the coating exhibited a different dynamic response process as the carbon content increased.

19.
Talanta ; 224: 121726, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379001

RESUMO

The outbreak of COVID-19 caused by a novel Coronavirus (termed SARS-CoV-2) has spread to over 210 countries around the world. Currently, reverse transcription quantitative qPCR (RT-qPCR) is used as the gold standard for diagnosis of SARS-CoV-2. However, the sensitivity of RT-qPCR assays of pharyngeal swab samples are reported to vary from 30% to 60%. More accurate and sensitive methods are urgently needed to support the quality assurance of the RT-qPCR or as an alternative diagnostic approach. A reverse transcription digital PCR (RT-dPCR) method was established and evaluated. To explore the feasibility of RT-dPCR in diagnostic of SARS-CoV-2, a total of 196 clinical pharyngeal swab samples from 103 suspected patients, 77 close contacts and 16 supposed convalescents were analyzed by RT-qPCR and then measured by the proposed RT-dPCR. For the 103 fever suspected patients, 19 (19/25) negative and 42 (42/49) equivocal tested by RT-qPCR were positive according to RT-dPCR. The sensitivity of SARS-CoV-2 detection was significantly improved from 28.2% by RT-qPCR to 87.4% by RT-dPCR. For 29 close contacts (confirmed by additional sample and clinical follow up), 16 (16/17) equivocal and 1 negative tested by RT-qPCR were positive according to RT-dPCR, which is implying that the RT-qPCR is missing a lot of asymptomatic patients. The overall sensitivity, specificity and diagnostic accuracy of RT-dPCR were 91%, 100% and 93%, respectively. RT-dPCR is highly accurate method and suitable for detection of pharyngeal swab samples from COVID-19 suspected patients and patients under isolation and observation who may not be exhibiting clinical symptoms.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/genética , Proteínas do Envelope de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/genética , Humanos , Faringe/virologia , Fosfoproteínas/genética , Poliproteínas/genética , Proteínas Virais/genética
20.
Front Oncol ; 10: 565225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178594

RESUMO

BYSL, which encodes the human bystin protein, is a sensitive marker for astrocyte proliferation during brain damage and inflammation. Previous studies have revealed that BYSL has important roles in embryo implantation and prostate cancer infiltration. However, the role and mechanism of BYSL in glioblastoma (GBM) cell migration and invasion remain unknown. We found that knockdown of BYSL inhibited cell migration and invasion, downregulated the expression of mesenchymal markers (e.g., ß-catenin and N-cadherin), and upregulated the expression of epithelial marker E-cadherin in GBM cell lines. Overexpression of BYSL promoted GBM cell migration, invasion, and epithelial-mesenchymal transition (EMT). In addition, the role of BYSL in promoting EMT was further confirmed in a glioma stem cell line derived from a GBM patient. Mechanistically, overexpression of BYSL increased the phosphorylation of GSK-3ß and the nuclear distribution of ß-catenin. Inhibition of GSK-3ß by 1-Azakenpaullone could partially reverse the effects of BYSL downregulation on the transcriptional activity of ß-catenin, the expression of EMT markers, and GBM cell migration/invasion. Moreover, immunohistochemical analysis showed strong expression of BYSL in GBM tissues, which was positively correlated with markers of mesenchymal GBM. These results suggest that BYSL promotes GBM cell migration, invasion, and EMT through the GSK-3ß/ß-catenin signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...