Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Oncol Rep ; 44(4): 1596-1604, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32945475


The aim of the present study was to explore the antitumor effects of sinoporphyrin sodium (DVDMS)­mediated photodynamic therapy (PDT) and sonodynamic therapy (SDT) in glioma, and to reveal the underlying mechanisms. The uptake of DVDMS by U­118 MG cells was detected by flow cytometry (FCM). A 630­nm semiconductor laser and 1­MHz ultrasound were used to perform PDT and SDT, respectively. Cell proliferation and apoptosis were evaluated using the Cell Counting Kit­8 assay, FCM and Hoechst 33258 staining, respectively. Western blot analysis was used to detect protein expression and phosphorylation levels. BALB/c nude mice were used to establish a xenograft model of U­118 MG cells. DVDMS was injected intravenously and PDT and SDT were performed 24 h later. An in vivo imaging system was used to evaluate the fluorescence of DVDMS, to measure tumor sizes, and to evaluate the therapeutic effects. The uptake of DVDMS by U­118 MG cells was optimal after 4 h. PDT and SDT following DVDMS injection significantly inhibited the proliferation and increased apoptosis of glioma cells in vitro (P<0.05, P<0.01) respectively. In vivo, the fluorescence intensity of DVDMS was lower in the PDT and SDT groups compared with the DVDMS group, while tumor cell proliferation and weight were lower in the PDT and SDT groups than in the control group (P<0.05, P<0.01). However, there was no significant difference when laser, ultrasound or DVDMS were applied individually, compared with the control group. Hematoxylin and eosin staining suggested that both PDT and SDT induced significant apoptosis and vascular obstruction in cancer tissues. DVDMS­mediated PDT and SDT inhibited the expression levels of proliferating cell nuclear antigen (PCNA) and Bcl­xL, increased cleaved ­caspase 3 levels, and decreased the protein phosphorylation of the PI3K/AKT/mTOR signaling pathway. Changes in the expression of PCNA, and Bcl­xL and in the levels of cleaved­caspase 3 were partly reversed by N­acetyl­L­cysteine, a reactive oxygen species (ROS) scavenger. Similar results were obtained with FCM. DVDMS­mediated PDT and SDT inhibited glioma cell proliferation and induced cell apoptosis in vitro and in vivo, potentially by increasing the generation of ROS and affecting protein expression and phosphorylation levels.

Atherosclerosis ; 234(1): 120-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24637412


OBJECTIVE: To develop alternative therapeutic strategy that reduces hypercholesterolemia, inflammation and atherosclerosis, we investigate if fumigaclavine C (FC), an indole alkaloid in structure, has anti-atherosclerosis function, and if so, what is the mechanism involved. METHODS AND RESULTS: We used ApoE-deficient (ApoE(-/-)) mice as an atherosclerosis model to examine if FC reduced aorta lesion size and improved serum lipid profiles. ApoE(-/-) mice at 6 weeks of age were fed on a western diet for 10 weeks before FC was administrated (5, 10 and 20 mg/kg) by gavage daily for additional 4 weeks. The mice were sacrificed at 20 weeks of age for examination. The atherosclerotic lesions were assessed with Oil Red O staining in the whole aorta and aortic sinus. Serum levels of triglycerides (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-c) and low density lipoprotein cholesterol (LDL-c) were determined enzymatically. Mouse macrophages were examined for lipid droplets inside cells. FC's effect on PPARγ and PPARγ signaling pathway were further investigated by western blot and luciferase assay. We found that FC decreased atherosclerotic lesion formation in ApoE(-/-) mice in a dose-dependent manner. Also FC improved lipid profiles in ApoE(-/-) mice and reduced the foam cell numbers of peritoneal macrophages. FC stimulated PPARγ signaling pathway proteins both in vitro and in vivo. FC enhanced PPARγ transactivation activity assayed by a PPRE reporter system. CONCLUSION: Our data indicated that FC activated PPARγ signaling pathway as well as its downstream proteins and had an effective role of anti-atherosclerosis.

Aterosclerose/tratamento farmacológico , Alcaloides de Claviceps/farmacologia , Alcaloides de Claviceps/uso terapêutico , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/uso terapêutico , PPAR gama/efeitos dos fármacos , Animais , Apolipoproteínas E/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL