Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 774
Filtrar
1.
BMC Gastroenterol ; 22(1): 12, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996384

RESUMO

BACKGROUND: X-ray cholangiography is of great value in the imaging of biliary tract diseases; however, occupational radiation exposure is unavoidable. Moreover, clinicians must manually inject the contrast dye, which may result in a relatively high incidence of adverse reactions due to unstable injection pressure. Thus, there is a need to develop a novel remote-controlled cholangiography injection device. METHODS: Patients with external biliary drainage requiring cholangiography were included. A remote-controlled injection device was developed with three major components: an injection pump, a pressure sensor, and a wireless remote-control panel. Image quality, adverse reactions, and radiation dose were evaluated. RESULTS: Different kinds of X-ray cholangiography were successfully and smoothly performed using this remote-controlled injection device in all patients. The incidence of adverse reactions in the device group was significantly lower than that in the manual group (4.17% vs. 13.9%, P = 0.001), and increasing the injection pressure increased the incidence of adverse reactions. In addition, the device helped operators avoid ionizing radiation completely. CONCLUSIONS: With good control of injection pressure (within 10 kPa), the remote-controlled cholangiography injection device could replace the need for the doctor to inject contrast agent with good security and effectivity. It is expected to be submitted for clinical application.


Assuntos
Doenças Biliares , Colangiografia , China , Meios de Contraste/efeitos adversos , Drenagem , Humanos
2.
Stem Cell Rev Rep ; 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35015214

RESUMO

Type 2 diabetes mellitus (T2DM), one of the most common carbohydrate metabolism disorders, is characterized by chronic hyperglycemia and insulin resistance (IR), and has become an urgent global health challenge. Mesenchymal stem cells (MSCs) originating from perinatal tissues such as umbilical cord (UC) and amniotic membrane (AM) serve as ideal candidates for the treatment of T2DM due to their great advantages in terms of abundant source, proliferation capacity, immunomodulation and plasticity for insulin-producing cell differentiation. However, the optimally perinatal MSC source to treat T2DM remains elusive. This study aims to compare the therapeutic efficacy of MSCs derived from AM and UC (AMMSCs and UCMSCs) of the same donor in the alleviation of T2DM symptoms and explore the underlying mechanisms. Our results showed that AMMSCs and UCMSCs displayed indistinguishable immunophenotype and multi-lineage differentiation potential, but UCMSCs had a much higher expansion capacity than AMMSCs. Moreover, we uncovered that single-dose intravenous injection of either AMMSCs or UCMSCs could comparably reduce hyperglycemia and improve IR in T2DM db/db mice. Mechanistic investigations revealed that either AMMSC or UCMSC infusion could greatly improve glycolipid metabolism in the liver of db/db mice, which was evidenced by decreased liver to body weight ratio, reduced lipid accumulation, upregulated glycogen synthesis, and increased Akt phosphorylation. Taken together, these data indicate that the same donor-derived AMMSCs and UCMSCs possessed comparable effects and shared a similar hepatoprotective mechanism on the alleviation of T2DM symptoms.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34997501

RESUMO

Photocatalysis with persulfate (PS) is an effective method for the degradation of degrading organic pollutants. In this study, Fe3O4/MIL-101(Fe), a magnetic heterojunction photocatalyst, was produced using a hydrothermal method. The material coupled with PS exhibited excellent removal efficiency for oxytetracycline (OTC) (87.1%, 1 h). And it has a wide range of applications, with good removal efficiency for OTC concentrations of 30 to 70 mg/L and pH values of 3 to 9. •SO4- and •OH played a major role in the OTC removal reaction and there was an Fe(III)/Fe(II) cycle during the reaction. With excellent stability and recoverability, the OTC removal efficiency decreased by only 4.29% after four cycles, and the Fe leaching did not exceed 0.035 mg/L per cycle. This study provides significant insights into the removal of organic pollutants from water bodies.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34978710

RESUMO

OBJECTIVES: To assess the impact of cardiovascular disease (CVD) risk factor control on health-related quality of life (HRQoL), as well as the other influencing factors of HRQoL among high CVD risk individuals. METHODS: From 2015 to 2017, residents of six villages or communities in Inner Mongolia, selected using a multi-stage stratified cluster random sampling method, were invited to complete a questionnaire and undergo physical examination and laboratory testing. We selected participants whose predicted 10-year risk for CVD exceeded 10% as those with high CVD risk. HRQoL in individuals with high CVD risk was investigated based on the EuroQol-5 Dimension (EQ-5D) scale. The Chinese utility value integral system was used to calculate EQ-5D utility scores, and the Tobit regression model was used to analyze the influencing factors of HRQoL among individuals with high CVD risk. RESULTS: Of 13,359 participants with high CVD risk, 65.63% reported no problems in any of the five dimensions; the most frequently reported difficulty was pain/discomfort. The median utility score was 1.000 (0.869, 1.000). Participants with hypertension, and uncontrolled glycemic and blood lipids had lower HRQoL. In addition, sex, age, living environment, education level, household income, and medical insurance were influencing factors of HRQoL. CONCLUSION: Sex, age, living environment, education level, household income, medical insurance, hypertension, and whether glycemic and blood lipids control or not are related to HRQoL of high CVD risk individuals.

5.
J Colloid Interface Sci ; 609: 269-278, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34896828

RESUMO

The exploration of efficient bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) under alkaline conditions is an importantway to promote the development of electrolytic water technology. Herein, the reduced graphene oxide-supported MoO42- modified amorphous cobalt metaphosphate cubes (a-Co(PO3)2/MoO4/rGO) as bifunctional OER/HER catalyst is prepared by anion exchange and phosphating, using the Prussian blue analogue (PBA) as a precursor. The resulting composite exhibits the low overpotentials (η) that of 290 and 50 mV for OER and HER in 1.0 M KOH solution at 10 mA cm-2, respectively. The electrochemical test and density functional theory (DFT) results reveal that the MoO42--modified optimizes the adsorption/desorption energy of H* of Co(PO3)2, thus enhance the HER activity. Benefiting from efficient HER and OER performances, an efficient and stable alkaline water electrolysis operation using a-Co(PO3)2/MoO4/rGO used as bifunctional catalyst can be carried out, which can deliver a current density (j) of 20 mA cm-2 at 1.65 V cell voltage and work continuously for 24 h.

6.
Nano Lett ; 22(1): 81-89, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962129

RESUMO

With the development and application of artificial intelligence, there is an appeal to the exploitation of various sensors and memories. As the most important perception of human beings, vision occupies more than 80% of all the received information. Inspired by biological eyes, an artificial retina based on 2D Janus MoSSe was fabricated, which could simulate functions of visual perception with electronic/ion and optical comodulation. Furthermore, inspired by human brain, sensing, memory, and neuromorphic computing functions were integrated on one device for multifunctional intelligent electronics, which was beneficial for scalability and high efficiency. Through the formation of faradic electric double layer (EDL) at the metal-oxide/electrolyte interfaces could realize synaptic weight changes. On the basis of the optoelectronic performances, light adaptation of biological eyes, preprocessing, and recognition of handwritten digits were implemented successfully. This work may provide a strategy for the future integrated sensing-memory-processing device for optoelectronic artificial retina perception application.

7.
Food Res Int ; 150(Pt A): 110786, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865801

RESUMO

While the research on improving the meat quality of cultured meat is in full swing, few studies have focused on the effect of smooth muscle cells (SMCs) on the meat quality of cultured meat. Therefore, this study aimed at building a cultured meat model containing smooth muscle cells, and further evaluating the effect of smooth muscle cells on the quality of cultured meat, so as to reveal the contribution of smooth muscle cells in the production of cultured meat. In this study, we isolated high purity of smooth muscle cells from vascular tissues. The addition of basic fibroblast growth factor (bFGF) to the medium significantly increased the growth rate of smooth muscle cells and the expression of extracellular matrix related genes, especially collagen and elastin. Smooth muscle cells were seeded in a collagen gel to construct a culture meat model. It was found that the pressure loss of the model meat significantly decreased from 98.5 % in control group to 54 % with the extension of culture time for 9 days, while the total collagen content of model meat increased significantly (P < 0.05). In addition, the hydrogel tissue with smooth muscle cells compacted more dramatically and were more tightly, accompanied by significantly increased hardness, springiness and chewiness compared to the control one (P < 0.05). These results indicate that smooth muscle cells can secrete extracellular matrix proteins such as collagen, which can significantly enhance the texture of cultured meat models prepared by hydrogel.

8.
Orthop Surg ; 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34870370

RESUMO

OBJECTIVE: To investigate the effect of platelet-rich plasma on tendon-bone healing after anterior cruciate ligament reconstruction. METHODS: This retrospective study included 85 patients (range, 18-50 years; mean age, 33.95 ± 10.53 years; male/female, 49/36) who underwent anterior cruciate ligament reconstruction using autologous hamstring tendons between August 2017 and June 2019 at our institute. The participants in the study group (n = 42) were injected with platelet-rich plasma at both ends of the tendon graft, while those in the control group (n = 43) received an injection of normal saline. Magnetic resonance imaging signal/noise quotient values of the femoral and tibial ends, knee Lysholm scores, and International Knee Documentation Committee scores were compared at 3, 6, and 12 months postoperatively. RESULTS: The signal/noise quotient values of the femoral and tibial ends in both groups were higher at 6 months than at 3 and 12 months postoperatively. The signal/noise quotient values of the tibial end were significantly lower in the platelet-rich plasma group than in the normal saline group at all follow-up time points (P < 0.05). The signal/noise quotient values of the tibial and femoral ends in both groups were significantly different at 3, 6, and 12 months postoperatively (P < 0.05). Additionally, the signal/noise quotient values of the tibia were significantly lower than those of the femur in both groups (P < 0.05). The Lysholm and International Knee Documentation Committee scores were significantly better in the platelet-rich plasma group than in the normal saline group only at 3 months postoperatively. No complications, such as knee joint infection or vascular and nerve injuries, occurred in any of the 85 patients. The knee flexion of all patients were more than 90°, and the straight degree was 0°. No joint stiffness was observed in all patients. CONCLUSION: Platelet-rich plasma can promote tendon-bone healing in grafts and can improve early postoperative knee joint function.

9.
Artigo em Inglês | MEDLINE | ID: mdl-34878982

RESUMO

Local image descriptor learning has been instrumental in various computer vision tasks. Recent innovations lie with similarity measurement of descriptor vectors with metric learning for randomly selected Siamese or triplet patches. Local image descriptor learning focuses more on hard samples since easy samples do not contribute much to optimization. However, few studies focus on hard samples of image patches from the perspective of loss functions and design appropriate learning algorithms to obtain a more compact descriptor representation. This article proposes a regularized descriptor learning network (RDLNet) that makes the network focus on the learning of hard samples and compact descriptor with triplet networks. A novel hard sample mining strategy is designed to select the hardest negative samples in mini-batch. Then batch margin loss concerned with hard samples is adopted to optimize the distance of extreme cases. Finally, for a more stable network and preventing network collapsing, orthogonal regularization is designed to constrain convolutional kernels and obtain rich deep features. RDLNet provides a compact discriminative low-dimensional representation and can be embedded in other pipelines easily. This article gives extensive experimental results for large benchmarks in multiple scenarios and generalization in matching applications with significant improvements.

10.
Drug Metab Dispos ; 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34933885

RESUMO

The prodrug tenofovir alafenamide (TAF) is a first-line antiviral agent for the treatment of chronic hepatitis B infection. TAF activation involves multiple steps, and the first step is an ester hydrolysis reaction catalyzed by hydrolases. This study was to determine the contributions of carboxylesterase 1 (CES1) and cathepsin A (CatA) to TAF hydrolysis in the human liver. Our in vitro incubation studies showed that both CatA and CES1 catalyzed TAF hydrolysis in a pH-dependent manner. At their physiological pH environment, the activity of CatA (pH 5.2) was approximately 1,000-fold higher than that of CES1 (pH 7.2). Given that the hepatic protein expression of CatA was approximately 200-fold lower than that of CES1, the contribution of CatA to TAF hydrolysis in the human liver was estimated to be much greater than that of CES1, which is contrary to the previous perception that CES1 is the primary hepatic enzyme hydrolyzing TAF. The findings were further supported by a TAF incubation study with the CatA inhibitor telaprevir and the CES1 inhibitor bis-(p-nitrophenyl) phosphate. Moreover, an in vitro study revealed that the CES1 variant G143E (rs71647871) is a loss-of-function variant for CES1-mediated TAF hydrolysis. In summary, our results suggest that CatA may play a more important role in the hepatic activation of TAF than CES1. Additionally, TAF activation in the liver could be affected by CES1 genetic variation, but the magnitude of impact appears to be limited due to the major contribution of CatA to hepatic TAF activation. Significance Statement Contrary to the general perception that carboxylesterase 1 (CES1) is the major enzyme responsible for tenofovir alafenamide (TAF) hydrolysis in the human liver, the present study demonstrated that cathepsin A (CatA) may play a more significant role in TAF hepatic hydrolysis. Furthermore, the CES1 variant G143E (rs71647871) was found to be a loss-of-function variant for CES1-mediated TAF hydrolysis.

11.
Water Sci Technol ; 84(12): 3716-3725, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34928838

RESUMO

In this work, Spirulina residue was used as the raw material to prepare different biochars by changing the pyrolysis time. Moreover, the obtained products were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction energy spectra. This experiment used the batch adsorption method to study the adsorption effect of pH, dosage, and pyrolysis time on methyl orange. The adsorption of methyl orange onto Spirulina residue biochar (SRBC) were fitted with the Langmuir isotherm model and pseudo-second-order kinetics. The results showed that the surface functional groups of SRBC obtained by dry pyrolysis were abundant, and could effectively adsorb methyl orange dye in an aqueous solution. The sample prepared at 500 °C for 5 h had the best adsorption effect on methyl orange. The change of pyrolysis time will affect the physicochemical properties of biochar from Spirulina residue, thereby affecting its adsorption effect on methyl orange dye. The analysis showed that the chemical adsorption of SRBC on methyl orange might be the primary way of dye removal. The results can provide a reference for preparing biochar from algae residue and biochar application in the removal of dye wastewater.


Assuntos
Purificação da Água , Compostos Azo , Carvão Vegetal
12.
Drug Discov Today Technol ; 39: 49-56, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34906325

RESUMO

Data-independent acquisition (DIA) proteomics is a recently-developed global mass spectrometry (MS)-based proteomics strategy. In a DIA method, precursor ions are isolated into pre-defined isolation windows and fragmented; all fragmented ions in each window are then analyzed by a high-resolution mass spectrometer. DIA proteomics analysis is characterized by a broad protein coverage, high reproducibility, and accuracy, and its combination with advances in other techniques such as sample preparation and computational data analysis could lead to further improvements in assay performances. DIA technology has been increasingly utilized in various proteomics studies, including quantifying drug-metabolizing enzymes and transporters. Quantitative proteomics study of drug-metabolizing enzymes and transporters could lead to a better understanding of pharmacokinetics and pharmacodynamics and facilitate drug development. This review summarizes the application of DIA technology in proteomic analysis of drug-metabolizing enzymes and transporters.


Assuntos
Preparações Farmacêuticas , Proteômica , Espectrometria de Massas , Reprodutibilidade dos Testes , Tecnologia
13.
Research (Wash D C) ; 2021: 9862483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957405

RESUMO

Wafer-scale synthesis of p-type TMD films is critical for its commercialization in next-generation electro/optoelectronics. In this work, wafer-scale intrinsic n-type WS2 films and in situ Nb-doped p-type WS2 films were synthesized through atomic layer deposition (ALD) on 8-inch α-Al2O3/Si wafers, 2-inch sapphire, and 1 cm2 GaN substrate pieces. The Nb doping concentration was precisely controlled by altering cycle number of Nb precursor and activated by postannealing. WS2 n-FETs and Nb-doped p-FETs with different Nb concentrations have been fabricated using CMOS-compatible processes. X-ray photoelectron spectroscopy, Raman spectroscopy, and Hall measurements confirmed the effective substitutional doping with Nb. The on/off ratio and electron mobility of WS2 n-FET are as high as 105 and 6.85 cm2 V-1 s-1, respectively. In WS2 p-FET with 15-cycle Nb doping, the on/off ratio and hole mobility are 10 and 0.016 cm2 V-1 s-1, respectively. The p-n structure based on n- and p- type WS2 films was proved with a 104 rectifying ratio. The realization of controllable in situ Nb-doped WS2 films paved a way for fabricating wafer-scale complementary WS2 FETs.

14.
Drug Metab Dispos ; 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34965924

RESUMO

Fibroblast growth factor 15/19 (FGF15/19) are endocrine growth factors that play an important role in bile acid homeostasis. FGF15/19 based therapies are currently being tested in clinical trials for the treatment of non-alcoholic steatohepatitis and cholestatic liver diseases. To determine the physiological impact of long-term elevations of FGF15/19, we developed a transgenic mouse model to overexpress Fgf15 (Fgf15 Tg). In the current study, RNA-seq analysis revealed elevations of the expression of several genes encoding phase I drug metabolizing enzymes, including Cyp2b10 and Cyp3a11, in Fgf15 Tg mice. We found that the induction of several Cyp2b isoforms resulted in increased function of CYP2B in microsomal metabolism and pharmacokinetics studies. Because CYP2B family is known to be induced by constitutive androstane receptor (CAR), to determine the role of CAR in the observed inductions, we crossed Fgf15 Tg mice with CAR knockout mice and found that CAR played a minor role in the observed alterations in drug metabolizing enzyme expression. Interestingly, we found that the overexpression of Fgf15 resulted in a phenotypical switch from a male hepatic expression pattern of drug metabolizing enzymes in wild type mice to a female expression pattern in Fgf15 Tg mice. Growth hormone differences between males and females is known to drive sexually dimorphic expression patterns in the livers of rodents in a STAT5b dependent manner. We found that male Fgf15 Tg mice presented with many features similar to wild type female mice, including lowered body length and weight, Igf-1 and Igfals expression, and STAT5 signaling. Significance Statement The overexpression of Fgf15 in mice causes an alteration in DMEs at the mRNA, protein, and functional levels, which is not entirely due to CAR activation but associated with lower GH signaling.

15.
Nat Commun ; 12(1): 7333, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921145

RESUMO

The growing knowledge of ferroptosis has suggested the role and therapeutic potential of ferroptosis in cancer, but has not been translated into effective therapy. Liver cancer, primarily hepatocellular carcinoma (HCC), is highly lethal with limited treatment options. LIFR is frequently downregulated in HCC. Here, by studying hepatocyte-specific and inducible Lifr-knockout mice, we show that loss of Lifr promotes liver tumorigenesis and confers resistance to drug-induced ferroptosis. Mechanistically, loss of LIFR activates NF-κB signaling through SHP1, leading to upregulation of the iron-sequestering cytokine LCN2, which depletes iron and renders insensitivity to ferroptosis inducers. Notably, an LCN2-neutralizing antibody enhances the ferroptosis-inducing and anticancer effects of sorafenib on HCC patient-derived xenograft tumors with low LIFR expression and high LCN2 expression. Thus, anti-LCN2 therapy is a promising way to improve liver cancer treatment by targeting ferroptosis.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Ferroptose , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Lipocalina-2/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/ultraestrutura , Linhagem Celular Tumoral , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Lipocalina-2/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Piperazinas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Artigo em Inglês | MEDLINE | ID: mdl-34825635

RESUMO

OBJECTIVE: The purpose of this research is to formulate a biomimetic drug delivery system that can selectively target glioblastoma (GBM) to deliver the antitumor agent, Gboxin: a novel Complex V inhibitor. Gboxin can specifically inhibit GBM cell growth but not normal cells. METHODS: In the present study, we utilized Red Blood Cell (RBC) membrane and U251 cell membrane to obtain a hybrid biomimetic membrane (RBC-U), and prepared RBC-U coated Gboxin-loaded mesoporous silica nanoparticles ((MSNs/Gboxin)@[RBC-U]) for GBM chemotherapy. The zeta potential, particle size, and morphology of (MSNs/Gboxin)@[RBC-U] were characterized. The cellular uptake, effect of cells growth inhibition, biocompatibility, and specific self-recognition of nanoparticles were evaluated. RESULTS: The (MSNs/Gboxin)@[RBC-U] was successfully fabricated and possessed high stability in the circulation system. The drug loading of Gboxin was 13.9%. (MSNs/Gboxin)@[RBC-U], effectively retain drugs in the physiological environment and releasing Gboxin rapidly in the tumor cells. Compared to the MSNs/Gboxin, the (MSNs/Gboxin)@[RBC-U] exhibited highly specific self-recognition to the source cell line. Additionally, the (MSNs/Gboxin)@[RBC-U] showed excellent anti-proliferation efficiency (IC50 = 0.21 µg/mL) in the tumor cell model and a few side effects in normal cells in vitro. CONCLUSION: The (MSNs/Gboxin)@[RBC-U] exhibited significant anti-cancer effects in vitro and the specific self-recognition to GBM cells. Hence, (MSNs/Gboxin)@[RBC-U] could be a promising delivery system for GBM targeted therapy.

17.
World J Microbiol Biotechnol ; 38(1): 3, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34817705

RESUMO

Microbial structure and succession of fermented grains play a significant role in Baijiu's flavor and quality. In this study, high-throughput sequencing (HTS) coupled with headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) were used to analyze the microbial community structures and flavor components in the fermented grains at the end of fermentation from different fermentation time of light-flavor Xiaoqu Baijiu. HTS results showed that Lactobacillus acetotolerans, Lactobacillus helveticus, Lactobacillus buchneri, Wickerhamomyces, Saccharomyces, and Condenascus were identified as the dominant microbes, but Lactobacillus (96.28%) exhibited obvious advantages at the end of ultra-long fermentation time (day 98). HS-SPME-GC-MS analysis revealed that esters and alcohols had the most abundance in fermented grains of day 98, containing high concentrations of ethyl acetate, diethyl succinate, phenylethyl alcohol, isoamyl alcohol, and n-propanol, which were related to the succession of Lactobacillus and yeast communities. Interestingly, the content of n-propanol in the ultra-long fermentation time samples (day 98) was 6 times of that in normal fermented grains (day 14), which may be caused by higher abundance of Lactobacillus in day 98 samples. Monte Carlo permutation test showed residual starch, acidity, and amino nitrogen (p < 0.05) were important factors affecting the microbial community. Together, these results shed light on the physicochemical changes, microbial dynamics, and key flavor components of fermented grains at the end of fermentation from different fermentation time and provide a strategy for further improvement of Baijiu quality.

18.
Mater Horiz ; 8(2): 538-546, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821269

RESUMO

The data processing efficiency of traditional computers is suffering from the intrinsic limitation of physically separated processing and memory units. Logic-in-memory and brain-inspired neuromorphic computing are promising in-memory computing paradigms for improving the computing efficiency and avoiding high power consumption caused by extra data movement. However, memristors that can conduct digital memcomputing and neuromorphic computing simultaneously are limited by the difference in the information form between digital data and analogue data. In order to solve this problem, this paper proposes a flexible low-dimensional memristor based on boron nitride (BN), which has ultralow-power non-volatile memory characteristic, reliable digital memcomputing capabilities, and integrated ultrafast neuromorphic computing capabilities in a single in situ computing system. The logic-in-memory basis, including FALSE, material implication (IMP), and NAND, are implemented successfully. The power consumption of the proposed memristor per synaptic event (198 fJ) can be as low as biology (fJ level) and the response time (1 µs) of the neuromorphic computing is four orders of magnitude shorter than that of the human brain (10 ms), paving the way for wearable ultrahigh efficient next-generation in-memory computing architectures.

19.
Trials ; 22(1): 811, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784941

RESUMO

BACKGROUND: Emergence agitation (EA) after general anesthesia is a common complication in the post-anesthesia care unit (PACU). Once EA occurs, there are still no guidelines established for the treatment in adults. Propofol is excessively used in managing agitated patients in the PACU, but it lacks analgesia and can result in apnea. Intraoperative infusion of dexmedetomidine has been proven to have a preventive effect on EA, but the treatment effect of dexmedetomidine on EA remains unknown. This study aims to compare the effects between dexmedetomidine and propofol on relieving EA in adult patients after general anesthesia in the PACU. METHODS: In this randomized, superiority, controlled clinical study, a total of 120 adult patients aged 18-65 years of both genders, with American Society of Anesthesiologists (ASA) classification I or II developing EA in the PACU after general anesthesia, will be enrolled. Patients will be randomized at a 1:1 ratio into two groups, receiving either a single dose of dexmedetomidine (0.7µg/kg) or propofol (0.5 mg/kg). The primary outcome is the proportion of patients having a recurrent EA within 15 min after intervention in the PACU. DISCUSSION: Previous studies have focused on premedication for preventing EA, while therapeutics for reliving EA have rarely been reported. To our knowledge, this study is the first randomized, superiority, controlled trial to compare a bolus of dexmedetomidine with the current routine care for this indication. TRIAL REGISTRATION: ClinicalTrials.gov NCT04142840 . Registered on October 26, 2019.


Assuntos
Dexmedetomidina , Delírio do Despertar , Propofol , Adulto , Período de Recuperação da Anestesia , Anestesia Geral , Dexmedetomidina/efeitos adversos , Feminino , Humanos , Masculino , Propofol/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto
20.
Artigo em Inglês | MEDLINE | ID: mdl-34734497

RESUMO

Quantitative systems pharmacology (QSP) has been proposed as a scientific domain that can enable efficient and informative drug development. During the past several years, there has been a notable increase in the number of regulatory submissions that contain QSP, including Investigational New Drug Applications (INDs), New Drug Applications (NDAs), and Biologics License Applications (BLAs) to the US Food and Drug Administration. However, there has been no comprehensive characterization of the nature of these regulatory submissions regarding model details and intended applications. To address this gap, a landscape analysis of all the QSP submissions as of December 2020 was conducted. This report summarizes the (1) yearly trend of submissions, (2) proportion of submissions between INDs and NDAs/BLAs, (3) percentage distribution along the stages of drug development, (4) percentage distribution across various therapeutic areas, and (5) nature of QSP applications. In brief, QSP is increasingly applied to model and simulate both drug effectiveness and safety throughout the drug development process across disease areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...