RESUMO
INTRODUCTION: To report a family with severe ocular disorder caused by double gene variants in causative genes of autosomal dominant cataracts, GJA8 and CRYGC. CASE PRESENTATION: A 5-month-old boy with poor vision and enophthalmos was referred to our hospital. Further ocular examination showed horizontal nystagmus, iris abnormalities with pinpoint pupils, and extreme microphthalmia with axial right and left eye lengths of 13.48 mm and 13.75 mm, respectively. Digenic heterozygous variants (c.269T > G, p.Leu90Arg in CRYGC and c.151G > A, p.Asp51Asn in GJA8) have been detected based on the whole exome sequencing. His mother, who carried variant in CRYGC (c.269T > G, p.Leu90Arg), had nuclear cataract, microcornea and nystagmus, while his father, who carried variant in GJA8 (c.151G > A, p.Asp51Asn), showed bilateral membranous cataract, microphthalmia, sclerocornea, glaucoma, and nystagmus. CONCLUSIONS: To our knowledge, this is the first report of a patient with variants in two cataract-related genes. Importantly, patient with double heterozygous variants in two dominantly inherited genes may suffer more serious phenotypes than those with heterozygous variant in a single dominantly inherited gene. Whole exome or genome sequencing is necessary for a genetic diagnosis in case of multiple gene variants.
RESUMO
C-Glycosides are important carbohydrate mimetics found in natural products, bioactive compounds, and marketed drugs. However, stereoselective preparation of this class of glycomimetics remains a significant challenge in organic synthesis. Herein, we report an excited-state palladium-catalyzed α-selective C-ketonylation strategy using readily available 1-bromosugars to access a range of C-glycosides. The reaction features excellent α-selectivity and mild conditions that tolerate a wide range of functional groups and complex molecular architectures. The resulting α-ketonylsugars can serve as versatile precursors for their ß-isomers and other C-glycosides. Preliminary experimental and computational studies of the mechanism suggest a radical pathway involving the formation of palladoradical and glycosyl radical that undergoes polarity-mismatched coupling with silyl enol ether, affording the desired α-ketonylsugars. Insight into the reactivity and mechanism will inspire new reaction development and provide straightforward access to both α- and ß-C-glycosides, greatly expanding the chemical and patent spaces of glycomimetics.
RESUMO
Metabolic reprogramming is a hallmark of cancer. Several studies have shown that inactivation of Krebs cycle enzymes, such as citrate synthase (CS) and fumarate hydratase (FH), facilitates aerobic glycolysis and cancer progression. MAEL has been shown to play an oncogenic role in bladder, liver, colon, and gastric cancers, but its role in breast cancer and metabolism is still unknown. Here, we demonstrated that MAEL promoted malignant behaviours and aerobic glycolysis in breast cancer cells. Mechanistically, MAEL interacted with CS/FH and HSAP8 via its MAEL domain and HMG domain, respectively, and then enhanced the binding affinity of CS/FH with HSPA8, facilitating the transport of CS/FH to the lysosome for degradation. MAEL-induced degradation of CS and FH could be suppressed by the lysosome inhibitors leupeptin and NH4 Cl, but not by the macroautophagy inhibitor 3-MA or the proteasome inhibitor MG132. These results suggested that MAEL promoted the degradation of CS and FH via chaperone-mediated autophagy (CMA). Further studies showed that the expression of MAEL was significantly and negatively correlated with CS and FH in breast cancer. Moreover, overexpression of CS or/and FH could reverse the oncogenic effects of MAEL. Taken together, MAEL promotes a metabolic shift from oxidative phosphorylation to glycolysis by inducing CMA-dependent degradation of CS and FH, thereby promoting breast cancer progression. These findings have elucidated a novel molecular mechanism of MAEL in cancer.
RESUMO
According to 2020 global cancer statistics, digestive system tumors (DST) are ranked first in both incidence and mortality. This study systematically investigated the immunologic gene set (IGS) to discover effective diagnostic and prognostic biomarkers. Gene set variation (GSVA) analysis was used to calculate enrichment scores for 4,872 IGSs in patients with digestive system tumors. Using the machine learning algorithm XGBoost to build a classifier that distinguishes between normal samples and cancer samples, it shows high specificity and sensitivity on both the validation set and the overall dataset (area under the receptor operating characteristic curve [AUC]: validation set = 0.993, overall dataset = 0.999). IGS-based digestive system tumor subtypes (IGTS) were constructed using a consistent clustering approach. A risk prediction model was developed using the Least Absolute Shrinkage and Selection Operator (LASSO) method. DST is divided into three subtypes: subtype 1 has the best prognosis, subtype 3 is the second, and subtype 2 is the worst. The prognosis model constructed using nine gene sets can effectively predict prognosis. Prognostic models were significantly associated with tumor mutational burden (TMB), tumor immune microenvironment (TIME), immune checkpoints, and somatic mutations. A composite nomogram was constructed based on the risk score and the patient's clinical information, with a well-fitted calibration curve (AUC = 0.762). We further confirmed the reliability and validity of the diagnostic and prognostic models using other cohorts from the Gene Expression Omnibus database. We identified diagnostic and prognostic models based on IGS that provide a strong basis for early diagnosis and effective treatment of digestive system tumors.
RESUMO
Iridium nanoparticles with an average size of 1.7 nm (Tar-IrNPs) were synthesized by the reduction of IrCl3 with NaBH4 in the presence of tartaric acid. As prepared Tar-IrNPs showed not only oxidase, peroxidase and catalase activities but also exhibited unprecedented laccase-like activity, which can catalyze the oxidation of the substrates o-phenylenediamine (OPD) and p-phenylenediamine (PPD) accompanied by significant color changes. The superb catalytic performance is evidenced by the fact that Tar-IrNPs can achieve better laccase-like activity with only 2.5% of the dosage of natural laccase. Furthermore, they also exhibited superior thermal stability and broader pH adaptability (2.0-11) over that of natural laccase. Tar-IrNPs can retain more than 60% of their initial activity at 90 °C, while the natural laccase has totally lost its activity at 70 °C. At a prolonged reaction time, the oxidation products of OPD and PPD can form precipitates due to oxidation induced polymerization. Thus Tar-IrNPs have been successfully used for the determination and degradation of PPD and OPD.
RESUMO
Phytoremediation is a widely accepted bioremediation method of treating heavy metal contaminated soils. Nevertheless, the remediation efficiency in multi-metal contaminated soils is still unsatisfactory attributable to susceptibility to different metals. To isolate root-associated fungi for improving phytoremediation efficiency in multi-metal contaminated soils, the fungal flora in root endosphere, rhizoplane, rhizosphere of Ricinus communis L. in heavy metal contaminated soils and non-heavy metal contaminated soils were compared by ITS amplicon sequencing, and then the critical fungal strains were isolated and inoculated into host plants to improve phytoremediation efficiency in Cd, Pb, and Zn-contaminated soils. The fungal ITS amplicon sequencing analysis indicated that the fungal community in root endosphere was more susceptible to heavy metals than those in rhizoplane and rhizosphere soils and Fusarium dominated the endophytic fungal community of R. communis L. roots under heavy metal stress. Three endophytic strains (Fusarium sp. F2, Fusarium sp. F8, and Fusarium sp. F14) isolated from Ricinus communis L. roots showed high resistances to multi-metals and possessed growth-promoting characteristics. Biomass and metal extraction amount of R. communis L. with Fusarium sp. F2, Fusarium sp. F8, and Fusarium sp. F14 inoculation in Cd-, Pb- and Zn-contaminated soils were significantly higher than those without the inoculation. The results suggested that fungal community analysis-guided isolation could be employed to obtain desired root-associated fungi for enhancing phytoremediation of multi-metal contaminated soils.
RESUMO
Pyroxasulfone (PYS) is an isoxazole herbicide favored for its high activity. However, the metabolic mechanism of PYS in tomato plants and the response mechanism of tomato to PYS are still lacking. In this study, it was found that tomato seedlings had a strong ability to absorb and translocate PYS from roots to shoots. The highest accumulation of PYS was in the apex tissue of the tomato shoots. Using UPLC-MS/MS, five metabolites of PYS were detected and identified in tomato plants, and their relative contents in different parts of tomato plants varied greatly. The serine conjugate, DMIT [5, 5-dimethyl-4, 5-dihydroisoxazole-3-thiol (DMIT)] &Ser, was the most abundant metabolites of PYS in tomato plants. In tomato plants, the conjugation of thiol-containing metabolic intermediates of PYS to serine may mimic the cystathionine ß-synthase-catalyzed condensation of serine and homocysteine (in the pathway sly00260 sourced from KEGG database). This study ground breakingly proposed that serine may play an important role in plant metabolism of PYS and fluensulfone (whose molecular structure is similar to PYS). PYS and atrazine (whose toxicity profile is similar to PYS but not conjugate with serine) produced different regulatory outcomes for endogenous compounds in the pathway sly00260. Differential metabolites in tomato leaves exposed to PYS compared with the control, including amino acids, phosphates, and flavonoids, may play important roles in tomato response to PYS stress. This study provides inspiration for the biotransformation of sulfonyl-containing pesticides, antibiotics and other compounds in plants.
RESUMO
Purpose: In previous studies, biallelic LOXL3 variants have been shown to cause autosomal recessive Stickler syndrome in one Saudi Arabian family or autosomal recessive early-onset high myopia (eoHM, MYP28) in two Chinese families. The current study aims to elucidate the clinical and genetic features of LOXL3-associated MYP28 in seven new families and two previously published families. Methods: LOXL3 variants were detected based on the exome sequencing data of 8389 unrelated probands with various ocular conditions. Biallelic variants were identified through multiple online bioinformatic tools, comparative analysis, and co-segregation analysis. The available clinical data were summarized. Results: Biallelic LOXL3 variants were exclusively identified in nine of 1226 families with eoHM but in none of the 7163 families without eoHM (P = 2.97 × 10-8, Fisher's exact test), including seven new and two previously reported families. Seven pathogenic variants were detected, including one nonsense (c.1765C>T/p.Arg589*), three frameshift (c.39dupG/p.Leu14Alafs*21; c.544delC/p.Leu182Cysfs*3, c.594delG/p.Gln199Lysfs*35), and three missense (c.371G>A/p.Cys124Tyr; c.1051G>A/p.Gly351Arg; c.1669G>A/p.Glu557Lys) variants. Clinical data of nine patients from nine unrelated families revealed myopia at the first visit at about 5 years of age, showing slow progression with age. Visual acuity at the last visit ranged from 0.04 to 0.9 (median age at last visit = 5 years, range 3.5-15 years). High myopic fundus changes, observed in all nine patients, were classified as tessellated fundus (C1) in five patients and diffuse choroidal atrophy (C2) in four patients. Electroretinograms showed mildly reduced cone responses and normal rod responses. Except for high myopia, no other specific features were shared by these patients. Conclusions: Biallelic LOXL3 variants exclusively presenting in nine unrelated patients with eoHM provide firm evidence implicating MYP28, with an estimated prevalence of 7.3 × 10-3 in eoHM and of about 7.3 × 10-5 in the general population for LOXL3-associated eoHM. So far, MYP28 represents a common type of autosomal recessive extreme eoHM, with a frequency comparable to LRPAP1-associated MYP23.
Assuntos
Miopia , Humanos , Pré-Escolar , Criança , Adolescente , Mutação , Arábia Saudita/epidemiologia , Fenótipo , Miopia/genética , Linhagem , Aminoácido Oxirredutases/genéticaRESUMO
OBJECTIVES: Enrichment for therapy-resistant cancer stem cells hampers the treatment of triple-negative breast cancer. Targeting these cells via suppression of Notch signalling can be a potential therapeutic strategy. This study aimed to uncover the mode of action of a new indolocarbazole alkaloid loonamycin A against this incurable disease. METHODS: The anticancer effects were examined in triple-negative breast cancer cells using in vitro methods, including cell viability and proliferation assays, wound-healing assay, flow cytometry and mammosphere formation assay. RNA-seq technology was used to analyse the gene expression profiles in loonamycin A-treated cells. Real-time RT-PCR and western blot were to evaluate the inhibition of Notch signalling. KEY FINDINGS: Loonamycin A has stronger cytotoxicity than its structural analog rebeccamycin. Besides inhibiting cell proliferation and migration, loonamycin A reduced CD44high/CD24low/- sub-population, mammosphere formation, as well as the expression of stemness-associated genes. Co-administration of loonamycin A enhanced antitumour effects of paclitaxel by inducing apoptosis. RNA sequencing results showed that loonamycin A treatment caused the inhibition of Notch signalling, accompanied by the decreased expression of Notch1 and its targeted genes. CONCLUSIONS: These results reveal a novel bioactivity of indolocarbazole-type alkaloids and provide a promising Notch-inhibiting small molecular candidate for triple-negative breast cancer therapy.
RESUMO
In this issue of Structure, Mabanglo et al. characterize five ClpP agonists termed TRs. The co-crystal structures reveal more robust shape and charge complementarities than the anti-cancer agent ONC201. These novel compounds are of potential therapeutic interest because they enhance ClpP proteolytic activity and have an inhibitory effect on tumor cell growth.
Assuntos
Endopeptidase Clp , Humanos , Proteólise , Endopeptidase Clp/genéticaRESUMO
Differently from epidermal growth factor receptor (EGFR) 19Del and L858R mutations, the panoramic description of uncommon EGFR mutations is far from mature. Our understanding of its population characteristics, treatment response, and drug resistance mechanisms needs urgent expansion and deepening. Our study enrolled 437 patients with non-small-cell lung cancer from four clinical centers and who had uncommon EGFR mutations. The clinical characteristics of all patients and the treatment outcomes of 190 advanced patients who received pharmacotherapy were analyzed. Moreover, the acquired resistance mechanisms were explored based on 53 tissue or liquid re-biopsy data in 45 patients. Patients with EGFR 20ins had a shorter survival time compared with patients with non-20ins mutations. In total, 149 cases had received EGFR-tyrosine kinase inhibitors (TKI); afatinib was significantly superior to other EGFR-TKIs both in ORR and mPFS in all uncommon mutations and especially in the L861Q group. The most common acquired drug resistance mechanism was MET amplification, followed by EGFR T790M, which was significantly different from common EGFR mutations.
RESUMO
Learned helplessness (LH) is an important concept in nursing. This study aimed to adapt and translate the Arthritis Helplessness Index scale into a Chinese version of an LH scale for maintenance hemodialysis patients in China (LHS-MHD-C), and to validate its psychometric properties. Data collected included LHS-MHD-C, as well as the Hospital Depression Scale (HADS-D), and the Beck Hopelessness Scale (BHS) for assessing LHS-MHD-C's criterion validity (predictive and concurrent, respectively). The expert consultation and the pilot study demonstrated semantic and conceptual equivalence and content validity (except for Item 3, the item content validity ranged from 0.82 to 1, and the scale content validity was 0.95). An exploratory factor analysis (n = 146) eliminated three items and accepted 11 items for the two factors, explaining 63.87% of the total variance. A CFA (n = 218) showed that the two-factors structure was consistent with the LH theory. The LHS-MHD-C can distinguish between maintenance hemodialysis (MHD) patients of different ages, education, working status, monthly income, and MHD duration. The scale had good concurrent validity with the BHS (r = .78, p < 0.01). Using the HADS-D as a criterion, the LHS-MHD-C showed a sensitivity of 86.2% and a specificity of 96.8%. A total score of 36.5 may be the best cut-off value for predicting MHD patients' depression. The scale showed good reliabilities (Cronbach's α value of .759, test-retest reliability of 0.772, and split-half reliability of 0.774). This study found that the LHS-MHD-C is a reliable and valid scale for assessing Chinese MHD patients' helplessness.
Assuntos
Comparação Transcultural , Desamparo Aprendido , Humanos , Psicometria , Reprodutibilidade dos Testes , Projetos Piloto , Inquéritos e Questionários , Diálise Renal , ChinaRESUMO
BACKGROUND: While autophagy is essential for stem cells' self-renewal and differentiation, its effect on bone marrow mesenchymal stem cells (BMSCs) remains unclear. This study aimed to investigate the interaction between autophagy and osteogenic differentiation using rapamycin (RAPA), a classical autophagy agonist with osteo-regulatory effects. METHODS: Rat BMSC's autophagy was analyzed after osteoinduction (0, 7, 14, and 21 d) by western blotting, immunofluorescence, and real-time quantitative polymerase chain reaction (RT-qPCR). In addition, we evaluated osteogenic differentiation using alizarin red staining, alkaline phosphatase assays, and RT-qPCR/Western blotting quantification of bone sialoprotein, type 1 collagen, alkaline phosphatase, osteopontin, and Runt-related transcription factor 2 mRNA and protein levels. RESULTS: The BMSC's basal autophagy level gradually decreased during osteogenic differentiation with a decrease in BECN1 level and the lipidated (LC3-II) to unlipidated (LC3-I) microtubule-associated protein 1 light chain 3 ratio and an increase in the expression of selective autophagic target p62. In contrast, it increased with increasing RAPA concentration. Furthermore, while 2 nM RAPA promoted BMSC osteogenic differentiation on days 7 and 14, 5 nM RAPA inhibited osteogenesis on days 14 and 21. Inhibition of autophagy by the inhibitor 3-methyladenine could impair RAPA's osteogenesis-enhancing effect on BMSCs. CONCLUSIONS: The BMSC's basal autophagy level decreased over time during osteogenic differentiation. However, an appropriate RAPA concentration promoted BMSC osteogenic differentiation via autophagy activation.
Assuntos
Células-Tronco Mesenquimais , Osteogênese , Sirolimo , Animais , Ratos , Fosfatase Alcalina/metabolismo , Autofagia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Células Cultivadas , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Sirolimo/farmacologiaRESUMO
Display and power supply have been two essential and independent cornerstones of modern electronics. Here, we report a lithium-plasmon-based low-powered dynamic color display with intrinsic dual functionality (plasmonic display and energy recycling unit) which is a result of the electric-field-driven transformation of nanostructured lithium metals. Dynamic color displays are enabled by plasmonic transformation through electrodeposition (electrostripping) of lithium metals during the charging (discharging) process, while the consumed energy for coloring can be retrieved in the inverse process respectively. Energy recycling of lithium metals brings energy consumption down to 0.390 mW cm-2 (0.105 mW cm-2) for the active (static) coloration state of a proof-of-concept display/battery device, which approaches nearly-zero-energy-consumption in the near-100%-energy-efficiency limit of commercial lithium batteries. Combining the subwavelength feature of plasmonics with effective energy recycling, the lithium-plasmon-based dynamic display offers a promising route towards next-generation integrated photonic devices, with the intriguing advantages of low energy consumption, a small footprint and high resolution.
RESUMO
BACKGROUND: Dynamic navigation systems have a broad application prospect in digital implanting field. This study aimed to explore and compare the dynamic navigation system learning curve of dentists with different implant surgery experience through dental models. METHODS: The nine participants from the same hospital were divided equally into three groups. Group 1 (G1) and Group 2 (G2) were dentists who had more than 5 years of implant surgery experience. G1 also had more than 3 years of experience with dynamic navigation, while G2 had no experience with dynamic navigation. Group 3 (G3) consisted of dentists with no implant surgery experience and no experience with dynamic navigation. Each participant sequentially placed two implants (31 and 36) on dental models according to four practice courses (1-3, 4-6, 7-9, 10-12 exercises). Each dentist completed 1-3, 4-6 exercises in one day, and then 7-9 and 10-12 exercises 7 ± 1 days later. The preparation time, surgery time and related implant accuracy were analyzed. RESULTS: Three groups placed 216 implants in four practice courses. The regressions for preparation time (F = 10.294, R2 = 0.284), coronal deviation (F = 4.117, R2 = 0.071), apical deviation (F = 13.016, R2 = 0.194) and axial deviation (F = 30.736, R2 = 0.363) were statistically significant in G2. The regressions for preparation time (F = 9.544, R2 = 0.269), surgery time (F = 45.032, R2 = 0.455), apical deviation (F = 4.295, R2 = 0.074) and axial deviation (F = 21.656, R2 = 0.286) were statistically significant in G3. Regarding preparation and surgery time, differences were found between G1 and G3, G2 and G3. Regarding implant accuracy, differences were found in the first two practice courses between G1 and G3. CONCLUSIONS: The operation process of dynamic navigation system is relatively simple and easy to use. The linear regression analysis showed there is a dynamic navigation learning curve for dentists with or without implant experience and the learning curve of surgery time for dentists with implant experience fluctuates. However, dentists with implant experience learn more efficiently and have a shorter learning curve.
Assuntos
Implantes Dentários , Cirurgia Assistida por Computador , Humanos , Curva de Aprendizado , Cirurgia Assistida por Computador/métodos , Implantação Dentária Endóssea/métodos , Projetos de PesquisaRESUMO
BACKGROUND: Group A streptococcus is human-restricted gram-positive pathogen, responsible for various clinical presentations from mild epidermis infections to life threatened invasive diseases. Under COVID-19 pandemic,. the characteristics of the epidemic strains of GAS could be different. PURPOSE: To investigate epidemiological and molecular features of isolates from GAS infections among children in Beijing, China between January 2020 and December 2021. Antimicrobial susceptibility profiling was performed based on Cinical Laboratory Sandards Institute. Distribution of macrolide-resistance genes, emm types, and superantigens was examined by polymerase chain reaction. RESULTS: 114 GAS isolates were collected which were frequent resistance against erythromycin (94.74%), followed by clindamycin (92.98%), tetracycline (87.72%). Emm12 (46.49%), emm1 (25.44%) were dominant emm types. Distribution of ermB, ermA, and mefA gene was 93.85%, 2.63%, and 14.04%, respectively. Frequent superantigenes identified were smeZ (97.39%), speG (95.65%), and speC (92.17%). Emm1 strains possessed smeZ, ssa, and speC, while emm12 possessed smeZ, ssa, speG, and speC. Erythromycin resistance was predominantly mediated by ermB. Scarlet fever strains harbored smeZ (98.81%), speC (94.05%). Impetigo strains harbored smeZ (88.98%), ssa (88.89%), and speC (88.89%). Psoriasis strains harbored smeZ (100%). CONCLUSIONS: Under COVID-19 pandemic, our collections of GAS infection cutaneous diseases decreased dramatically. Epidemiological analysis of GAS infections among children during COVID-19 pandemic was not significantly different from our previous study. There was a correlation among emm, superantigen gene and disease manifestations. Long-term surveillance and investigation of emm types and superantigens of GAS prevalence are imperative.
Assuntos
COVID-19 , Infecções Estreptocócicas , Criança , Humanos , Pequim/epidemiologia , Antígenos de Bactérias/genética , COVID-19/epidemiologia , Infecções Estreptocócicas/epidemiologia , Streptococcus pyogenes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , China/epidemiologia , Eritromicina/farmacologia , Eritromicina/uso terapêutico , Superantígenos/genética , Testes de Sensibilidade MicrobianaRESUMO
Exploring novel dithienylethenes (DTEs) with efficient photochromism has drawn increasing attention in virtue of the potential applications for photoelectric functional materials. In this contribution, we presented two novel acceptor-acceptor (A-A) type DTE derivatives (4a and 4b) by incorporating the diestervinyl moieties with strong electron-withdrawing capacity into two sides of DTE skeleton. The corresponding structures were well confirmed by the NMR (1H and 13C) and HRMS. When irradiated alternately with ultraviolet and visible light, 4a and 4b showed efficient photochromism in toluene, chloroform and DMSO, clearly implying a solvent-dependence feature. Moreover, excellent photoswitching behaviors were also observed in the poly(methyl methacrylate) (PMMA) film. The density functional theory (DFT) calculations suggested that strong Acceptor-Acceptor effect plays a dominative role in the efficient photochromic performance. Hence, this study will provide a useful guidance for developing high-performance DTE derivatives in multi-media.
RESUMO
The aim of this study is to explore the association between depression and obstructive sleep apnea, and cardiovascular disease morbidity/all-cause mortality using Sleep Heart Health Study data. This post hoc analysis of a prospective study used patient data from the Sleep Heart Health Study conducted between 1995 and 1998. The association between depression and obstructive sleep apnea, and cardiovascular disease morbidity/all-cause mortality was explored using multivariable Cox proportional hazard models. A total of 4918 participants, 656 (13.3%) with obstructive sleep apnea (obstructive sleep apnea group), 1614 (32.8%) with depression (depression group), 482 (9.8%) with depression and obstructive sleep apnea (depression and obstructive sleep apnea group), and 2166 (44%) with neither obstructive sleep apnea nor depression (health group), were included. The incidence of cardiovascular disease was 24.5%, 31.0%, 31.6% and 41.7% for healthy, depression, obstructive sleep apnea, and depression and obstructive sleep apnea groups, respectively. The risk of cardiovascular disease in depression and obstructive sleep apnea participants was increased compared with that in healthy participants, which was consistent across various definitions of obstructive sleep apnea (hazard ratio [95% confidence interval]: 1.24 [1.06-1.47]; 1.25 [1.05-1.49]; 1.28 [1.06-1.54]; 1.55 [1.22-1.96] for apnea-hypopnea indexâ ≥ 10 per hr, 15 per hr, 20 per hr, 30 per hr, respectively). The risk of all-cause mortality was increased in the depression and obstructive sleep apnea participants (hazard ratio: 1.46; 95% confidence interval: 1.07-1.99) compared with that in healthy participants when the definition of obstructive sleep apnea was apnea-hypopnea indexâ ≥ 30. Participants with depression and obstructive sleep apnea might be at a greater risk of cardiovascular disease, and those with higher apnea-hypopnea index might be at a greater risk of all-cause mortality.
RESUMO
The widespread production and application of graphene oxide (GO) may lead to its dispersion throughout natural water systems, with potential negative effects on living organisms and the ecological environment. This study used gypsum (G) as an adsorbent and examined different conditions (pH, adsorbent dosage, GO initial concentration) for the removal effect of GO by G. The results showed the best adsorption effect for a solution pH of 8.0, gypsum dosage of 60 mg, initial GO concentration of 80 mg·L-1, and temperature of 303 K; at this time, the maximum removal rate of graphene oxide by gypsum was 93.3%. It could be obtained by isotherm and thermodynamic analysis that the GO adsorption by gypsum conforms to the Langmuir isotherm model, it does not easily occur in high-temperature environments, and is a spontaneous exothermic process. In addition, experiments such as SEM, AFM, TGA, XRD, XPS, FTIR, Raman, and Zeta were used to adsorb graphene oxide by gypsum composites (G/GO), through which the mineral interactions with graphene oxides were microscopically characterized. The impact on the adsorption properties of contaminants provides new insights into contaminant removal by gypsum.