Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Tipo de estudo
Intervalo de ano de publicação
Sci Total Environ ; 618: 1254-1267, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29089134


Massive partial sequencing of 16S rRNA genes has become the predominant tool used for studying microbial ecology. However, determining which hypervariable regions and primer sets should be used for screening microbial communities requires extensive investigation if controversial results are to be avoided. Here, the performances of different variable regions of the 16S rRNA gene on bacterial diversity studies were evaluated in silico with respect to the SILVA non-redundant reference database (SILVA SSU Ref 123NR), and subsequently verified using samples from Lake Taihu in China, a eutrophic lake. We found that the bacterial community composition results were strongly impacted by the different V regions. The results show that V1-V2 and V1-V3 regions were the most reliable regions in the full-length 16S rRNA sequences, while most V3 to V6 regions (including V3, V4, V3-V4, V5, V4-V5, V6, V3-V6, V4-V6, and V5-V6) were more closely aligned with the SILVA SSU Ref 123NR database. Overall, V4 was the most prominent V region for achieving good domain specificity, higher coverage and a broader spectrum in the Bacteria domain, as confirmed by the validation experiments. S-D-Bact-0564-a-S-15/S-D-Bact-0785-b-A-18 is, therefore, a promising primer set for surveying bacterial diversity in eutrophic lakes.

Bactérias/genética , Monitoramento Ambiental , Eutrofização , Lagos/microbiologia , Bactérias/classificação , China , Genes Bacterianos , Variação Genética , RNA Ribossômico 16S , Análise de Sequência de DNA
Environ Sci Pollut Res Int ; 24(14): 12796-12808, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28364202


Understanding of the bacterial community structure in drinking water resources helps to enhance the security of municipal water supplies. In this study, bacterial communities were surveyed in water and sediment during a heavy cyanobacterial bloom in a drinking water resource of Lake Taihu, China. A total of 325,317 high-quality sequences were obtained from different 16S ribosomal RNA (rRNA) regions (V3, V4, and V6) using the Miseq sequencing platform. A notable difference was shown between the water and sediment samples, as predominated by Cyanobacteria, Proteobacteria, and Actinobacteria in the water and Proteobacteria, Chloroflexi, and Verrucomicrobia in the sediment, respectively. The LD12 family dominated the water surface and was tightly associated with related indicators of cyanobacterial propagation, indicating involvement in the massive proliferation of cyanobacterial blooms. Alternatively, the genus Nitrospira dominated the sediment samples, which indicates that nitrite oxidation was very active in the sediment. Although pathogenic bacteria were not detected in a large amount, some genera such as Mycobacterium, Acinetobacter, and Legionella were still identified but in very low abundance. In addition, the effects of different V regions on bacterial diversity survey were evaluated. Overall, V4 and V3 were proven to be more promising V regions for bacterial diversity survey in water and sediment samples during heavy water blooms in Lake Taihu, respectively. As longer, cheaper, and faster DNA sequencing technologies become more accessible, we expect that bacterial community structures based on 16S rRNA amplicons as an indicator could be used alongside with physical and chemical indicators, to conduct comprehensive assessments for drinking water resource management.

Lagos/microbiologia , RNA Ribossômico 16S/genética , China , Cianobactérias/classificação , Água Potável
Stand Genomic Sci ; 11: 11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26823957


The cyanobacterial genus Microcystis is well known as the main group that forms harmful blooms in water. A strain of Microcystis, M. panniformis FACHB1757, was isolated from Meiliang Bay of Lake Taihu in August 2011. The whole genome was sequenced using PacBio RS II sequencer with 48-fold coverage. The complete genome sequence with no gaps contained a 5,686,839 bp chromosome and a 38,683 bp plasmid, which coded for 6,519 and 49 proteins, respectively. Comparison with strains of M. aeruginosa and some other water bloom-forming cyanobacterial species revealed large-scale structure rearrangement and length variation at the genome level along with 36 genomic islands annotated genome-wide, which demonstrates high plasticity of the M. panniformis FACHB1757 genome and reveals that Microcystis has a flexible genome evolution.

Ying Yong Sheng Tai Xue Bao ; 26(11): 3545-53, 2015 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-26915214


The advent of next generation sequencing technology enables parallel analysis of the whole microbial community from multiple samples. Particularly, sequencing 16S rRNA hypervariable tags has become the most efficient and cost-effective method for assessing microbial diversity. Due to its short read length of the 2nd-generation sequencing methods that cannot cover the full 16S rRNA genomic region, specific hypervariable regions or V-regions must be selected to act as the proxy. Over the past decade, selection of V-regions has not been consistent in assessing microbial diversity. Here we evaluated the current strategies of selecting 16S rRNA hypervariable regions for surveying microbial diversity. The environmental condition was considered as one of the important factors for selection of 16S rRNA hypervariable regions. We suggested that a pilot study to test different V-regions is required in bacterial diversity studies based on 16S rRNA genes.

Marcadores Genéticos , Genoma Microbiano , Metagenômica , Filogenia , RNA Ribossômico 16S/genética , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala