Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Front Plant Sci ; 12: 784001, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956281

RESUMO

Early maturation is an important objective in wheat breeding programs that could facilitate multiple-cropping systems, decrease disaster- and disease-related losses, ensure stable wheat production, and increase economic benefits. Exploitation of novel germplasm from wild relatives of wheat is an effective means of breeding for early maturity. Psathyrostachys huashanica Keng f. ex P. C. KUO (2n=2x=14, NsNs) is a promising source of useful genes for wheat genetic improvement. In this study, we characterized a novel wheat-P. huashanica line, DT23, derived from distant hybridization between common wheat and P. huashanica. Fluorescence in situ hybridization (FISH) and sequential genomic in situ hybridization (GISH) analyses indicated that DT23 is a stable wheat-P. huashanica ditelosomic addition line. FISH painting and PCR-based landmark unique gene markers analyses further revealed that DT23 is a wheat-P. huashanica 7Ns ditelosomic addition line. Observation of spike differentiation and the growth period revealed that DT23 exhibited earlier maturation than the wheat parents. This is the first report of new earliness per se (Eps) gene(s) probably associated with a group 7 chromosome of P. huashanica. Based on specific locus-amplified fragment sequencing technology, 45 new specific molecular markers and 19 specific FISH probes were developed for the P. huashanica 7Ns chromosome. Marker validation analyses revealed that two specific markers distinguished the Ns genome chromosomes of P. huashanica and the chromosomes of other wheat-related species. These newly developed FISH probes specifically detected Ns genome chromosomes of P. huashanica in the wheat background. The DT23 line will be useful for breeding early maturing wheat. The specific markers and FISH probes developed in this study can be used to detect and trace P. huashanica chromosomes and chromosomal segments carrying elite genes in diverse materials.

2.
Front Plant Sci ; 12: 741063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966398

RESUMO

To investigate the pattern of chloroplast genome variation in Triticeae, we comprehensively analyzed the indels in protein-coding genes and intergenic sequence, gene loss/pseudonization, intron variation, expansion/contraction in inverted repeat regions, and the relationship between sequence characteristics and chloroplast genome size in 34 monogenomic Triticeae plants. Ancestral genome reconstruction suggests that major length variations occurred in four-stem branches of monogenomic Triticeae followed by independent changes in each genus. It was shown that the chloroplast genome sizes of monogenomic Triticeae were highly variable. The chloroplast genome of Pseudoroegneria, Dasypyrum, Lophopyrum, Thinopyrum, Eremopyrum, Agropyron, Australopyrum, and Henradia in Triticeae had evolved toward size reduction largely because of pseudogenes elimination events and length deletion fragments in intergenic. The Aegilops/Triticum complex, Taeniatherum, Secale, Crithopsis, Herteranthelium, and Hordeum in Triticeae had a larger chloroplast genome size. The large size variation in major lineages and their subclades are most likely consequences of adaptive processes since these variations were significantly correlated with divergence time and historical climatic changes. We also found that several intergenic regions, such as petN-trnC and psbE-petL containing unique genetic information, which can be used as important tools to identify the maternal relationship among Triticeae species. Our results contribute to the novel knowledge of plastid genome evolution in Triticeae.

3.
J Agric Food Chem ; 69(45): 13568-13577, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34730357

RESUMO

To improve the reactivity and enrich the functionality of lignin for valorization, kraft lignin was depolymerized and demethylated via cleaving aryl and alkyl ether bonds in acidic lithium bromide trihydrate (∼60% LiBr aqueous solution). It was found that the cleavage of the ether bonds followed the order of ß-O-4 ether > aryl alkyl ether in phenylcoumaran > dialkyl ether in resinol > methoxyl (MeO). The depolymerization via ß-O-4 cleavage occurred under mild conditions (e.g., <0.5 M HCl at 110 °C), while sufficient demethylation of the lignin needed harsher conditions (>1.5 M HCl). Both depolymerization and demethylation generated new aromatic hydroxyl (ArOH). With 2.4 M HCl, MeO content dropped from 4.85 to 0.95 mmol/g lignin, and ArOH content increased from 2.78 to 5.09 mmol/g lignin. The depolymerized and demethylated kraft lignin showed excellent antioxidant activity and Cr(VI)-scavenging capacity, compared with original kraft lignin and tannins.


Assuntos
Antioxidantes , Lignina , Desmetilação , Éteres , Lignina/metabolismo
4.
Plant Sci ; 312: 111058, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34620452

RESUMO

Uptake and internal transport of micronutrients are essential for plant growth, development, and yield. In this regard, Iron Regulated Transporters (IRTs) from the Zinc Regulated Transporter (ZRT)/IRT-related protein (ZIP) family play an important role in transition metal uptake. Most studies have been focused on IRT1-like proteins in diploid species. Information on IRT1-like proteins in polyploids is limited. Here, we studied the function of TpIRT1A and TpIRT1B homoeologs in a tetraploid crop, Polish wheat (Triticum polonicum L.). Our results highlighted the importance of TpIRT1 in mediating the uptake and translocation of Fe, Mn, Co, and Cd with direct implications for wheat yield potential. Both TpIRT1A and TpIRT1B were located at the plasma membrane and internal vesicle-like organelle in protoplasts of Arabidopsis thaliana L. and increased Cd and Co sensitivity in yeast. The over-expression of TpIRT1B in A. thaliana increased Fe, Mn, Co, and Cd concentration in its tissues and improved plant growth under Fe, Mn, and Co deficiencies, while increased the sensitivity to Cd compared to wild type. Functional analysis of IRT1 homoeologs from tetraploid and diploid ancestral wheat species in yeast disclosed four distinct amino acid residues in TdiIRT1B (T. dicoccum L. (Schrank)) and TtuIRT1B (T. turgidum L.). Together, our results increase the knowledge of IRT1 function in a globally important crop, wheat.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Triticum/genética , Triticum/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiologia , Cádmio/metabolismo , Proteínas de Transporte de Cátions/genética , Cobalto/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Ferro/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Polônia , Fatores de Transcrição/metabolismo , Zinco/metabolismo
5.
Front Plant Sci ; 12: 745290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659315

RESUMO

Durum wheat is one of the important food and cash crops. The main goals in current breeding programs are improving its low yield potential, kernel characteristics, and lack of resistance or tolerance to some biotic and abiotic stresses. In this study, a nascent synthesized hexaploid wheat Lanmai/AT23 is used as the female parent in crosses with its AB genome donor Lanmai. A tetraploid line YL-443 with supernumerary spikelets and high resistance to stripe rust was selected out from the pentaploid F7 progeny. Somatic analysis using multicolor fluorescence in situ hybridization (mc-FISH) revealed that this line is a disomic substitution line with the 4B chromosome pair of Lanmai replaced by the 4D chromosome pair of Aegilops tauschii AT23. Comparing with Lanmai, YL-443 shows an increase in the number of spikelets and florets per spike by 36.3 and 75.9%, respectively. The stripe rust resistance gene Yr28 carried on the 4D chromosome was fully expressed in the tetraploid background. The present 4D(4B) disomic substitution line YL-443 was distinguished from the previously reported 4D(4B) lines with the 4D chromosomes from Chinese Spring (CS). Our study demonstrated that YL-443 can be used as elite germplasm for durum wheat breeding targeting high yield potential and stripe rust resistance. The Yr28-specific PCR marker and the 4D chromosome-specific KASP markers together with its unique features of pubescent leaf sheath and auricles can be utilized for assisting selection in breeding.

6.
Plant Dis ; 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34698515

RESUMO

Stripe rust caused by Puccinia striiformis f. sp. tritici and powdery mildew caused by Blumeria graminis f. sp. tritici are devastating diseases of wheat worldwide. Exploration of new disease-resistant genes from cultivated wheat and wild relatives are the most effective means of reducing the amounts of fungicides applied to combat these diseases. Thinopyrum scirpeum (2n = 4x = 28, EEEE) is an important promising reservoir of useful genes, including stripe rust and powdery mildew resistance, and may be useful for enhancing wheat disease resistance. Here, we characterize a novel wheat-Th. scirpeum disomic substitution line, K16-730-3, and chromosome-specific markers were developed that can be used to trace the Th. scirpeum chromosome or chromosome segments transferred into wheat. Genomic in situ hybridization and fluorescence in situ hybridization analyses indicated that K16-730-3 is a new 4E (4D) chromosomal substitution line. Evaluation of seedling and adult disease responses revealed that K16-730-3 is resistant to stripe rust and powdery mildew. In addition, no obvious difference in grain yield was observed between K16-730-3 and its wheat parents. Genotyping-by-sequencing analyses indicated that 74 polymerase chain reaction -based markers can accurately trace chromosome 4E which were linked to the disease resistance genes in the wheat background. Further marker validation analyses revealed that 13 specific markers can distinguish between the E-genome chromosomes of Th. scirpeum and the chromosomes of other wheat-related species. The new substitution line K16-730-3 carrying the stripe rust and powdery mildew resistance genes will be useful as novel germplasm in breeding for disease resistance. The markers developed in this study can be used in marker-assisted selection for improvement of disease resistance in wheat.

7.
Molecules ; 26(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34576926

RESUMO

Novel UV-curable polyurethane acrylate (PUA) resins were developed from rubber seed oil (RSO). Firstly, hydroxylated rubber seed oil (HRSO) was prepared via an alcoholysis reaction of RSO with glycerol, and then HRSO was reacted with isophorone diisocyanate (IPDI) and hydroxyethyl acrylate (HEA) to produce the RSO-based PUA (RSO-PUA) oligomer. FT-IR and 1H NMR spectra collectively revealed that the obtained RSO-PUA was successfully synthesized, and the calculated C=C functionality of oligomer was 2.27 per fatty acid. Subsequently, a series of UV-curable resins were prepared and their ultimate properties, as well as UV-curing kinetics, were investigated. Notably, the UV-cured materials with 40% trimethylolpropane triacrylate (TMPTA) displayed a tensile strength of 11.7 MPa, an adhesion of 2 grade, a pencil hardness of 3H, a flexibility of 2 mm, and a glass transition temperature up to 109.4 °C. Finally, the optimal resin was used for digital light processing (DLP) 3D printing. The critical exposure energy of RSO-PUA (15.20 mJ/cm2) was lower than a commercial resin. In general, this work offered a simple method to prepare woody plant oil-based high-performance PUA resins that could be applied in the 3D printing industry.


Assuntos
Acrilatos/química , Gorduras Insaturadas/química , Poliuretanos/química , Impressão Tridimensional , Géis/química , Dureza , Hidroxilação , Espectroscopia de Ressonância Magnética , Resinas Sintéticas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Termogravimetria , Raios Ultravioleta
8.
Ecotoxicol Environ Saf ; 226: 112825, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34571421

RESUMO

As an essential plant micronutrient, copper (Cu) is required as a component of several enzymes, but it can be highly toxic to plants when present in excess quantities. Nitrogen (N) application can help to alleviate the phytotoxic effects of heavy metals, including Cu, and different N forms significantly affect the uptake and accumulation of heavy metals in plants. The aim of this study was to determine the effects of different N forms, i.e., ammonium (NH4+) and nitrate (NO3-), on Cu detoxification in wheat seedlings. The inhibition of seedling growth under excess Cu was more obvious in wheat plants supplied with NO3- than in those supplied with NH4+. This growth inhibition was directly induced by excess Cu accumulation and reduced absorption of other mineral nutrients by the plants. Compared with seedlings treated with NO3-, those treated with NH4+ showed a decrease in Cu-induced toxicity as a result of increased antioxidant capacity in the leaves and a lower redox potential in the rhizosphere. Furthermore, treatment with NH4+ decreased the loss of mineral nutrients in wheat seedlings exposed to excess Cu. In conclusion, compared with supplying NO3-, supplying NH4+ to wheat seedlings under Cu stress improved their ability to maintain their nutritional and redox balance and increased their antioxidant capacity, thereby preventing a decline in photosynthesis. According to our results, NH4+ is more effective than NO3- in reducing Cu phytotoxicity in wheat seedlings.


Assuntos
Compostos de Amônio , Plântula , Cobre/toxicidade , Homeostase , Nitratos/toxicidade , Nitrogênio , Oxirredução , Fotossíntese , Raízes de Plantas , Triticum
9.
Front Plant Sci ; 12: 682040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421940

RESUMO

Kengyilia is a group of allohexaploid species that arose from two hybridization events followed by genome doubling of three ancestral diploid species with different genomes St, Y, and P in the Triticeae. Estimating the phylogenetic relationship in resolution of the maternal lineages has been difficult, owing to the extremely low rate of sequence divergence. Here, phylogenetic reconstructions based on the plastome sequences were used to explore the role of maternal progenitors in the establishment of Kengyilia polyploid species. The plastome sequences of 11 Kengyilia species were analyzed together with 12 tetraploid species (PP, StP, and StY) and 33 diploid taxa representing 20 basic genomes in the Triticeae. Phylogenomic analysis and genetic divergence patterns suggested that (1) Kengyilia is closely related to Roegneria, Pseudoroegneria, Agropyron, Lophopyrum, Thinopyrum, and Dasypyrum; (2) both the StY genome Roegneria tetraploids and the PP genome Agropyron tetraploids served as the maternal donors during the speciation of Kengyilia species; (3) the different Kengyilia species derived their StY genome from different Roegneria species. Multiple origins of species via independent polyploidization events have occurred in the genus Kengyilia, resulting in a maternal haplotype polymorphism. This helps explain the rich diversity and wide adaptation of polyploid species in the genus Kengyilia.

10.
Cytogenet Genome Res ; 161(3-4): 213-222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34233333

RESUMO

The genera of the tribe Triticeae (family Poaceae), constituting many economically important plants with abundant genetic resources, carry genomes such as St, H, P, and Y. The genome symbol of Roegneria C. Koch (Triticeae) is StY. The St and Y genomes are crucial in Triticeae, and tetraploid StY species participate extensively in polyploid speciation. Characterization of St and Y nonhomologous chromosomes in StY-genome species could help understand variation in the chromosome structure and differentiation of StY-containing species. However, the high genetic affinity between St and Y genome and the deficiency of a complete set of StY nonhomologous probes limit the identification of St and Y genomes and variation of chromosome structures among Roegneria species. We aimed to identify St- and Y-enhanced repeat clusters and to study whether homoeologous chromosomes between St and Y genomes could be accurately identified due to high affinity. We employed comparative genome analyses to identify St- and Y-enhanced repeat clusters and generated a FISH-based karyotype of R. grandis (Keng), one of the taxonomically controversial StY species, for the first time. We explored 4 novel repeat clusters (StY_34, StY_107, StY_90, and StY_93), which could specifically identify individual St and Y nonhomologous chromosomes. The clusters StY_107 and StY_90 could identify St and Y addition/substitution chromosomes against common wheat genetic backgrounds. The chromosomes V_St, VII_St, I_Y, V_Y, and VII_Y displayed similar probe distribution patterns in the proximal region, indicating that the high affinity between St and Y genome might result from chromosome rearrangements or transposable element insertion among V_St/Y, VII_St/Y, and I_Y chromosomes during allopolyploidization. Our results can be used to employ FISH further to uncover the precise karyotype based on colinearity of Triticeae species by using the wheat karyotype as reference, to analyze diverse populations of the same species to understand the intraspecific structural changes, and to generate the karyotype of different StY-containing species to understand the interspecific chromosome variation.


Assuntos
Cromossomos de Plantas/genética , Elymus/genética , Genoma de Planta/genética , Hibridização in Situ Fluorescente/métodos , Evolução Molecular , Marcadores Genéticos/genética , Cariótipo , Região Organizadora do Nucléolo/genética , Poliploidia , Sequências Repetitivas de Ácido Nucleico/genética , Tetraploidia , Triticum/genética
11.
Open Forum Infect Dis ; 8(7): ofab150, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34327251

RESUMO

Background: The association between the clinical severity of hand, foot, and mouth disease (HFMD) inpatients and socioeconomic status (SES) is important for quantifying SES inequality in HFMD disease burden and informing decision-makers regarding medical subsidy and reimbursement policies. Here, this association was investigated using a quantitative SES measurement. Methods: Laboratory-confirmed HFMD cases hospitalized at Henan Children's Hospital from February 15, 2017, to February 15, 2018, were invited. We utilized the revised Family Affluence Scale for family affluence-based SES measurement. Clinical severity was diagnosed based on central nervous system (CNS) complications, treatments, and length of stay. We applied logistic regression for association analyses and multiple imputation for missing data. Results: A total of 1229 laboratory-confirmed HFMD inpatients responded. Adjusted by age, sex, rural residence, EV-A71 infection, and health-seeking behavior, CNS complications (odds ratio [OR], 2.72; 95% CI, 1.41-5.31), intensive care unit (ICU) admission (OR, 7.30; 95% CI, 2.21-25.97), and prolonged hospitalization (OR, 4.28; 95% CI, 2.44-7.58) were significantly associated with lower family affluence-based SES. These associations increased as the SES category descended. For EV-A71-infected inpatients, severe HFMD was significantly associated with low and intermediate SES. For non-EV-A71-infected inpatients, only the association of prolonged hospitalization with low SES increased significantly. Also, severe HFMD inpatients, especially those admitted to the ICU, incurred high hospitalization costs. Conclusions: The clinical severity of HMFD inpatients was significantly associated with family affluence-based SES. Severe HFMD inpatients were more likely to have lower SES than nonsevere inpatients and suffered a heavy economic burden. Therefore, medical subsidy and reimbursement policies should offer sufficient monetary support to severe HFMD inpatients to alleviate economic burden in low-SES populations and reduce potential SES inequality.

12.
Environ Pollut ; 286: 117575, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34130116

RESUMO

High cadmium (Cd) concentration in common wheat (Triticum aestivum L.) grains poses potential health risks. Several management strategies have been used to reduce grain Cd concentration. However, limited information is available on the use of ammonium-nitrogen (NH4+-N) as a strategy to manage Cd concentration in wheat grains. In this study, NH4+-N addition at the seedling stage unchanged the grain Cd concentration in the high-Cd accumulator, Zhoumai 18 (ZM18), but dramatically increased that in the low-Cd accumulator, Yunmai 51 (YM51). Further analysis revealed that the effects of NH4+-N addition on whole-plant Cd absorption, root-to-shoot Cd translocation, and shoot-to-grain Cd remobilization were different between the two wheat cultivars. In ZM18, NH4+-N addition did not change whole-plant Cd absorption, but inhibited root-to-shoot Cd translocation and Cd remobilization from lower internodes, lower leaves, node 1, and internode 1 to grains via the down-regulation of yellow stripe-like transporters (YSL), zinc transporters (ZIP5, ZIP7, and ZIP10), and heavy-metal transporting ATPases (HMA2). This inhibition decreased the grain Cd content by 29.62%, which was consistent with the decrease of the grain dry weight by 23.26%, leading to unchanged grain Cd concentration in ZM18. However, in YM51, NH4+-N addition promoted continuous Cd absorption during grain filling, root-to-shoot Cd translocation and whole-plant Cd absorption. The absorbed Cd was directly transported to internode 1 via the xylem and then re-transported to grains via the phloem by up-regulated YSL, ZIP5, and copper transporters (COPT4). This promotion increased the grain Cd content by 245.35%, which was higher than the increased grain dry weight by 132.89%, leading to increased grain Cd concentration in YM51. Our findings concluded that the addition of NH4+-N fertilizer at the seedling stage is not suitable for reducing grain Cd concentration in common wheat cultivars.


Assuntos
Compostos de Amônio , Proteínas de Transporte de Cátions , Poluentes do Solo , Cádmio/análise , Grão Comestível/química , Retículo Endoplasmático/metabolismo , Nitrogênio , Plântula/metabolismo , Poluentes do Solo/análise , Triticum/metabolismo , Zinco/análise
14.
EBioMedicine ; 68: 103398, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34049245

RESUMO

BACKGROUND: Hand, foot, and mouth disease (HFMD) caused by enterovirus A71 (EV-A71) poses a serious threat to children's health. Kinetics of the neutralising antibody (NAb) response in EV-A71 infected HFMD patients remains unclear. The ideal sampling time of paired serum samples for serological diagnosis of EV-A71 infection is not well defined. METHODS: HFMD inpatients admitted to Henan Children's Hospital between February 15, 2017 and February 15, 2018 were enrolled. Serial serum samples collected during hospitalisation and up to 1.5 years after discharge were tested for NAb against EV-A71. Random intercept modelling with B-spline was conducted to characterize the kinetics of the EV-A71 NAb response over time after illness onset. FINDINGS: A total of 524 serum samples from 264 EV-A71 RNA positive HFMD inpatients were collected. NAb titres of EV-A71 infected patients were estimated to increase from 40 (95% CI: 9-180) at the day of onset to the peak of 2417 (95% CI: 1859-3143) at day 13, then remained above 1240 until 26 months. For serological diagnosis of EV-A71 infection, if at least a 4-fold rise in titre was used as the criteria, the acute phase serum should be collected at 0-4 days, the corresponding convalescent serum should be collected 14.9 days (95% CI: 9.1-23.8) after illness onset. INTERPRETATION: EV-A71 infection induced a strong and persistent humoral immune response in HFMD patients. The findings provide a scientific support for determining the collection time of paired serum samples for serological diagnosis of EV-A71 infected HFMD patients. FUNDING: National Science Fund for Distinguished Young Scholars.

15.
Biotechnol Biofuels ; 14(1): 102, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892780

RESUMO

Plant biomass is a highly abundant renewable resource that can be converted into several types of high-value-added products, including chemicals, biofuels and advanced materials. In the last few decades, an increasing number of biomass species and processing techniques have been developed to enhance the application of plant biomass followed by the industrial application of some of the products, during which varied technologies have been successfully developed. In this review, we summarize the different sources of plant biomass, the evolving technologies for treating it, and the various products derived from plant biomass. Moreover, the challenges inherent in the valorization of plant biomass used in high-value-added products are also discussed. Overall, with the increased use of plant biomass, the development of treatment technologies, and the solution of the challenges raised during plant biomass valorization, the value-added products derived from plant biomass will become greater in number and more valuable.

17.
Pathogens ; 10(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925553

RESUMO

Raffaelea lauricola is the causative agent of laurel wilt, a devastating disease of lauraceous trees. R. lauricola is also an obligate nutritional symbiont of several ambrosia beetle species who act as vectors for the pathogen. Here, we sought to establish the baseline "phenome" of R. lauricola with knowledge concerning its metabolic capability, expanding our understanding of how these processes are impacted by environmental and host nutrients. Phenotypic screening using a microarray of over one thousand compounds was used to generate a detailed profile of R. lauricola substrate utilization and chemical sensitivity. These data revealed (i) relatively restricted carbon utilization, (ii) broad sulfur and phosphate utilization, and (iii) pH and osmotic sensitivities that could be rescued by specific compounds. Additional growth profiling on fatty acids revealed toxicity on C10 substrates and lower, with robust growth on C12-C18 fatty acids. Conditions for lipid droplet (LD) visualization and LD dynamics were examined using a series of lipid dyes. These data provide unique insights regarding R. lauricola metabolism and physiology, and identify distinct patterns of substrate usage and sensitivity which likely reflect important aspects of the host-microbe interface and can be exploited for the development of strategies for mitigating the spread of laurel wilt.

18.
Genome ; 64(11): 959-968, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33852810

RESUMO

Understanding the genetic diversity of wheat is important for wheat breeding and improvement. However, there have been limited attempts to evaluate wheat diversity using fluorescence in situ hybridization (FISH). In this study, the chromosomal structures of 149 wheat accessions from 13 countries located between the latitudes of 30°N and 45°N, the principal growing region for wheat, were characterized using FISH with pTa535 and pSc119.2 probes. The ranges of the numbers of FISH types in the A-, B-, and D-genome chromosomes were 2-8, 3-7, and 2-4, respectively, and the average numbers in the A and B genomes were greater than in the D genome. Chromosomal translocations were detected by these probes, and previously undescribed translocations were also observed. Using the FISH, the genetic relationships among the 149 common wheat lines were divided into three groups (G1, G2, and G3). G1 mainly consisted of southern European lines, G2 consisted of most lines from Japan and some lines from western Asia, China, and Korea, and G3 consisted of the other lines from southern Europe and most of the lines from western Asia, China, and Korea. FISH karyotypes of wheat chromosomes distinguished chromosomal structural variations, revealing the genetic diversity among wheat varieties. Furthermore, these results provide valuable information for the further genetic improvement of wheat in China.

19.
Polymers (Basel) ; 13(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669607

RESUMO

A facile and environmental-friendly approach was developed for the preparation of the cross-linked nanocellulose aerogel through the freeze-drying process and subsequent esterification. The as-prepared aerogel had a three-dimensional cellular microstructure with ultra-low density of 6.05 mg·cm-3 and high porosity (99.61%). After modifying by chemical vapor deposition (CVD) with hexadecyltrimethoxysilane (HTMS), the nanocellulose aerogel displayed stable super-hydrophobicity and super-oleophilicity with water contact angle of 151°, and had excellent adsorption performance for various oil and organic solvents with the adsorption capacity of 77~226 g/g. Even after 30 cycles, the adsorption capacity of the nanocellulose aerogel for chloroform was as high as 170 g/g, indicating its outstanding reusability. Therefore, the superhydrophobic cross-linked nanocellulose aerogel is a promising oil adsorbent for wastewater treatment.

20.
Nat Commun ; 12(1): 1533, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750783

RESUMO

Several mechanisms driving SARS-CoV-2 transmission remain unclear. Based on individual records of 1178 potential SARS-CoV-2 infectors and their 15,648 contacts in Hunan, China, we estimated key transmission parameters. The mean generation time was estimated to be 5.7 (median: 5.5, IQR: 4.5, 6.8) days, with infectiousness peaking 1.8 days before symptom onset, with 95% of transmission events occurring between 8.8 days before and 9.5 days after symptom onset. Most transmission events occurred during the pre-symptomatic phase (59.2%). SARS-CoV-2 susceptibility to infection increases with age, while transmissibility is not significantly different between age groups and between symptomatic and asymptomatic individuals. Contacts in households and exposure to first-generation cases are associated with higher odds of transmission. Our findings support the hypothesis that children can effectively transmit SARS-CoV-2 and highlight how pre-symptomatic and asymptomatic transmission can hinder control efforts.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Busca de Comunicante , SARS-CoV-2/patogenicidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/prevenção & controle , Criança , Pré-Escolar , China/epidemiologia , Suscetibilidade a Doenças , Características da Família , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...