Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-33588386

RESUMO

The microstructure of quasi-one-dimensional KCr3As3 (133) superconductors, which were prepared by chemical cation deintercalation from their counterpart K2Cr3As3 (233) compounds, are investigated using scanning transmission electron microscopy. The nominal KCr3As3 crystals generally exhibit irregular nanoscale 133-phase domains accompanied by an amorphous As-deficient phase and cracks as a result of alkali cation deintercalation processes. Analysis of local defective structures reveals the existence of an intermediate state in the transformation from 233 to 133 phase and a possible K-deficient 233-type structure as a nanoscale cluster. Our microscopic investigations offer insight into the microstructure of KCr3As3 and the alkali metal cation deintercalation processes.

2.
Antimicrob Resist Infect Control ; 10(1): 24, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516275

RESUMO

BACKGROUND: Pediatric bacterial meningitis (PBM) remains a devastating disease that causes substantial neurological morbidity and mortality worldwide. However, there are few large-scale studies on the pathogens causing PBM and their antimicrobial resistance (AMR) patterns in China. The present multicenter survey summarized the features of the etiological agents of PBM and characterized their AMR patterns. METHODS: Patients diagnosed with PBM were enrolled retrospectively at 13 children's hospitals in China from 2016 to 2018 and were screened based on a review of cerebrospinal fluid (CSF) microbiology results. Demographic characteristics, the causative organisms and their AMR patterns were systematically analyzed. RESULTS: Overall, 1193 CSF bacterial isolates from 1142 patients with PBM were obtained. The three leading pathogens causing PBM were Staphylococcus epidermidis (16.5%), Escherichia coli (12.4%) and Streptococcus pneumoniae (10.6%). In infants under 3 months of age, the top 3 pathogens were E. coli (116/523; 22.2%), Enterococcus faecium (75/523; 14.3%), and S. epidermidis (57/523; 10.9%). However, in children more than 3 months of age, the top 3 pathogens were S. epidermidis (140/670; 20.9%), S. pneumoniae (117/670; 17.5%), and Staphylococcus hominis (57/670; 8.5%). More than 93.0% of E. coli isolates were sensitive to cefoxitin, piperacillin/tazobactam, cefoperazone/sulbactam, amikacin and carbapenems, and the resistance rates to ceftriaxone, cefotaxime and ceftazidime were 49.4%, 49.2% and 26.4%, respectively. From 2016 to 2018, the proportion of methicillin-resistant coagulase-negative Staphylococcus isolates (MRCoNS) declined from 80.5 to 72.3%, and the frequency of penicillin-resistant S. pneumoniae isolates increased from 75.0 to 87.5%. The proportion of extended-spectrum ß-lactamase (ESBL)-producing E. coli fluctuated between 44.4 and 49.2%, and the detection rate of ESBL production in Klebsiella pneumoniae ranged from 55.6 to 88.9%. The resistance of E. coli strains to carbapenems was 5.0%, but the overall prevalence of carbapenem-resistant K. pneumoniae (CRKP) was high (54.5%). CONCLUSIONS: S. epidermidis, E. coli and S. pneumoniae were the predominant pathogens causing PBM in Chinese patients. The distribution of PBM causative organisms varied by age. The resistance of CoNS to methicillin and the high incidence of ESBL production among E. coli and K. pneumoniae isolates were concerning. CRKP poses a critical challenge for the treatment of PBM.

3.
Am J Transl Res ; 12(10): 6868-6878, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194078

RESUMO

PURPOSE: Inflammatory microenvironment is critical in the transmission of advanced cancer pain. This paper will study how morphine ameliorates advanced cancer pain through inflammatory microenvironment. METHODS: Fifty female healthy rats were selected and divided into control group, sham group, model group, morphine group and morphine + 740YP group by random number table. At the left tibia, rats in the model, morphine and morphine + 740YP groups received Walker256 cells injection, while those in the sham group received an equal amount of Hank solution. The control group received no treatment. After modeling, the rats' spontaneous pain behavior, paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) were measured and statistically analyzed. The protein levels of PI3K, Akt, NF-κB and pro-inflammatory factors (TNF-α/IL-1ß/IL-6/IL-17a) in rats were detected. Rat left dorsal root ganglion (DRG) cells were extracted and treated with 10, 20 and 30 µmol/L morphine to observe their effects on the cells. RESULTS: Compared with the control group, the model group presented increased spontaneous pain behavior and PWTL, decreased PWMT, and reduced mechanical pain threshold, as well as enhanced levels of PI3K, Akt, NF-κB and pro-inflammatory factors in vivo as compared to the control group. While the morphine group showed less spontaneous pain behavior and PWTL, increased PWMT, and down-regulated PI3K, Akt, NF-κB and pro-inflammatory factors in vivo in comparison with the model group. After morphine treatment, the apoptosis of DRG cells decreased and the cell activity increased, while PI3K, Akt, NF-κB and pro-inflammatory factors levels decreased. Morphine affected DRG cells in a dose-dependent manner. Up-regulation of PI3K could counteract the inhibitory effect of morphine on chronic tibial cancer pain. CONCLUSIONS: Morphine inhibits the promotion of inflammatory microenvironment on chronic tibial cancer pain via the PI3K/Akt/NF-κB pathway, and the regulation of the PI3K/Akt/NF-κB pathway can improve the therapeutic effect of morphine on chronic tibial cancer pain.

4.
Opt Express ; 28(23): 33948-33958, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182873

RESUMO

We numerically demonstrate a switchable broadband terahertz spatial modulator composed of ginkgo-leaf-patterned graphene and transition material vanadium dioxide (VO2). The phase transition property of VO2 is used to switch the spatial modulator from absorption mode to transmission mode, and the graphene behaves as dynamically adjustable material for a large scale of absorption and transmittance modulation. When VO2 is in the metallic state and the Fermi energy of graphene is set as 0.8 eV, the proposed modulator behaves as a broadband absorber with the absorbance over 85% from 1.33 to 2.83 THz. By adjusting the graphene Fermi level from 0 to 0.8 eV, the peak absorbance can be continuously tuned from 24.3% to near 100% under the absorption mode, and the transmittance at 2.5 THz can be continuously tuned from 87% to 35.5% under the transmission mode. To further increase the bandwidth, a three-layer-patterned-graphene is introduced into a new modulator design, which achieves a wide bandwidth of 3.13 THz for the absorbance over 85%. By the combination of the tunability of graphene and VO2, the proposed modulators not only can flexibly switch between dual-functional modulation modes of absorption and transmission but also possess deep modulation depth. Benefitting from the excellent modulation performance, the proposed switchable dual-functional spatial modulators may offer significant potential applications in various terahertz smart optoelectronic devices.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33078219

RESUMO

OBJECTIVES: This study aimed to investigate the microbiological profiles and antimicrobial resistance patterns of bloodstream pathogens in Chinese children. METHODS: This retrospective study was conducted at 13 tertiary hospitals in China during 2016-2018. The first bloodstream isolates of the same species from one pediatric patient < 18 years were included to this study for analysis. Antimicrobial susceptibility testing was determined based on minimum inhibitory concentrations or Kirby-Bauer disk diffusion methods according to the 2018 Clinical and Laboratory Standards Institute guidelines. RESULTS: Overall, 9345 nonduplicate bloodstream isolates were collected. Top 10 pathogens included Coagulase-negative staphylococcus (CoNS) (44.4%), Escherichia coli (10.2%), Klebsiella pneumoniae (5.9%), Staphylococcus aureus (5.0%), Streptococcus pneumoniae (4.9%), Pseudomonas aeruginosa(2.8%), Enterococcus faecium (2.7%), Stenotrophomonas maltophilia (2.4%), Salmonella spp. (2.3%), and Streptococcus agalactiae (2.0%). The commonest pathogens apart from CoNS in age group 0-28 days, 29 days-2 months, 3-11 months, 1-5 years, and ≥ 5 years were Escherichia coli (17.2%), Escherichia coli (14.0%), Escherichia coli (7.9%), Streptococcus pneumoniae (10.7%) ,and Staphylococcus aureus (13.6%), respectively. The overall prevalence of extended-spectrum ß-lactamases-producing Enterobacteriaceae, carbapenem-resistant Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, and carbapenem-resistant Pseudomonas aeruginosa were 41.4, 28.4, 31.7, and 5.6%, respectively. The overall prevalence of methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae and vancomycin-resistant Enterococcus was 38.1, 28.3, and 0.7%, respectively. CONCLUSIONS: The major bacterial pathogens have differences in different age groups, ward types, and regions in Chinese children, and the commonest causing microorganism was the Escherichia coli, especially in neonates and infants. High prevalence of important resistant phenotypes is of a serious concern.

6.
Exp Cell Res ; 396(2): 112299, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32979365

RESUMO

OBJECTIVES: Congenital cystic adenomatoid malformation (CCAM) is the most common congenital pulmonary anomaly with unknown etiology. Here, single-cell RNA sequencing (scRNA-seq) was used to map its cellular landscape and identify the underlying cellular and molecular events related to CCAM. METHODS: This study involved a 4.25 year old patient with grade Ⅱ-Ⅲ CCAM at the Children's Hospital of Fudan University. Samples of lesioned and non-lesioned areas were collected during surgery for scRNA-seq. RESULTS: In total, 19,904 cells were obtained with median UMI counts of 7032 per cell and 1995 median genes per cell. In terms of lesioned and non-lesioned areas, epithelial cells accounted for 27.23% and 17.85%, respectively, while mesenchymal cells accounted for 2.67% and 16.06%, respectively (P < 0.0001). Further clustering of epithelial cells revealed that the fractions of alveolar type 1 cells (AT1, N: 23.65%; L: 49.81%), AT2(N: 2.02%; L: 5.26%), club-1(N: 9.02%; L: 17.57%), club-3(N: 1.18%; L: 4.15%), and basal cells (N: 0.34%; L: 2.93%) were increased in lesioned samples (P < 0.0001). Pseudotime trajectory analysis showed tracks of club-1/basal cells→AT2→club-3→AT1 and club-1,2/basal→AT2. Mast cells (N: 0.63%; L: 2.48%) were also increased in lesioned samples and interactions of CD44 with HBEGF and FGFR2 were detected between mast and epithelial cells. CONCLUSIONS: AT1, AT2, club, and basal cells were increased in CCAM patients, and newly defined club-1/3 and basal cells might be the origin of proliferating AT1 and AT2 cells. Increased mast cells might promote epithelial cell proliferation through interactions of CD44 with HBEGF and FGFR2.

7.
Cell Prolif ; 53(10): e12886, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32794619

RESUMO

OBJECTIVES: Diabetes aggravates the risk and severity of periodontitis, but the specific mechanism remains confused. Complement 3 (C3) is closely related to complications of type 2 diabetes (T2DM). In the present study, we concentrated on whether C3 mediates the development of periodontitis in T2DM. MATERIALS AND METHODS: Levels of C3 in blood and gingival crevicular fluid (GCF) of patients were measured first. A C3-knockout diabetic mouse model was established, real-time PCR, Western blotting and histological investigation were performed to evaluate the progress of periodontitis. Microcomputed tomography (micro-CT) and TRAP staining were performed to detect alveolar bone resorption. Immunofluorescence was performed to detect polarization of macrophages. RESULTS: Our data showed that C3 levels were elevated in the blood and GCF of T2DM patients compared with non-diabetic individuals. Increased C3 was closely related to the upregulation of inflammatory cytokines including interleukin (IL)-1, IL-6 and tumour necrosis factor-alpha (TNF-α), as well as the decline of the bone volume density (BMD) and bone volume over total volume (BV/TV) of the alveolar bones in diabetic mice. The deletion of C3 inhibited inflammatory cytokines and rescued the decreased BMD and BV/TV of the alveolar bones. C3-mediated polarization of macrophages was responsible for the damage. CONCLUSION: T2DM-related upregulation of C3 contributes to the development of periodontitis by promoting macrophages M1 polarization and inhibiting M2 polarization, triggering a pro-inflammatory effect on periodontal tissues.


Assuntos
Complemento C3/metabolismo , Diabetes Mellitus Tipo 2/patologia , Macrófagos/imunologia , Periodontite/diagnóstico , Adulto , Processo Alveolar/diagnóstico por imagem , Processo Alveolar/patologia , Processo Alveolar/fisiologia , Animais , Densidade Óssea , Complemento C3/análise , Complemento C3/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/complicações , Feminino , Líquido do Sulco Gengival/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Periodontite/etiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
J Pediatr ; 220: 125-131.e5, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32093934

RESUMO

OBJECTIVES: To assess clinical indication-specific antibiotic prescribing in pediatric practice in China based on the World Health Organization (WHO) Access, Watch, and Reserve (AWaRe) metrics and to detect potential problem areas. STUDY DESIGN: Pediatric prescription records on the 16th of each month during 2018 were sampled for all encounters at outpatient and emergency departments of 16 tertiary care hospitals via hospital information systems. Antibiotic prescribing patterns were analyzed across and within diagnostic conditions according to WHO AWaRe metrics and Anatomical Therapeutic Chemical (ATC) classification. RESULTS: A total of 260 001 pediatric encounters were assessed, and antibiotics were prescribed in 94 453 (36.3%). In 35 167 encounters (37.2%), at least 1 intravenous antibiotic was administered. WHO Watch group antibiotics accounted for 82.2% (n = 84 176) of all antibiotic therapies. Azithromycin (n = 15 791; 15.4%) was the most commonly prescribed antibiotic, and third-generation cephalosporins (n = 44 387; 43.3%) were the most commonly prescribed antibiotic class. In at least 66 098 encounters (70.0%), antibiotics were prescribed for respiratory tract conditions, mainly for bronchitis/bronchiolitis (n = 25 815; 27.3%), upper respiratory tract infection (n = 25 184; 26.7%), and pneumonia (n = 13 392; 14.2%). CONCLUSIONS: Overuse and misuse of WHO Watch group antibiotics for respiratory tract conditions and viral infectious diseases is common in pediatric outpatients in China. Pediatric antimicrobial stewardship should be strengthened using WHO AWaRe metrics.


Assuntos
Antibacterianos/uso terapêutico , Prescrições de Medicamentos/estatística & dados numéricos , Uso de Medicamentos/estatística & dados numéricos , Padrões de Prática Médica , Adolescente , Antibacterianos/classificação , Criança , Pré-Escolar , China , Estudos Transversais , Humanos , Lactente , Estudos Prospectivos , Organização Mundial da Saúde
9.
Ultramicroscopy ; 209: 112887, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31739190

RESUMO

A new design scheme for ultrafast transmission electron microscopy (UTEM) has been developed based on a Schottky-type field emission gun (FEG) at the Institute of Physics, Chinese Academy of Sciences (IOP CAS). In this UTEM setup, electron pulse emission is achieved by integrating a laser port between the electron gun and the column and the resulting microscope can operate in either continuous or pulsed mode. In pulsed mode, the optimized electron beam properties are an energy width of ~0.65 eV, micrometer-scale coherence lengths and sub-picosecond pulse durations. The potential applications of this UTEM, which include electron diffraction, high-resolution imaging, electron energy loss spectroscopy, and photon-induced near-field electron microscopy, are demonstrated using ultrafast electron pulses. Furthermore, we use a nanosecond laser (~10 ns) to show that the laser-driven FEG can support high-quality TEM imaging and electron holography when using a stroboscopic configuration. Our results also indicate that FEG-based ultrafast electron sources may enable high-performance analytical UTEM.

10.
J Periodontal Res ; 55(3): 381-391, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31854466

RESUMO

BACKGROUND AND OBJECTIVE: Oxidative stress has been suggested as an important pathogenic factor contributing to chronic periodontitis with diabetes mellitus (CPDM). Previous studies have revealed the potential therapeutic properties of baicalein (BCI) in oxidative stress-related diseases; however, the antioxidant effects of BCI on therapy for individual with CPDM remain largely unexplored. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in cellular defence against oxidative stress. In this study, we aim to determine whether BCI prevents diabetes-related periodontal tissue destruction by regulating Nrf2 signaling pathway. MATERIAL AND METHODS: Human gingival epithelial cells (hGECs) were challenged with high glucose (HG, 25 mmol/L) and/or lipopolysaccharide (LPS, 20 µg/mL). Reactive oxygen species (ROS) were detected by fluorescence-activated cell sorting. The changes of antioxidant-related genes, including Nrf2, catalase (Cat), glutamate-cysteine ligase catalytic subunit (Gclc), superoxide dismutase 1 (Sod1), and superoxide dismutase 2 (Sod2), were quantified by real-time PCR. The localization of phospho-Nrf2 (pNrf2, S40) in the nucleus was detected by immunofluorescence staining and laser scanning confocal microscope (LSCM). PNrf2 and total form of Nrf2 were determined using western blot. The above indicators together with mitochondrial membrane potential (MMP) were further investigated in hGECs pre-treated with different concentrations of BCI (0.01, 0.1, or 0.5 µg/mL) before stimulated with HG plus LPS (GP). Finally, the role of BCI in activating Nrf2 signaling pathway and relieving the alveolar bone absorption was examined in the CPDM model of Sprague Dawley rats. CPDM rats were oral gavaged with BCI (50, 100, or 200 mg/kg daily). The pNrf2 was detected by immunohistochemistry, and the alveolar bone absorption was examined by microcomputed tomography. RESULTS: Our results showed that ROS were significantly increased in both groups of HG and LPS, with the strongest generation in the GP group. In terms of ROS-related gene expression, we found that the mRNA levels of Nrf2, Cat, Gclc, Sod1, and Sod2 were significantly decreased in HG and LPS groups. In consistent with the strongest induction of ROS in GP group, the gene expression in GP group was further decreased as compared to those of HG and LPS groups. Also, the expression of pNrf2 exhibited the same trend with the expression of those antioxidant genes. However, the generation of ROS and the loss of mitochondrial membrane potential induced by GP were abolished by pre-treatment with different concentrations of BCI (0.01, 0.1, or 0.5 µg/mL). Interestingly, we observed that BCI promoted the nucleus translocation of pNrf2, as well as the gene expression levels of pNrf2 and its target genes (Cat, Gclc, Sod1, and Sod2). Finally, in the CPDM animal model, we found that BCI (at concentrations: 50, 100, and 200 mg/kg) markedly increased the number of pNrf2-positive cells in periodontal tissue and mitigated the alveolar bone loss. CONCLUSIONS: Our data revealed a potential role for clinic application of BCI under CPDM conditions, suggesting a new therapeutic drug for CPDM patients.


Assuntos
Diabetes Mellitus , Flavanonas/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Periodontite/tratamento farmacológico , Transdução de Sinais , Animais , Antioxidantes/metabolismo , Humanos , Estresse Oxidativo , Periodontite/complicações , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Microtomografia por Raio-X
11.
ACS Nano ; 13(10): 11623-11631, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31532630

RESUMO

Structural dynamics and changes in electronic structures driven by photoexcited carriers are critical issues in both semiconducting and optoelectronic nanodevices. Herein, a phase diagram for the transient states and relevant dynamic processes in multiwalled boron nitride nanotubes (BNNTs) has been extensively studied for a full reversible cycle after a fs-laser excitation in ultrafast TEMs, and the significant structural features and evolution of electronic natures have been investigated using pulsed electron diffraction and femtosecond-resolved electron energy-loss spectroscopy (EELS). It is revealed that nonthermal anisotropic alterations of the lattice apparently precede the phonon-driven thermal transients along the radial and axial directions. Ab initio calculations support these findings and show that electrons excited from the π to π* orbitals in the BN nanotubes weaken the intralayer bonds while strengthening the interlayer bonds along the radial direction. Importantly, time-resolved EELS measurements show contraction of the energy bandgap after fs-laser excitation associated with nonthermal structural transients. This fact verifies that laser-induced bandgap renormalization in semiconductors can essentially be correlated with both the rapid processes of excited carriers and nonthermal lattice evolution.

12.
PLoS One ; 14(7): e0219775, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31329624

RESUMO

WRKY proteins are a large group of plant transcription factors that are involved in various biological processes, including biotic and abiotic stress responses, hormone response, plant development, and metabolism. WRKY proteins have been identified in several plants, but only a few have been identified in Capsicum annuum. Here, we identified a total of 62 WRKY genes in the latest pepper genome. These genes were classified into three groups (Groups 1-3) based on the structural features of their proteins. The structures of the encoded proteins, evolution, and expression under normal growth conditions were analyzed and 35 putative miRNA target sites were predicted in 20 CaWRKY genes. Moreover, the response to cold or CMV treatments of selected WRKY genes were examined to validate the roles under stresses. And alternative splicing (AS) events of some CaWRKYs were also identified under CMV infection. Promoter analysis confirmed that CaWRKY genes are involved in growth, development, and biotic or abiotic stress responses in hot pepper. The comprehensive analysis provides fundamental information for better understanding of the signaling pathways involved in the WRKY-mediated regulation of developmental processes, as well as biotic and abiotic stress responses.


Assuntos
Processamento Alternativo/genética , Capsicum/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Estresse Fisiológico/genética , Sequência de Aminoácidos , Arabidopsis/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Sequência Conservada , Redes Reguladoras de Genes , Genes de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Motivos de Nucleotídeos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes
13.
Adv Sci (Weinh) ; 5(10): 1800873, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30356983

RESUMO

Biomineralization in vertebrates is initiated via amorphous calcium phosphate (ACP) precursors. These precursors infiltrate the extracellular collagen matrix where they undergo phase transformation into intrafibrillar carbonated apatite. Although it is well established that ACP precursors are released from intracellular vesicles through exocytosis, an unsolved enigma in this cell-mediated mineralization process is how ACP precursors, initially produced in the mitochondria, are translocated to the intracellular vesicles. The present study proposes that mitophagy provides the mechanism for transfer of ACP precursors from the dysfunctioned mitochondria to autophagosomes, which, upon fusion with lysosomes, become autolysosomes where the mitochondrial ACP precursors coalesce to form larger intravesicular granules, prior to their release into the extracellular matrix. Apart from endowing the mitochondria with the function of ACP delivery through mitophagy, the present results indicate that mitophagy, triggered upon intramitochondrial ACP accumulation in osteogenic lineage-committed mesenchymal stem cells, participates in the biomineralization process through the BMP/Smad signaling pathway.

14.
Cell Death Discov ; 4: 32, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245855

RESUMO

Photoreceptor cell death is recognized as the key pathogenesis of retinal degeneration, but the molecular basis underlying photoreceptor-specific cell loss in retinal damaging conditions is virtually unknown. The N-myc downstream regulated gene (NDRG) family has recently been reported to regulate cell viability, in particular NDRG1 has been uncovered expression in photoreceptor cells. Accordingly, we herein examined the potential roles of NDRGs in mediating photoreceptor-specific cell loss in retinal damages. By using mouse models of retinal degeneration and the 661 W photoreceptor cell line, we showed that photoreceptor cells are indeed highly sensitive to light exposure and the related oxidative stress, and that photoreceptor cells are even selectively diminished by phototoxins of the alkylating agent N-Methyl-N-nitrosourea (MNU). Unexpectedly, we discovered that of all the NDRG family members, NDRG2, but not the originally hypothesized NDRG1 or other NDRG subtypes, was selectively expressed and specifically responded to retinal damaging conditions in photoreceptor cells. Furthermore, functional experiments proved that NDRG2 was essential for photoreceptor cell viability, which could be attributed to NDRG2 control of the photo-oxidative stress, and that it was the suppression of NDRG2 which led to photoreceptor cell loss in damaging conditions. More importantly, NDRG2 preservation contributed to photoreceptor-specific cell maintenance and retinal protection both in vitro and in vivo. Our findings revealed a previously unrecognized role of NDRG2 in mediating photoreceptor cell homeostasis and established for the first time the molecular hallmark of photoreceptor-specific cell death as NDRG2 suppression, shedding light on improved understanding and therapy of retinal degeneration.

15.
Sci Adv ; 4(7): eaas9660, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30035223

RESUMO

The hidden (H) quantum state in 1T-TaS2 has sparked considerable interest in the field of correlated electron systems. Here, we investigate ultrafast switches to stable H charge density wave (H-CDW) states observed in 1T-TaS2-x Se x , with x = 0 and 0.5 crystals, upon excitation with a single femtosecond laser pulse. In situ cooling transmission electron microscopy observations, initiated by a single femtosecond laser pumping with a low fluence, reveal a clear transition from a commensurate CDW phase (qC) to a new CDW order with qH = (1 - δ)qC for the H-CDW state (δ = 1/9) accompanied by an evident phase separation. H-CDW domain relaxation then occurs and yields a stable metallic phase under a high-fluence excitation. Furthermore, electrical resistivity measurements show that the notable drop in x = 0 and 0.5 samples associated with the appearance of H-CDW states depend on laser fluence and temperature. These results potentially provide a new perspective on the photodoping mechanism for the emergence of H-CDW states in the 1T-TaS2-x Se x family.

16.
Adv Mater ; 30(31): e1801021, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29923356

RESUMO

Pulsed lasers operating in the mid-infrared (3-25 µm) are increasingly becoming the light source of choice for a wide range of industrial and scientific applications such as spectroscopy, biomedical research, sensing, imaging, and communication. Up to now, one of the factors limiting the mid-infrared pulsed lasers is the lack of optical switch with a capability of pulse generation, especially for those with wideband response. Here, a semiconductor material of bismuth oxyselenide (Bi2 O2 Se) with a facile processibility, constituting an ultrabroadband saturable absorber for the mid-infrared (actually from the near-infrared to mid-infrared: 0.8-5.0 µm) is exhibited. Significantly, it is found that the optical response is associated with a strong nonlinear character, showing picosecond response time and response amplitude up to ≈330.1% at 5.0 µm. Combined with facile processibility and low cost, these solution-processed Bi2 O2 Se materials may offer a scalable and printable mid-infrared optical switch to open up the long-sought parameter space which is crucial for the exploitation of compact and high-performance mid-infrared pulsed laser sources.

17.
Gene ; 666: 123-133, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-29730427

RESUMO

Hot pepper (Capsicum annuum L.) is becoming an increasingly important vegetable crop in the world. Cucumber mosaic virus (CMV) is a destructive virus that can cause leaf distortion and fruit lesions, affecting pepper production. However, studies on the response to CMV infection in pepper at the transcriptional level are limited. In this study, the transcript profiles of pepper leaves after CMV infection were investigated using Illumina and single-molecule real-time (SMRT) RNA-sequencing (RNA-seq). A total of 2143 differentially expressed genes (DEGs) were identified at five different stages. Gene ontology (GO) and KEGG analysis revealed that these DEGs were involved in the response to stress, defense response and plant-pathogen interaction pathways. Among these DEGs, several key genes that consistently appeared in studies of plant-pathogen interactions had increased transcript abundance after inoculation, including chitinase, pathogenesis-related (PR) protein, TMV resistance protein, WRKY transcription factor and jasmonate ZIM-domain protein. Four of these DEGs were further validated by quantitative real-time RT-PCR (qRT-PCR). Furthermore, a total of 73, 597 alternative splicing (AS) events were identified in the pepper leaves after CMV infection, distributed in 12, 615 genes. The intron retention of WRKY33 (Capana09g001251) might be involved in the regulation of CMV infection. Taken together, our study provides a transcriptome-wide insight into the molecular basis of resistance to CMV infection in pepper leaves and potential candidate genes for improving resistance cultivars.


Assuntos
Capsicum/genética , Cucumovirus/fisiologia , Doenças das Plantas/virologia , Processamento Alternativo , Capsicum/metabolismo , Capsicum/virologia , Resistência à Doença , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Interações Hospedeiro-Patógeno , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
18.
Nanoscale ; 10(20): 9608-9615, 2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29749417

RESUMO

Non-equilibrium electrons induced by ultrafast laser excitation in a correlated electron material can disturb the Fermi energy as well as optical nonlinearity. Here, non-equilibrium electrons translate a semiconductor TiS2 material into a plasma to generate broad band nonlinear optical saturable absorption with a sub-picosecond recovery time of ∼768 fs (corresponding to modulation frequencies over 1.3 THz) and a modulation response up to ∼145%. Based on this optical nonlinear modulator, a stable femtosecond mode-locked pulse with a pulse duration of ∼402 fs and a pulse train with a period of ∼175.5 ns is observed in the all-optical system. The findings indicate that non-equilibrium electrons can promote a TiS2-based saturable absorber to be an ultrafast switch for a femtosecond pulse output.

19.
Psychiatry Res ; 265: 70-76, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29684772

RESUMO

MicroRNAs (miRNAs) are a class of endogenous and non-coding single-stranded RNAs with length of about 22 nucleotides, and many are evolutionarily conserved. Although postmortem brain samples provide direct evidence of miRNA dysregulation within the brain, peripheral tissue samples can be obtained from living subjects and have the potential to yield biomarkers that could be used as diagnostic tools. To verify and detect additional miRNAs differentially expressed in peripheral blood and further explore their diagnostic value and function for schizophrenia, we performed a next-generation sequencing approach in combination with a literature search to select appropriate miRNAs. We then used real-time quantitative polymerase chain reaction (RT-qPCR) to identify miRNAs expressed aberrantly in schizophrenia. Binary regression analysis identified miR-22-3p, miR-92a-3p, and miR-137. Analysis of receiver operating characteristics (ROC) indicated that these three miRNAs could be used in combination as a biomarker for schizophrenia. Bioinformatic analyses of these genes and gene ontology (GO) enrichment revealed that the combination of miR-22-3p, miR-92a-3p, and miR-137 was closely associated with synaptic structure and function, which play important roles in the etiology and pathophysiology of schizophrenia.


Assuntos
MicroRNAs/sangue , Esquizofrenia/sangue , Esquizofrenia/diagnóstico , Adulto , Biomarcadores/sangue , Feminino , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/fisiologia , Humanos , Masculino , MicroRNAs/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Esquizofrenia/genética
20.
Nan Fang Yi Ke Da Xue Xue Bao ; 38(3): 268-273, 2018 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-29643031

RESUMO

OBJECTIVE: To investigate the role of p38MAPK signaling pathway in autophagy of intestinal epithelial cells induced by spvB of S.typhimurium. METHODS: Henle-407 cells in exponential growth were infected with wild-type S.typhimurium strain STM-211 (with spvB gene), spvB mutated strain STM-delata;spvB, or with delata;spvB-complemented strain STM-c-spvB after treatment of the cells with the p38MAPK inhibitor SB203580. At different time points of co-culture, the cells were collected and the intracellular bacteria were counted. Western blotting was performed to detect the expressions of phosphorylated p38 and autophagy-related proteins LC3 and p62; immunofluorescence staining was used to observe the expression and distribution of LC3. RESULTS: At 1, 2 and 4 h after the infection, the phosphorylation levels of p38 in STM-211 group and STM-c-spvB group were significantly lower than that in STM-delata;spvB group (P<0.05). At 2 and 4 h of co-culture, the intracellular bacterial counts were significantly greater in STM-211 and STM-c-spvB infection groups than in STM-delata;spvB group (P<0.05). Pretreatment with p38 inhibitor SB203580 did no significantly affect the expression levels of LC3 II or P62 in STM-211 and STM-c-spvB groups, but caused significant reduction in their expressions in STM-delata;spvB group at 1 h (P<0.05), and such changes were more obvious at 3 h (P<0.05). CONCLUSION: The inhibitory effect of spvB gene on autophagy in intestinal epithelial cells is related with the negative regulation of p38MAPK signaling pathway.


Assuntos
ADP Ribose Transferases/genética , Autofagia , Células Epiteliais/citologia , Sistema de Sinalização das MAP Quinases , Salmonella typhimurium , Fatores de Virulência/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células HeLa , Humanos , Intestinos/citologia , Salmonella typhimurium/genética , Transdução de Sinais , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...