Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31838695

RESUMO

The safety disposal of high-level radioactive waste (HLW) has become an important issue for nuclear energy and environmental protection. Water chemistry and environmental isotope are accepted as feasible ways to trace groundwater circulation; it can effectively reveal the conversion relationship between different groundwater of the disposal site. Geochemical and isotopic tracers were used to constrain origins and chemical evolution of groundwater in the arid fissure system of the Xinchang preselected site for high-level radioactive waste geological disposal in China. Groundwater level, water temperature, and water chemistry information at different depths were obtained by multi-layer groundwater monitoring. The results show that the chemical and isotopic composition of groundwater in this fissure system is mainly controlled by evaporation, the water chemistry type of the shallow groundwater is mainly Na-Cl-SO4 or Na-Ca-Cl-SO4, and the deep groundwater is mainly Na-Cl-SO4. Based on the values of monitoring data in deep borehole, the fluctuation of groundwater level is less than 0.40 m with weak hydrodynamic condition, and the geothermal gradient is 1.91 °C/100 m. The isotope analyses indicate that the groundwater in the system recharged by local atmospheric precipitation, and the deep groundwater recharged capacity of the site is weak and with no deep cycle.

2.
J Pharmacol Sci ; 141(1): 64-69, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31640919

RESUMO

Activation of both adenosine A2A and A2B receptors (A2BR) contributes to coronary vasodilation. We previously demonstrated that uridine adenosine tetraphosphate (Up4A) is a novel vasodilator in the porcine coronary microcirculation, acting mainly on A2AR in smooth muscle cells (SMC). We further investigated whether activation of A2BR is involved in Up4A-mediated coronary SMC relaxation. Both A2AR and A2BR may stimulate H2O2 production leading to activation of KATP channels in SMCs, we also studied the involvement of H2O2 and KATP channels in Up4A-mediated effect. Coronary small arteries dissected from the apex of porcine hearts were mounted on wire myograph for Up4A concentration responses. Up4A-induced coronary SMC relaxation was attenuated by A2AR but not A2BR antagonism or non-selective P2R antagonism, despite greater endogenous A2BR expression vs. A2AR in both coronary small arteries and primary cultured coronary SMCs. Moreover, Up4A-induced coronary SMC relaxation was blunted by H2O2 catabolism. This effect was not altered by KATP channel blockade. Combination of H2O2 catabolism and A2AR antagonism attenuated Up4A-induced coronary SMC relaxation to the similar extent as A2AR antagonism alone. Collectively, Up4A-induced porcine coronary SMC relaxation is mediated by activation of A2AR-H2O2 pathway. This process does not involve A2BR, P2R or KATP channels.

3.
Biochem Biophys Res Commun ; 517(3): 413-420, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31378369

RESUMO

GLUT9 is generally considered to be associated with the uric acid transport, which plays an important role in the regulation of serum uric acid level. In this study, the expression level of miR-143-3p was significantly decreased in hyperuricemia mice model group compared with the normal control by miRNA microarray, the same results were confirmed in the hyperuricemia patients and the healthy control group. It is predicted that GLUT9 may be the target gene of miR-143-3p by target scan and other net-software. GLUT9 as the downstream target gene of miR-143-3p was determinated by fluorescence enzyme activity assay. Western blotting and qRT-PCR indicated that the expression of GLUT9 in human renal tubular epithelial cells transfected with miR-143-3p mimics was significantly reduced. Meanwhile inflammatory factors IL-1ß and MCP-1 significantly decreased. In conclusion, miR-143-3p can reduce uric acid reabsorption by inhibiting its downstream target gene GLUT9.

4.
Front Pharmacol ; 10: 861, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31427970

RESUMO

Red blood cells (RBCs) from patients with type 2 diabetes mellitus (T2DM) induce endothelial dysfunction and impair cardiac function following ischemia via increase in RBC arginase and oxidative stress. Here, we aimed to elucidate whether the effect of RBC-mediated cardiac impairment following ischemia and endothelial dysfunction in T2DM is dependent on glycemic control. Patients with T2DM at poor glycemic control (T2DM PGC) and at improvement in glycemic control (T2DM IGC) and healthy subjects were recruited. Isolated RBCs from subjects were incubated with aortic rings from healthy wild-type rats with subsequent evaluation of endothelium-dependent relaxation (EDR) using wire myograph. Moreover, RBCs were administered to isolated wild-type rat hearts with subsequent evaluation of left ventricular developed pressure (LVDP) during reperfusion using Langendorff setup. In separate experiments, RBCs were preincubated with an arginase inhibitor before perfusion. Blood glucose and glycated hemoglobin were 33 and 26%, respectively, lower in T2DM IGC compared with those in T2DM PGC. RBCs from T2DM PGC and T2DM IGC impaired EDR to a similar magnitude compared with RBCs from healthy subjects. LVDP was significantly impaired in hearts given RBCs from T2DM PGC as compared with those from healthy subjects. The impairment of LVDP induced by T2DM PGC was attenuated by RBCs from T2DM IGC. Arginase inhibition improved LVDP to a similar extent between T2DM PGC and IGC groups. These observations indicate that glycemic control abrogate the impairment in postischemic recovery but not endothelial dysfunction induced by RBCs from T2DM. Moreover, inhibition of RBC arginase improves cardiac function irrespective of glycemic control.

5.
Virus Res ; 270: 197662, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31301331

RESUMO

Human adenovirus type 4 (HAdV4) is an etiological agent of acute respiratory disease (ARD) in pediatric and adult patients. HAdV4 strains can be divided into two major genomic clusters, namely prototype (p)-like viruses and a-like viruses. Here, the complete genome sequence of HAdV4 strain GZ01, isolated from a child with ARD in southern China, is first reported and analyzed. This strain was determined to be of the 4a1 genome-type based on in silico restriction profiles. Then, a replication-competent rAd4DsRed virus, containing the HAdV4 GZ01 infectious genome and expressing the reporter molecule DsRed, was generated and characterized. Recombinant rAd4DsRed can infect AD293, hamster, and mouse cells in which DsRed protein was expressed. No changes in antigenicity and genome replication were detected for rAd4DsRed and wild-type HAdV4. Mice immunized with rAd4DsRed was elicited a marked antibody response to DsRed. A rapid method of testing neutralizing antibodies against HAdV3 and HAdV4 was also established using a mixture of rAd4DsRed and rAd3EGFP. Our results provide the foundation to develop HAdV4 vaccines, potential vector platforms for vaccine and gene therapy, and rapid methods for serological and antiviral screening.

6.
J Cell Mol Med ; 23(9): 6085-6097, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31270949

RESUMO

The surged systemic vascular inflammation after acute myocardial infarction (AMI) aggravates the atherosclerotic endothelial injury. To explore roles of miR-499 released from cardiomyocytes during AMI in endothelial injury. Using qPCR and ELISA, we discovered that patients with AMI had significantly increased plasma miR-499, which was directly correlated with serum thrombomodulin, a marker for endothelial injury. Plasma of AMI patients, when incubated with human umbilical vein endothelial cells (HUVECs), significantly increased the expression of endothelial injury markers, which could be abrogated by antagomiR-499. In vitro, neonatal rat cardiomyocytes subjected to hypoxia/reoxygenation (HX/R) released miR-499 that could be internalized into rat pulmonary microvascular endothelial cells (RPMECs), worsening the high glucose-induced injury. In silico analysis demonstrated that CHRNA7 encoding α7-nAchR is a target of miR-499, which was validated in cell lines expressing endogenous α7-nAchR. In high glucose-induced RPMECs injury model, miR-499 aggravated, whereas forced CHRNA7 expression ameliorated the injury. Moreover, the perfusate from Langendorff perfused rat heart subjected to HX/R contained higher level of miR-499 that significantly impaired the Bradykinin-mediated endothelium-dependent relaxation in both conduit and resistance arteries, which could be partially abrogated by antagomiR-499. Finally, the correlation between plasma miR-499 and endothelial injury was further confirmed in another cohort of AMI patients. We conclude that miR-499 released from injured cardiomyocytes contributes to the endothelial injury by targeting α7-nAchR. This study implies that miR-499 may serve as a potential target for the treatment of the surged vascular inflammation post-AMI.

7.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 36(3): 407-413, 2019 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-31232543

RESUMO

Tree shrew is a novel and high-quality experimental animal model. In this study, the real-time polymerase chain reaction methods were established to detect infection-related cytokines interleukin-6 (IL-6), IL-8, IL-10, IL-17A, interferon-γ (IFN-γ) and housekeeping gene glyceraldehyde-phosphate dehydrogenase ( GAPDH) of tree shrew. The results indicated that the establised methods had good specificity. The high point of the linear range of these reagents reached 1 × 10 10 copies, and the low points ranged from 10 copies (IL-6, IL-17A), 100 copies (IL-10, GAPDH) to 1 000 copies (IL-8, IFN-γ). In this interval, the linear correlation coefficient R 2 of each reagent was greater than 0.99. The lowest detectable values of IL-6, IL-8, IL-10, IL-17A, IFN-γ and GAPDH were 8, 8, 4, 8, 128 and 4 copies, respectively. The results showed that the established detection methods had good specificity, sensitivity and wide linear range. The methods were suitable for detection of multiple concentration range samples, and could be used for the subsequent studies of tree shrew cytokines.


Assuntos
Citocinas/análise , Reação em Cadeia da Polimerase em Tempo Real , Musaranhos , Animais
8.
Cardiovasc Res ; 115(11): 1596-1605, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31198931

RESUMO

The primary role of red blood cells (RBCs) is to transport oxygen to the tissues and carbon dioxide to the lungs. However, emerging evidence suggests an important role of the RBC beyond being just a passive carrier of the respiratory gases. The RBCs are of importance for redox balance and are actively involved in the regulation of vascular tone, especially during hypoxic and ischaemic conditions by the release of nitric oxide (NO) bioactivity and adenosine triphosphate. The role of the RBC has gained further interest after recent discoveries demonstrating a markedly altered function of the cell in several pathological conditions. Such alterations include increased adhesion capability, increased formation of reactive oxygen species as well as altered protein content and enzymatic activities. Beyond signalling increased oxidative stress, the altered function of RBCs is characterized by reduced export of NO bioactivity regulated by increased arginase activity. Of further importance, the altered function of RBCs has important implications for several cardiovascular disease conditions. RBCs have been shown to induce endothelial dysfunction and to increase cardiac injury during ischaemia-reperfusion in diabetes mellitus. Finally, this new knowledge has led to novel therapeutic possibilities to intervene against cardiovascular disease by targeting signalling in the RBC. These novel data open up an entirely new view on the underlying pathophysiological mechanisms behind the cardiovascular disease processes in diabetes mellitus mediated by the RBC. This review highlights the current knowledge regarding the role of RBCs in cardiovascular regulation with focus on their importance for cardiovascular dysfunction in pathological conditions and therapeutic possibilities for targeting RBCs in cardiovascular disease.

9.
Microb Ecol ; 77(2): 417-428, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30612184

RESUMO

Bathyarchaeota is a diverse, abundant, and widespread archaeal phylum that may play an important role in global carbon cycling. The vertical distribution of Bathyarchaeota and environmental impact on bathyarchaeotal community in deep-sea and lake sediments are known; however, little information is available on Bathyarchaeota in eutrophic and brackish environments, such as mangrove wetlands. In the current study, we investigated the bathyarchaeotal community in the mangrove ecosystem of Futian Nature Reserve, Shenzhen. By slicing the profile into 2-cm layers from the surface to bottom, 110 sediment samples were obtained from three mangrove and three mud flat profiles. High-throughput sequencing of archaeal 16S rRNA genes, quantification of bathyarchaeotal 16S rRNA genes with optimized quantitative primers, and the ensuing statistical analyses revealed the vertical distribution of Bathyarchaeota in the mangrove ecosystem, indicating that Bathyarchaeota was the dominant archaeal phylum therein, with Bathyarchaeota subgroups 6, 8, 15, and 17 as the most abundant subgroups. The abundance of Bathyarchaeota was higher in the mangrove than in the mud flat and other oligotrophic or freshwater habitats. Total organic carbon (TOC) and nitric oxide were significantly correlated with the abundance of Bathyarchaeota, and pH was the major factor shaping the community composition. Further, the data suggested that Bathyarchaeota subgroup 6 preferentially dwelled in slightly acidic, high TOC, and subsurface environments, indicating a potentially distinct role in the global geochemical cycle. These findings expand the knowledge of the distribution and niche preference of Bathyarchaeota, emphasizing the need for continuous characterization of bathyarchaeotal subgroups.


Assuntos
Archaea/isolamento & purificação , Biodiversidade , Archaea/classificação , Archaea/genética , Ciclo do Carbono , DNA Arqueal/genética , Sedimentos Geológicos/análise , Sedimentos Geológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Lagos/análise , Lagos/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/análise , Água do Mar/microbiologia , Áreas Alagadas
10.
Sensors (Basel) ; 19(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626144

RESUMO

Doppler parameter estimation and compensation (DPEC) is an important technique for airborne SAR imaging due to the unpredictable disturbance of real aircraft trajectory. Traditional DPEC methods can be only applied for broadside, small- or medium-squint geometries, as they at most consider the spatial variance of the second-order Doppler phase. To implement the DPEC in very-high-squint geometries, we propose an extended multiple aperture mapdrift (EMAM) method in this paper for better accuracy. This advantage is achieved by further estimating and compensating the spatial variation of the third-order Doppler phase, i.e., the derivative of the Doppler rate. The main procedures of the EMAM, including the steps of sub-view image generation, sliding-window-based cross-correlation, and image-offset-based Doppler parameter estimation, are derived in detail, followed by the analyses for the EMAM performance. The presented approach is evaluated by both computer simulations and real airborne data.

11.
Appl Microbiol Biotechnol ; 103(2): 995-1005, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30474727

RESUMO

Biological nitrogen fixation (BNF) is an important natural biochemical process converting the inert dinitrogen gas (N2) in the atmosphere to ammonia (NH3) in the N cycle. In this study, the nifH gene was chosen to detect the diazotrophic microorganisms with high-throughput sequencing from five acidic forest soils, including three natural forests and two re-vegetated forests. Soil samples were taken in two seasons (summer and winter) at two depth layers (surface and lower depths). A dataset of 179,600 reads obtained from 20 samples were analyzed to provide the microbial community structure, diversity, abundance, and relationship with physiochemical parameters. Both archaea and bacteria were detected in these samples and diazotrophic bacteria were the dominant members contributing to the biological dinitrogen fixation in the acidic forest soils. Cyanobacteria, Firmicutes, Proteobacteria, Spirocheates, and Verrucomicrobia were observed, especially the Proteobacteria as the most abundant phylum. The core genera were Bradyrhizobium and Methylobacterium from α-Proteobacteia, and Desulfovibrio from δ-Proteobacteia in the phylum of Proteobacteia of these samples. The diversity indices and the gene abundances of all samples were higher in the surface layer than the lower layer. Diversity was apparently higher in re-vegetated forests than the natural forests. Significant positive correlation to the organic matter and nitrogen-related parameters was observed, but there was no significant seasonal variation on the community structure and diversity in these samples between the summer and winter. The application of high-throughput sequencing method provides a better understanding and more comprehensive information of diazotrophs in acidic forest soils than conventional and PCR-based ones.


Assuntos
Archaea/classificação , Bactérias/classificação , Variação Genética , Microbiota , Fixação de Nitrogênio , Oxirredutases/genética , Microbiologia do Solo , Ácidos/análise , Archaea/enzimologia , Archaea/genética , Archaea/metabolismo , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Fenômenos Químicos , Florestas , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Estações do Ano , Solo/química
12.
ISME J ; 13(4): 885-901, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514872

RESUMO

Marine Benthic Group D (MBG-D) archaea, discovered by 16S rRNA gene survey decades ago, are ecologically important, yet understudied and uncultured sedimentary archaea. In this study, a comprehensive meta-analysis based on the 16S rRNA genes of MBG-D archaea showed that MBG-D archaea are one of the most frequently found archaeal lineages in global sediment with widespread distribution and high abundance, including 16 subgroups in total. Interestingly, some subgroups show significant segregations toward salinity and methane seeps. Co-occurrence analyses indicate significant non-random association of MBG-D archaea with Lokiarchaeota (in both saline and freshwater sediments) and Hadesarchaea, suggesting potential interactions among these archaeal groups. Meanwhile, based on four nearly complete metagenome-assembled genomes (MAGs) and corresponding metatranscriptomes reconstructed from mangrove and intertidal mudflat sediments, we provide insights on metabolic potentials and ecological functions of MBG-D archaea. MBG-D archaea appear to be capable of transporting and assimilating peptides and generating acetate and ethanol through fermentation. Metatranscriptomic analysis suggests high expression of genes for acetate and amino acid utilization and for peptidases, especially the M09B-type extracellular peptidase (collagenase) showing high expression levels in all four mangrove MAGs. Beyond heterotrophic central carbon metabolism, the MBG-D genomes include genes that might encode two autotrophic pathways: Wood-Ljundahl (WL) pathways using both H4MPT and H4folate as C1 carriers, and an incomplete dicarboxylate/4-hydroxybutyrate cycle with alternative bypasses from pyruvate to malate/oxaloacetate during dicarboxylation. These findings reveal MBG-D archaea as an important ubiquitous benthic sedimentary archaeal group with specific mixotrophic metabolisms, so we proposed the name Thermoprofundales as a new Order within the Class Thermoplasmata. Globally, Thermoprofundales and other benthic archaea might synergistically transform benthic organic matter, possibly playing a vital role in sedimentary carbon cycle.


Assuntos
Archaea/classificação , Archaea/fisiologia , Sedimentos Geológicos/microbiologia , Microbiologia da Água , Archaea/genética , Ciclo do Carbono , Ecologia , Genômica , Sedimentos Geológicos/química , Metagenoma , Metano/metabolismo , Filogenia , RNA Arqueal/genética , RNA Ribossômico 16S/genética , Transcriptoma
13.
IEEE Trans Image Process ; 28(1): 88-101, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30080147

RESUMO

As a post-processing procedure, the diffusion process has demonstrated its ability of substantially improving the performance of various visual retrieval systems. Whereas, great efforts are also devoted to similarity (or metric) fusion, seeing that only one individual type of similarity cannot fully reveal the intrinsic relationship between objects. This stimulates a great research interest of considering similarity fusion in the framework of the diffusion process (i.e., fusion with diffusion) for robust retrieval. In this paper, we first revisit representative methods about fusion with diffusion and provide new insights which are ignored by previous researchers. Then, observing that existing algorithms are susceptible to noisy similarities, the proposed regularized ensemble diffusion (RED) is bundled with an automatic weight learning paradigm, so that the negative impacts of noisy similarities are suppressed. Though formulated as a convex optimization problem, one advantage of RED is that it converts back into the iteration-based solver with the same computational complexity as the conventional diffusion process. At last, we integrate several recently-proposed similarities with the proposed framework. The experimental results suggest that we can achieve new state-of-the-art performances on various retrieval tasks, including 3D shape retrieval on the ModelNet data set, and image retrieval on the Holidays and Ukbench data sets.

14.
Pharmacol Res ; 141: 32-45, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30553823

RESUMO

Uridine adenosine tetraphosphate (Up4A), biosynthesized by activation of vascular endothelial growth factor receptor (VEGFR) 2, was initially identified as a potent endothelium-derived vasoconstrictor in perfused rat kidney. Subsequently, the effect of Up4A on vascular tone regulation was intensively investigated in arteries isolated from different vascular beds in rodents including rat pulmonary arteries, aortas, mesenteric and renal arteries as well as mouse aortas, in which Up4A produces vascular contraction. In contrast, Up4A produces vascular relaxation in porcine coronary small arteries and rat aortas. Intravenous infusion of Up4A into conscious rats or mice decreases blood pressure, and intravenous bolus injection of Up4A into anesthetized mice increases coronary blood flow, indicating an overall vasodilator influence in vivo. Although Up4A is the first dinucleotide described that contains both purine and pyrimidine moieties, its cardiovascular effects are exerted mainly through activation of purinergic receptors. These effects not only encompass regulation of vascular tone, but also endothelial angiogenesis, smooth muscle cell proliferation and migration, and vascular calcification. Furthermore, this review discusses a potential role for Up4A in cardiovascular pathophysiology, as plasma levels of Up4A are elevated in juvenile hypertensive patients and Up4A-mediated vascular purinergic signaling changes in cardiovascular disease such as hypertension, diabetes, atherosclerosis and myocardial infarction. Better understanding the vascular effect of the novel dinucleotide Up4A and the purinergic signaling mechanisms mediating its effects will enhance its potential as target for treatment of cardiovascular disease.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Fosfatos de Dinucleosídeos/fisiologia , Receptores Purinérgicos/fisiologia , Animais , Sistema Cardiovascular , Humanos , Transdução de Sinais
15.
Int J Mol Sci ; 19(12)2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544633

RESUMO

Purinergic signaling may be altered in diabetes accounting for endothelial dysfunction. Uridine adenosine tetraphosphate (Up4A), a novel dinucleotide substance, regulates vascular function via both purinergic P1 and P2 receptors (PR). Up4A enhances vascular contraction in isolated arteries of diabetic rats likely through P2R. However, the precise involvement of PRs in endothelial dysfunction and the vasoconstrictor response to Up4A in diabetes has not been fully elucidated. We tested whether inhibition of PRs improved endothelial function and attenuated Up4A-mediated vascular contraction using both aortas and mesenteric arteries of type 2 diabetic (T2D) Goto Kakizaki (GK) rats vs. control Wistar (WT) rats. Endothelium-dependent (EDR) but not endothelium-independent relaxation was significantly impaired in both aortas and mesenteric arteries from GK vs. WT rats. Non-selective inhibition of P1R or P2R significantly improved EDR in aortas but not mesenteric arteries from GK rats. Inhibition of A1R, P2X7R, or P2Y6R significantly improved EDR in aortas. Vasoconstrictor response to Up4A was enhanced in aortas but not mesenteric arteries of GK vs. WT rats via involvement of A1R and P2X7R but not P2Y6R. Depletion of major endothelial component nitric oxide enhanced Up4A-induced aortic contraction to a similar extent between WT and GK rats. No significant differences in protein levels of A1R, P2X7R, and P2Y6R in aortas from GK and WT rats were observed. These data suggest that altered PR sensitivity accounts for endothelial dysfunction in aortas in diabetes. Modulating PRs may represent a potential therapy for improving endothelial function.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Animais , Diabetes Mellitus Experimental , Fosfatos de Dinucleosídeos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Masculino , Ratos , Ratos Wistar , Receptores Purinérgicos/metabolismo , Vasoconstrição/efeitos dos fármacos
16.
Emerg Microbes Infect ; 7(1): 206, 2018 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-30531794

RESUMO

The re-emerging human adenovirus types HAdV7, HAdV14, and HAdV55 of species B have caused severe lower respiratory tract diseases and even deaths during recent outbreaks. However, no adenovirus vaccine or therapeutic has been approved for general use. These adenoviruses attach to host cells via the knob domain of the fiber, using human desmoglein 2 as the primary cellular receptor. In this study, a recombinant HAdV11 fiber knob trimer (HAdV11FK) expressed in E. coli was shown to induce broadly neutralizing antibodies against HAdV11, -7, -14p1, and -55 in mice. Using HAdV11FK as an antigen, three monoclonal antibodies, 6A7, 3F11, and 3D8, with high neutralizing activity were generated. More importantly, the results of in vitro neutralization assays demonstrated that 3F11 and 3D8 cross-neutralized HAdV11, -7, and -55, but not HAdV14p1. The amino acids 251KE252 within the F-G loop may be the crucial amino acids in the conformational epitope recognized by 3F11, which is common to HAdV11, -7, -14p, and -55, but is not present in HAdV14p1 and HAdV3. A two-amino-acid deletion in the HAdV14p1 structure breaks the short alpha helix (248SREKE252) that is present in the HAdV7, -11, -55, and -14p fiber knob structures. Our findings add to the knowledge of adenovirus fiber structure and antibody responses and are important for the design of adenovirus vaccines and antiviral drugs with broad activity.


Assuntos
Adenovírus Humanos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Doenças Transmissíveis Emergentes/virologia , Desmogleína 2/metabolismo , Epitopos/química , Epitopos/imunologia , Escherichia coli/genética , Humanos , Testes de Neutralização , Proteínas Recombinantes/imunologia
17.
Aging (Albany NY) ; 10(12): 3643-3644, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487318
18.
JACC Basic Transl Sci ; 3(4): 450-463, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30175269

RESUMO

This study tested the hypothesis that red blood cell (RBC) arginase represents a potential therapeutic target in ischemia-reperfusion in type 2 diabetes. Post-ischemic cardiac recovery was impaired in hearts from db/db mice compared with wild-type hearts. RBCs from mice and patients with type 2 diabetes attenuated post-ischemic cardiac recovery of nondiabetic hearts. This impaired cardiac recovery was reversed by inhibition of RBCs arginase or nitric oxide synthase. The results suggest that RBCs from type 2 diabetics impair cardiac tolerance to ischemia-reperfusion via a pathway involving arginase activity and nitric oxide synthase-dependent oxidative stress.

19.
J Am Coll Cardiol ; 72(7): 769-780, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30092954

RESUMO

BACKGROUND: Cardiovascular complications are major clinical problems in type 2 diabetes mellitus (T2DM). The authors previously demonstrated a crucial role of red blood cells (RBCs) in control of cardiac function through arginase-dependent regulation of nitric oxide export from RBCs. There is alteration of RBC function, as well as an increase in arginase activity, in T2DM. OBJECTIVES: The authors hypothesized that RBCs from patients with T2DM induce endothelial dysfunction by up-regulation of arginase. METHODS: RBCs were isolated from patients with T2DM and age-matched healthy subjects and were incubated with rat aortas or human internal mammary arteries from nondiabetic patients for vascular reactivity and biochemical studies. RESULTS: Arginase activity and arginase I protein expression were elevated in RBCs from patients with T2DM (T2DM RBCs) through an effect induced by reactive oxygen species (ROS). Co-incubation of arterial segments with T2DM RBCs, but not RBCs from age-matched healthy subjects, significantly impaired endothelial function but not smooth muscle cell function in both healthy rat aortas and human internal mammary arteries. Endothelial dysfunction induced by T2DM RBCs was prevented by inhibition of arginase and ROS both at the RBC and vascular levels. T2DM RBCs induced increased vascular arginase I expression and activity through an ROS-dependent mechanism. CONCLUSIONS: This study demonstrates a novel mechanism behind endothelial dysfunction in T2DM that is induced by RBC arginase I and ROS. Targeting arginase I in RBCs may serve as a novel therapeutic tool for the treatment of endothelial dysfunction in T2DM.


Assuntos
Arginase/biossíntese , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/enzimologia , Endotélio Vascular/enzimologia , Eritrócitos/enzimologia , Idoso , Animais , Arginase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Eritrócitos/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Vasodilatadores/farmacologia
20.
Virus Res ; 256: 100-106, 2018 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-30096411

RESUMO

Human adenoviruses (HAdV) 3 and 7 can cause acute respiratory disease epidemics and outbreaks. Identification of neutralizing epitopes is vital for surveillance and vaccine development. In this study, we generated the recombinant capsid-chimeric human adenoviruses rAd3E-Fk7, containing the Ad3E backbone and the HAdV-7 fiber knob, and rAd3E-H7Fk7, which contain an Ad3E backbone but HAdV-7 hexon and fiber knob. In vitro neutralization tests with these chimeric adenoviruses using both mouse and human antisera indicated that hexon and fiber knob are the major targets recognized by neutralizing antibodies against HAdV-3 or HAdV-7, and other capsid proteins including the penton base and fiber shaft may not contribute to neutralizing antibody responses. In conclusion, both hexon and fiber knob structures in HAdV-3 and HAdV-7 may be the proteins which induce neutralizing antibody responses and thus may be important for adenovirus vaccine and drug development.


Assuntos
Adenovírus Humanos/genética , Adenovírus Humanos/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Recombinação Genética , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Epitopos de Linfócito B/imunologia , Humanos , Camundongos , Testes de Neutralização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA