Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
J Am Chem Soc ; 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34882410

RESUMO

A fast neutron has strong penetration ability through dense and bulky objects, which makes it an ideal nondestructive technology for detecting voids, cracks, or other defects inside large equipment. However, the lack of effective fast neutron detection materials limits its application. Perovskites have shown excellent optical properties in many areas, but they are absent from fast neutron detection imaging because they cannot directly absorb fast neutrons and emit luminescence. Here, we demonstrate a hydrogen-rich long-chain organic amine modified two-dimensional (2D) perovskite fast neutron scintillator, Mn-(C18H37NH3)2PbBr4(Mn-STA2PbBr4). Its hydrogen density can reach 9.51 × 1028 m-3, and the photoluminescence quantum yield can reach 58.58%, so it is possible to integrate fast neutron absorption and luminescence into a single compound. More importantly, Mn-STA2PbBr4 can be made into a large-area self-supporting fast neutron scintillator plate with satisfactory spatial resolution (0.5 lp/mm (lp: line pairs)). This strategy provides a simple and promising choice for fast neutron scintillator nondestructive testing.

2.
ACS Appl Mater Interfaces ; 13(50): 59649-59661, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34894645

RESUMO

Recent advances in the synthesis of multifunctional nanomaterials create new opportunities for the rational design of multimodal chemodynamic therapy (CDT) agents. Precisely tailoring the nanostructure and composition of CDT nanoagents for maximum efficacy remains a challenge. Herein, we report the successful synthesis of nanocarbon framework-supported ultrafine Mo2C@MoOx nanoclusters (C/Mo2C@MoOx) via a pyrolysis of a Mo/ZIF-8 MOF precursor at 900 °C followed by mild surface oxidation. The developed C/Mo2C@MoOx composite demonstrated outstanding performance in photothermal-enhanced tumor-specific tandem catalysis therapy. Specifically, C/Mo2C@MoOx efficiently catalyzed the conversion of endogenous H2O2 to cytotoxic 1O2 via a Russell mechanism, while also converting the O2 byproduct to cytotoxic ·O2- via an oxidase-like mechanism. A high dispersion of active Mo5+ sites in the exposed MoOx shell enhanced the reactive oxygen species (ROS)-generating efficiency of C/Mo2C@MoOx. Moreover, the Mo2C core in the ultrafine Mo2C@MoOx nanoclusters allowed NIR-II (1064 nm)-driven photothermal heating, which significantly boosted the CDT process through photothermal effects. Additionally, the CDT process relied on a redox cycle involving Mo5+/Mo6+ species, which could be sustained by glutathione (GSH) consumption. Given these advantages, C/Mo2C@MoOx demonstrated remarkable synergistic therapeutic efficacy for cancer treatment (both in vitro and in vivo) through tumor microenvironment-stimulated generation of multiple ROS and NIR-II photothermal activity.

3.
Nat Commun ; 12(1): 5873, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620875

RESUMO

Combination of low-dimensionality and electron correlation is vital for exotic quantum phenomena such as the Mott-insulating phase and high-temperature superconductivity. Transition-metal dichalcogenide (TMD) 1T-TaS2 has evoked great interest owing to its unique nonmagnetic Mott-insulator nature coupled with a charge-density-wave (CDW). To functionalize such a complex phase, it is essential to enhance the CDW-Mott transition temperature TCDW-Mott, whereas this was difficult for bulk TMDs with TCDW-Mott < 200 K. Here we report a strong-coupling 2D CDW-Mott phase with a transition temperature onset of ~530 K in monolayer 1T-TaSe2. Furthermore, the electron correlation derived lower Hubbard band survives under external perturbations such as carrier doping and photoexcitation, in contrast to the bulk counterpart. The enhanced Mott-Hubbard and CDW gaps for monolayer TaSe2 compared to NbSe2, originating in the lattice distortion assisted by strengthened correlations and disappearance of interlayer hopping, suggest stabilization of a likely nonmagnetic CDW-Mott insulator phase well above the room temperature. The present result lays the foundation for realizing monolayer CDW-Mott insulator based devices operating at room temperature.

4.
Natl Sci Rev ; 8(5): nwaa155, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34691632

RESUMO

The rapid, complete, targeted and safe treatment for tumors remains a key issue in cancer therapy. A novel treatment of solid tumors by supramolecular photocatalyst Nano-SA-TCPP with the irradiation of 600-700 nm wavelength is established. Solid tumors (100 mm3) can be eliminated within 10 min. The 50-day mouse survival rate was increased from 0% to 100% after the photocatalytic therapy. The breakthrough was owing to the cell membrane rupture and the cytoplasmic loss caused by photogenerated holes inside cancer cells. The porphyrin-based photocatalysts can be internalized in a targeted manner by cancer cells due to the size selection effect, without entering the normal cells. The therapy has no toxicity or side effects for normal cells and organisms. Moreover, the photocatalytic therapy is effective for a variety of cancer cell lines. Because of its high efficiency, safety and universality, the photocatalytic therapy provides us with a new lancet to conquer the tumor.

5.
Nanomaterials (Basel) ; 11(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34361149

RESUMO

The absence of an ideal solid matrix with resistance to harsh conditions for carbon dots (CDs) and high transmittance in the visible/near infrared region is the bottleneck in CD applications. In this study, we show that a stable rigid structure can be formed between CDs and organically modified silicates (ormosil) gel when CDs are incorporated into ormosil gel hybrids as a solid matrix. A high photoluminescence quantum yield (PLQY) of 63% is achieved at a 583 nm emission. Peak optical gain of the hybrids was found to be 67 cm-1 at peak wavelength. Ultralow threshold (~70 W/cm2) lasing can also be demonstrated from a planar microcavity by using CD-ormosil gel hybrids as a gain medium.

6.
Nano Lett ; 21(14): 6080-6086, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34242038

RESUMO

MnBi8Te13 is an intrinsic ferromagnetic (FM) topological insulator with different complex surface terminations. Resolving the electronic structures of different termination surfaces and manipulation of the electronic state are important. Here, by using micrometer spot time- and angle-resolved photoemission spectroscopy (µ-TrARPES), we resolve the electronic structures and reveal the ultrafast dynamics upon photoexcitation. Photoinduced filling of the surface state hybridization gap is observed for the Bi2Te3 quintuple layer directly above MnBi2Te4 accompanied by a nontrivial shift of the surface state, suggesting light-tunable interlayer interaction. Relaxation of photoexcited electrons and holes is observed within 1-2 ps. Our work reveals photoexcitation as a potential control knob for tailoring the interlayer interaction and surface state of MnBi8Te13.

7.
Adv Healthc Mater ; 10(18): e2100539, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34319006

RESUMO

Nonapoptotic ferroptosis has been a novel form of programmed cell death, which provides a new solution to enrich the anticancer treatment efficacy of traditional apoptotic therapeutic modality. Herein, a novel nanohybrid is designed by loading the PEG-encapsulated Artemisinin (denoted as A@P) on the ultrathin MgFe-LDH nanosheets (denoted as uLDHs) for improved chemodynamic therapy (CDT). The A@P/uLDHs cannot only realize the self-assembly between the Art and carrier but also be regarded as free radical generator. A comprehensive mechanistic study suggests that this unique A@P/uLDHs is able to in situ activate Art and self-cycling generate toxic C-centered free radical inside the cancer cells, without depending on abundant H2 O2 , accompanied with diminished cancerous antioxidation by depleting glutathione (GSH). The accumulation of ROS and depletion of GSH can further oxidize unsaturated fatty acid to generate lipid peroxide, whose overexpression can induce cell ferroptosis accompanied by cellular iron homeostasis turbulence. Both in vitro and in vivo results exhibit that A@P/uLDHs are an efficient nanoagent for highly efficient ferroptosis-enhanced CDT treatment. This work imparts the promising new visions about the ferroptosis-enhanced CDT via fine regulation of material design for improved cancer treatments.


Assuntos
Ferroptose , Neoplasias , Linhagem Celular Tumoral , Radicais Livres , Glutationa/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Oxirredução
8.
ACS Biomater Sci Eng ; 7(7): 3370-3378, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34120445

RESUMO

Recently, tremendous attention has been evoked in the discovery of defect-engineered nanomaterials for near-infrared second window (NIR-II)-driven cancer therapy. Herein, we have constructed a novel type of carbon defects enriched in boron carbide nanomaterial (denoted as B4C@C) through reacting B4C and glucose by a hydrothermal method. The carbon defect concentration in B4C@C has been significantly increased after coating with glucose; thus, B4C@C exhibited a distinct photothermal response under the NIR-II window and the efficiency of photothermal conversion is determined to reach 45.4%, which is higher than the carbon-based nanomaterials in the NIR-II region. Both Raman spectra and X-ray photoelectron spectroscopy (XPS) spectra reveal that B4C@C has rich sp2-hybridized carbon defects and effectively increases the NIR-II window light absorption capacity, thus enhancing the nonradiative recombination rate and improving the NIR-II photothermal effect. Furthermore, the B4C@C nanosheets allows for tumor phototherapy and simultaneous photoacoustic imaging. This work indicates the huge potential of B4C@C as a novel photothermal agent, which might arise much attention in exploring boron-based nanomaterials for the advantage of cancer therapy.


Assuntos
Técnicas Fotoacústicas , Boro , Carbono , Fototerapia , Terapia Fototérmica
9.
Phys Rev Lett ; 126(20): 206804, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34110212

RESUMO

The low-energy excitations of graphene are relativistic massless Dirac fermions with opposite chiralities at valleys K and K^{'}. Breaking the chiral symmetry could lead to gap opening in analogy to dynamical mass generation in particle physics. Here we report direct experimental evidences of chiral symmetry breaking (CSB) from both microscopic and spectroscopic measurements in a Li-intercalated graphene. The CSB is evidenced by gap opening at the Dirac point, Kekulé-O type modulation, and chirality mixing near the gap edge. Our work opens up opportunities for investigating CSB related physics in a Kekulé-ordered graphene.

10.
Rev Sci Instrum ; 92(3): 033904, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820058

RESUMO

Achieving a high time resolution is highly desirable for revealing the electron dynamics and light-induced phenomena in time- and angle-resolved photoemission spectroscopy (TrARPES). Here, we identify key factors for achieving the optimum time resolution, including laser bandwidth and optical component induced chirp. A full diagnostic scheme is constructed to characterize the pulse duration and chirp of the fundamental beam, second harmonic, and fourth harmonic, and prism pairs are used to compensate for the chirp. Moreover, by using a Sb2Te3 film as a test sample, we can achieve a high test efficiency for the time resolution during the optimization process. An optimized time resolution of 81 fs is achieved in our TrARPES system with a high repetition rate tunable from 76 to 4.75/n MHz.

11.
ACS Appl Mater Interfaces ; 13(15): 17920-17930, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33827214

RESUMO

For the design and optimization of near-infrared photothermal nanohybrids, tailoring the energy gap of nanohybrids plays a crucial role in attaining a satisfactory photothermal therapeutic efficacy for cancer and remains a challenge. Herein, we report an electron donor-acceptor effect-induced organic/inorganic nanohybrid with a low energy gap (denoted as ICG/Ag/LDH) by the in situ deposition of Ag nanoparticles onto the CoAl-LDH surface, followed by the coupling of ICG. A combination study verifies that the supported Ag nanoparticles as the electron donor (D) push electrons into the conjugated system of ICG by the electronic interaction between ICG and Ag, while OH groups of LDHs as the electron acceptor (A) pull electrons from the conjugated system of ICG by hydrogen bonding (N···H-O). This induces the formation of the D-A conjugated π-system and has a strong influence on the π-conjugated system of ICG, thus leading to a prominent decrease toward the energy gap and correspondingly an ultra-long redshift (∼115 nm). The resulting ICG/Ag/LDHs show an enhanced photothermal conversion efficiency (∼45.5%) at 808 nm laser exposure, which is ∼1.6 times larger than that of ICG (∼28.4%). Such a high photothermal performance is attributed to the fact that ICG/Ag/LDHs possess a D-π-A hybrid structure and a resulting lower energy gap, thus effectively promoting nonradiative transitions and leading to enhancement of the photothermal effect. Both in vitro and in vivo results confirm the good biocompatible properties and capability of the ICG/Ag/LDHs for NIR-triggered cancer treatment. This research demonstrates a successful paradigm for the rational design and preparation of new nanohybrids through the modulation of electron donor-acceptor effect, which offers a new avenue to achieve efficient phototherapeutic agent for improving the cancer therapeutic outcomes.


Assuntos
Nanopartículas Metálicas/química , Nanocompostos/química , Nanocompostos/uso terapêutico , Nanomedicina/métodos , Compostos Orgânicos/química , Fototerapia/métodos , Prata/química , Transporte de Elétrons , Ligação de Hidrogênio , Propriedades de Superfície
12.
ACS Appl Mater Interfaces ; 13(1): 897-903, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33337858

RESUMO

Two-dimensional antimonene has many potential applications for its high mobility, high stability, and tunable band gap. The covalent chemistry of antimonene and the molecular doping or hybrid of antimonene remain incomplete for further applications. In this work, silane-functionalized antimonene nanosheets and their copolymerized organically modified silicate gel glasses are designed and prepared. The experimental data confirmed that 3-glycidoxypropyltrimethoxysilane interacts covalently with antimonene. Compared with unfunctionalized antimonene, the silane-functionalized antimonene shows higher concentration, higher compatibility, and dispersion stability in solvents and gel matrices. In particular, the doping concentration of functionalized antimonene nanosheets can reach 2% in gel glass, which is larger than conventional nanocomposites and nanohybrids. These nanosheets exhibit outstanding optical limiting performance in the visible and long-wavelength near-infrared regions (532-2150 nm). The mechanism of optical limiting is found to be a combination of nonlinear absorption, nonlinear refraction, and nonlinear scattering. The silane-functionalized antimonene nanosheets and their copolymerized hybrids will be promising materials for optoelectronics, biology, energy, and others.

13.
Molecules ; 27(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35011317

RESUMO

With the advancement of ultra-fast and high-energy pulsed laser output, lasers have caused serious harm to precision instruments and human eyes. Therefore, the development of optical limiting materials with a fast response, low optical limiting threshold, and high damage threshold are important. In this work, for the first time, it is reported that phosphors Gd2O2S:Tb3+(GOS) displays exceptional functionality in laser protection. GOS with sizes of 11 µm, 1 µm, and 0.45 µm are prepared. Based on the optical limiting and Z-scan technology systems under 532 nm and 1064 nm nanosecond laser excitation, the nonlinear optical properties of GOS are investigated. It is found that GOS exhibits outstanding optical limiting properties. In addition, the optical limiting response of GOS is size-dependent. Concerning the largest particle size, GOS has the best nonlinear optical response, while the precursor shows no nonlinear optical performance. Meanwhile, GOS doped gel glass also displays excellent optical limiting properties with high transmittance, which preliminarily validates the application of GOS and other scintillators in nonlinear optics and encourages more research to better realize the potential of GOS.

14.
Sci Rep ; 10(1): 21414, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293644

RESUMO

Photoacoustics is a promising technique for in-depth imaging of biological tissues. However, the lateral resolution of photoacoustic imaging is limited by size of the optical excitation spot, and therefore by light diffraction and scattering. Several super-resolution approaches, among which methods based on localization of labels and particles, have been suggested, presenting promising but limited solutions. This work demonstrates a novel concept for extended-resolution imaging based on separation and localization of multiple sub-pixel absorbers, each characterized by a distinct acoustic response. Sparse autoencoder algorithm is used to blindly decompose the acoustic signal into its various sources and resolve sub-pixel features. This method can be used independently or as a combination with other super-resolution techniques to gain further resolution enhancement and may also be extended to other imaging schemes. In this paper, the general idea is presented in details and experimentally demonstrated.


Assuntos
Técnicas Fotoacústicas/métodos , Algoritmos , Tomografia
15.
ACS Appl Mater Interfaces ; 12(49): 54916-54926, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33233881

RESUMO

Currently, two-dimensional materials are being actively pursued in catalysis and other fields due their abundance of defects, which results in enhanced performance relative to their bulk defect-free counterparts. To date, the exploitation of defects in two-dimensional materials to enhance photothermal therapies has received little attention, motivating a detailed investigation. Herein, we successfully fabricated a series of novel CoFe-based photothermal agents (CoFe-x) by heating CoFe-layered double hydroxide (CoFe-LDH) nanosheets at different temperatures (x) between 200-800 °C under a Ar atmosphere. The CoFe-x products differed in their particle size, cobalt defect concentration, and electronic structure, with the CoFe-500 product containing the highest concentration of Co2+ defects and most efficient photothermal performance under near-infrared (NIR, 808 nm) irradiation. Experiments and density functional theory (DFT) calculations revealed that Co2+ defects modify the electronic structure of CoFe-x, narrowing the band gap and thus increasing the nonradiative recombination rate, thereby improving the NIR-driven photothermal properties. In vitro and in vivo results demonstrated that CoFe-500 was an efficient agent for photothermal cancer treatment and also near-infrared (NIR) thermal imaging, magnetic resonance (MR) imaging, and photoacoustic (PA) imaging. This work provides valuable new insights about the role of defects in the rational design of nanoagents with optimized structures for improved cancer therapy.


Assuntos
Cobalto/química , Compostos Férricos/química , Hidróxidos/química , Nanoestruturas/química , Neoplasias/terapia , Animais , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Células HeLa , Humanos , Raios Infravermelhos , Camundongos , Camundongos Nus , Nanoestruturas/uso terapêutico , Nanoestruturas/toxicidade , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Tamanho da Partícula , Técnicas Fotoacústicas , Terapia Fototérmica
16.
J Mater Chem B ; 8(43): 9881-9887, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33001121

RESUMO

Quantum dots (QDs) are increasingly being utilized as near infrared (NIR) active photothermal agents for cancer diagnosis and therapy, with the main emphasis of current research being the enhancement of photothermal conversion efficiencies. Herein, we report the facile synthesis of 2-3 nm boron quantum dots (B QDs), which demonstrated a remarkable photothermal conversion efficiency of 57% under NIR excitation. This outstanding performance can be attributed to the alteration of the electronic structure, which was a result from the distorted edge-effect induced by the unique empty orbit of B atoms in the B QDs. These results can be verified by B K-edge near edge X-ray absorption fine structure (NEXAFS), high-resolution transmission electron microscopy (HR-TEM) and density functional theory (DFT) calculations. The results demonstrate that B QDs represent a promising new and non-toxic agent for both multimodal NIR-driven cancer imaging and photothermal therapy. This work thus identifies B QDs as an exciting new and theranostic agent for cancer therapy. Furthermore, the synthetic strategy used here to synthesize the B QDs was simple and easily scalable.


Assuntos
Boro/uso terapêutico , Neoplasias/terapia , Terapia Fototérmica , Pontos Quânticos/uso terapêutico , Boro/química , Células HeLa , Humanos , Modelos Moleculares , Neoplasias/diagnóstico , Técnicas Fotoacústicas , Pontos Quânticos/química , Nanomedicina Teranóstica
17.
Nat Commun ; 11(1): 2370, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398654

RESUMO

The quantum limit is quite easy to achieve once the band crossing exists exactly at the Fermi level (EF) in topological semimetals. In multilayered Dirac fermion systems, the density of Dirac fermions on the zeroth Landau levels (LLs) increases in proportion to the magnetic field, resulting in intriguing angle- and field-dependent interlayer tunneling conductivity near the quantum limit. BaGa2 is an example of a multilayered Dirac semimetal with its quasi-2D Dirac cone located at EF, providing a good platform to study its interlayer transport properties. In this paper, we report the negative interlayer magnetoresistance induced by the tunneling of Dirac fermions between the zeroth LLs of neighboring Ga layers in BaGa2. When the field deviates from the c-axis, the interlayer resistivity ρzz(θ) increases and finally results in a peak with the applied field perpendicular to the c-axis. These unusual interlayer transport properties are observed together in the Dirac semimetal under ambient pressure and are well explained by the model of tunneling between Dirac fermions in the quantum limit.

18.
Nat Mater ; 19(3): 263-264, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32029907
19.
ACS Appl Mater Interfaces ; 12(3): 3445-3452, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31922399

RESUMO

For effective treatment of ischemic cerebral thrombosis, it is of great significance to find a facile way in assessing the early damage of blood-brain barrier (BBB) after ischemic stroke during thrombolysis by integrating thrombolytic agents with fluorescent materials. Herein, a novel type of protein-carbon dot  nanohybrids is reported by the incorporation of carbon dots on thrombolytic agents through covalent linkage. Both in vitro and ex vivo fluorescence imaging measurements have demonstrated remarkable imaging effects in the brain of transient middle cerebral artery occlusion mice. Besides, the outstanding thrombolytic capacity of the nanohybrids was determined by in vitro thrombolysis tests. As one of the few reports of the construction of thrombolytic agents and fluorescent nanomaterials, the nanohybrids retain thrombolysis ability and fluorescent traceability simultaneously. It may provide a promising indicator for early BBB damage and thrombolytic agent distribution to estimate the possibility of symptomatic intracranial hemorrhage after thrombolysis and supply tissue window evidence for clinical thrombolytic agent application.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Carbono/química , Fibrinolíticos/administração & dosagem , Nanoestruturas/química , Acidente Vascular Cerebral/tratamento farmacológico , Nanomedicina Teranóstica/métodos , Ativador de Plasminogênio Tipo Uroquinase/administração & dosagem , Animais , Fibrinolíticos/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Acidente Vascular Cerebral/diagnóstico por imagem , Nanomedicina Teranóstica/instrumentação , Ativador de Plasminogênio Tipo Uroquinase/química
20.
ACS Appl Mater Interfaces ; 12(2): 2944-2951, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31842544

RESUMO

Organic nonlinear optical (NLO) materials have attracted immense scientific interest in various fields. Broadband NLO response extending to near-infrared (NIR) region is extremely important and remains challenging. Herein, two diketopyrrolopyrrole (DPP)-based donor-acceptor (D-A)-type π-conjugated copolymers with and without Pt(II) incorporation are rationally designed and synthesized toward broadband NLO response materials. The broad intramolecular charge transfer (ICT) absorption reaching 1000 nm due to the strong D-A interaction is well demonstrated by photophysical characterizations. The NLO properties of copolymers are studied using Z-scan technology. Owing to their extended π-conjugated D-A systems and near-infrared ICT absorption properties, both copolymers exhibit laser-induced NLO response to nanosecond as well as picosecond laser pulses upon the wavelengths of 532 and 1064 nm. Interestingly, introducing Pt(II) into the copolymer backbone can evidently improve the NLO property or unexpectedly switch the NLO response from saturable absorption to reverse saturable absorption. Meanwhile, both copolymers are successfully employed as optical limiting materials and exhibit broadband optical limiting abilities. Therefore, we present an efficient strategy toward broadband NLO materials, which may significantly facilitate the understanding of organic molecular structure-property relationship and promote their practical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...