Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(9): e0238179, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881902

RESUMO

Carotenoid cleavage dioxygenase (CCD), a key enzyme in carotenoid metabolism, cleaves carotenoids to form apo-carotenoids, which play a major role in plant growth and stress responses. CCD genes had not previously been systematically characterized in Brassica napus (rapeseed), an important oil crop worldwide. In this study, we identified 30 BnCCD genes and classified them into nine subgroups based on a phylogenetic analysis. We identified the chromosomal locations, gene structures, and cis-promoter elements of each of these genes and performed a selection pressure analysis to identify residues under selection. Furthermore, we determined the subcellular localization, physicochemical properties, and conserved protein motifs of the encoded proteins. All the CCD proteins contained a retinal pigment epithelial membrane protein (RPE65) domain. qRT-PCR analysis of expression of 20 representative BnCCD genes in 16 tissues of the B. napus cultivar Zhong Shuang 11 ('ZS11') revealed that members of the BnCCD gene family possess a broad range of expression patterns. This work lays the foundation for functional studies of the BnCCD gene family.


Assuntos
Brassica napus/enzimologia , Dioxigenases/genética , Genoma de Planta , Proteínas de Plantas/genética , Arabidopsis/enzimologia , Brassica napus/genética , Carotenoides/metabolismo , Mapeamento Cromossômico , Dioxigenases/classificação , Dioxigenases/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas
2.
Plant J ; 95(6): 1055-1068, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29952082

RESUMO

Salicylic acid (SA) signalling plays an essential role in plant innate immunity. In this study, we identified a component in the SA signaling pathway in potato (Solanum tuberosum), the transcription factor StbZIP61, and characterized its function in defence against Phytophthora infestans. Expression of StbZIP61 was induced upon P. infestans infection and following exposure to the defense signaling hormones SA, ethylene and jasmonic acid. Overexpression of StbZIP61 increased the tolerance of potato plants to P. infestans while RNA interference (RNAi) increased susceptibility. Yeast two-hybrid and pull down experiments revealed that StbZIP61 could interact with an NPR3-like protein (StNPR3L) that inhibited its DNA-binding and transcriptional activation activities. Moreover, StNPR3L interacted with StbZIP61 in an SA-dependent manner. Among candidate genes involved in SA-regulated defense responses, StbZIP61 had a significant impact on expression of StICS1, which encodes a key enzyme for SA biosynthesis. StICS1 transcription was induced upon P. infestans infection and this responsive expression to the pathogen was reduced in StbZIP61 RNAi plants. Accordingly, StICS1 expression was remarkably enhanced in StbZIP61-overexpressing plants. Together, our data demonstrate that StbZIP61 functions in concert with StNPR3L to regulate the temporal activation of SA biosynthesis, which contributes to SA-mediated immunity against P. infestans infection in potato.


Assuntos
Phytophthora infestans , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Planta/fisiologia , Proteínas de Plantas/fisiologia , Ácido Salicílico/metabolismo , Solanum tuberosum/microbiologia , Fatores de Transcrição/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Reguladores de Crescimento de Planta/metabolismo , Proteínas de Plantas/metabolismo , Interferência de RNA , Solanum tuberosum/imunologia , Solanum tuberosum/metabolismo , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
3.
Genes (Basel) ; 9(3)2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29547590

RESUMO

Cytokinin oxidase/dehydrogenases (CKXs) play a critical role in the irreversible degradation of cytokinins, thereby regulating plant growth and development. Brassica napus is one of the most widely cultivated oilseed crops worldwide. With the completion of whole-genome sequencing of B. napus, genome-wide identification and expression analysis of the BnCKX gene family has become technically feasible. In this study, we identified 23 BnCKX genes and analyzed their phylogenetic relationships, gene structures, conserved motifs, protein subcellular localizations, and other properties. We also analyzed the expression of the 23 BnCKX genes in the B. napus cultivar Zhong Shuang 11 ('ZS11') by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), revealing their diverse expression patterns. We selected four BnCKX genes based on the results of RNA-sequencing and qRT-PCR and compared their expression in cultivated varieties with extremely long versus short siliques. The expression levels of BnCKX5-1, 5-2, 6-1, and 7-1 significantly differed between the two lines and changed during pod development, suggesting they might play roles in determining silique length and in pod development. Finally, we investigated the effects of treatment with the synthetic cytokinin 6-benzylaminopurine (6-BA) and the auxin indole-3-acetic acid (IAA) on the expression of the four selected BnCKX genes. Our results suggest that regulating BnCKX expression is a promising way to enhance the harvest index and stress resistance in plants.

4.
Plant Sci ; 268: 1-10, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29362078

RESUMO

Accumulating evidence indicates that plant plastocyanin is involved in copper homeostasis, yet the physiological relevance remains elusive. In this study, we found that a plastocyanin gene (SsPETE2) from euhalophyte Suaeda salsa possessed a novel antioxidant function, which was associated with the copper-chelating activity of SsPETE2. In S. salsa, expression of SsPETE2 increased in response to oxidative stress and ectopic expression of SsPETE2 in Arabidopsis enhanced the antioxidant ability of the transgenic plants. SsPETE2 bound Cu ion and alleviated formation of hydroxyl radicals in vitro. Accordingly, SsPETE2 expression lowered the free Cu content that was associated with reduced H2O2 level under oxidative stress. Arabidopsis pete1 and pete2 mutants showed ROS-sensitive phenotypes that could be restored by expression of SsPETE2 or AtPETEs. In addition, SsPETE2-expressing plants exhibited more potent tolerance to oxidative stress than plants overexpressing AtPETEs, likely owing to the stronger copper-binding activity of SsPETE2 than AtPETEs. Taken together, these results demonstrated that plant PETEs play a novel role in oxidative stress tolerance by regulating Cu homeostasis under stress conditions, and SsPETE2, as an efficient copper-chelating PETE, potentially could be used in crop genetic engineering.


Assuntos
Adaptação Fisiológica , Chenopodiaceae/genética , Chenopodiaceae/fisiologia , Expressão Ectópica do Gene , Estresse Oxidativo/genética , Proteínas de Plantas/metabolismo , Plastocianina/genética , Adaptação Fisiológica/efeitos dos fármacos , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Quelantes/farmacologia , Chenopodiaceae/efeitos dos fármacos , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Cobre/farmacologia , Desoxirribose/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Radical Hidroxila/metabolismo , Íons , Ferro/metabolismo , Simulação de Dinâmica Molecular , Mutação/genética , Estresse Oxidativo/efeitos dos fármacos , Paraquat/farmacologia , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plastocianina/metabolismo , Transporte Proteico/efeitos dos fármacos
5.
Zhongguo Dang Dai Er Ke Za Zhi ; 16(3): 268-71, 2014 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-24661519

RESUMO

OBJECTIVE: To evaluate the clinical significance of full volume real-time three-dimensional echocardiography (RT-3DE) in the assessment of general and local systolic functions of the left ventricle in children with Kawasaki disease (KD). METHODS: A total of 73 KD children (40 with and 33 without coronary artery lesions) and 35 healthy control children were recruited. Left ventricular ejection fraction (LVEF) was measured by M-mode ultrasound and full volume RT-3DE imaging. A left ventricular volume-time curve and a segmental speed-time curve were generated. Differences between control subjects and patients with and without coronary artery lesions were analyzed. RESULTS: The M-mode ultrasound measurements of LVEF in KD patients with coronary artery lesions were significantly lower than in KD patients without coronary artery lesions and control children (P<0.05), while there was no significant difference between KD patients without coronary artery lesions and control children. RT-3DE measurements of LVEF were significantly different between the three groups analyzed (P<0.05): coronary artery lesion group < no coronary artery lesion group < control group. RT-3DE-based segmental ventricular wall analysis revealed that Tmsv16-SD and Tmsv12-SD in KD patients with coronary artery lesions were significantly higher than other two groups and Tmsv6-SD was also significantly higher than in the normal control group (P<0.05) and that Tmsv16-SD in KD patients without coronary artery lesions increased significantly compared with the normal control group (P<0.05). CONCLUSIONS: RT-3DE can be used in the quantitative evaluation of the left ventricular function and therefore has significant clinical implications.


Assuntos
Ecocardiografia Tridimensional/métodos , Síndrome de Linfonodos Mucocutâneos/diagnóstico por imagem , Função Ventricular Esquerda , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Síndrome de Linfonodos Mucocutâneos/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...