Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-34734373

RESUMO

PURPOSE: Coronary heart disease is a serious disease that endangers human health and life. In recent years, the incidence and mortality of coronary heart disease have increased rapidly. The quantification of the coronary artery is critical in diagnosing coronary heart disease. METHODS: In this paper, we improve the coronary arteries segmentation performance from two aspects of network model and algorithm. We proposed a U-shaped network based on spatio-temporal feature fusion structure to segment coronary arteries from 2D slices of computed tomography angiography (CTA) heart images. The spatio-temporal feature combines features of multiple levels and different receptive fields separately to get more precise boundaries. It is easy to cause over-segmented for the small proportion of coronary arteries in CTA images. For this reason, a combo loss function was designed to deal with the notorious imbalance between inputs and outputs that plague learning models. Input imbalance refers to the class imbalance in the input training samples. The output imbalance refers to the imbalance between the false positive and false negative of the inference model. The two imbalances in training and inference were divided and conquered with our combo loss function. Specifically, a gradient harmonizing mechanism (GHM) loss was employed to balance the gradient contribution of the input samples and at the same time punish false positives/negatives using another sensitivity-precision loss term to learn better model parameters gradually. RESULTS: Compared with some existing methods, our proposed method improves the segmentation accuracy significantly, achieving the mean Dice coefficient of 0.87. In addition, accurate results can be obtained with little data using our method. Code is available at: https://github.com/Ariel97-star/FFNet-CoronaryArtery-Segmentation . CONCLUSIONS: Our method can intelligently capture coronary artery structure and achieve accurate flow reserve fraction (FFR) analysis. Through a series of steps such as CPR curved reconstruction, the detection of coronary heart disease can be achieved without affecting the patient's body. In addition, our work can be used as an effective means to assist in the detection of stenosis. In the screening of coronary heart disease among high-risk cardiovascular factors, automatic detection of luminal stenosis can be performed based on the application of later algorithm transformation.

2.
Food Funct ; 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34788354

RESUMO

Aging and aging-related metabolic complications are global problems that seriously threaten public health. Taxifolin (TAX) is a novel health food and has been widely proved to have a variety of biological activities used in food and medicine. However, the delayed effect of TAX on the aging process has not been investigated. The purpose of this study is to explore the role of TAX as a natural active substance on aging brain tissue induced by D-galactose (D-Gal) and to determine the effect of supplementing TAX on the metabolism of the intestinal flora in aging bodies. The aging model was established by intraperitoneal injection of D-Gal (800 mg kg-1) once per 3 days for 12 weeks, and TAX (20 and 40 mg kg-1) was administered daily by oral gavage after 6 weeks of induction with D-Gal. After testing aging mice in an eight-arm maze, the results showed that TAX treatment significantly restored spatial learning and memory impairment. Moreover, long-term D-Gal treatment incited cholinergic dysfunction of aging mice, and H&E staining revealed obvious histopathological damage and structural disorder in the hippocampus of mouse brain tissue, while TAX treatment significantly reversed these changes. Importantly, supplementing with TAX significantly mitigated oxidative stress injury by alleviating the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) while increasing antioxidant enzymes. Furthermore, TAX decreased the apoptosis of the aging brain by regulating the phosphorylation levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and activating nuclear factor-erythroid 2-related factor 2 (Nrf2), nuclear heme oxygenase-1 (HO-1), and NADH dehydrogenase quinone 1 (NQO1) to maximally moderate the oxidative stress injury that occurred after D-Gal induction. In addition, 16S rDNA analysis revealed that TAX treatment decelerated the D-gal-induced aging process by regulating the composition of the intestinal flora and abundance of beneficial bacteria, including Enterorhabdus, Clostridium, Bifidobacterium, and Parvibacter. In conclusion, the results of this study demonstrated that TAX alleviated oxidative stress injury in mice aged by D-Gal and also confirmed that TAX improved the aging process by regulating intestinal microbes, which provides the possibility of prevention and treatment for aging and metabolic disorders through the potential food health factors.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34626114

RESUMO

Metformin, a clinical agent of type 2 diabetes, is reported as a potential geroprotector. Viral infection induces phenotypes of senescence in human T cells, and polyinosinic:polycytidylic acid (poly I:C), a viral mimic, induces upregulation of SA-ß-gal activity in ovary of the annual fish Nothobranchius guentheri. However, the effects and mechanisms of metformin on poly I:C-induced aging-like phenomena are poorly understood in vertebrates. In this study, the activity of SA-ß-gal increased in gut of 12-month-old fish and poly I:C-injected 6-month-old fish, compared to 6-month-old control fish, indicating that poly I:C induces aging-like phenomena in gut of the fish. Metformin supplementation retarded accumulation of SA-ß-gal in gut of old fish and poly I:C-treated young fish. The results of q-PCR analysis showed that metformin reduced NF-κB mediated inflammatory response including decreased level of pro-inflammatory cytokine IL-8 and increased expression of anti-inflammatory cytokine IL-10 in gut of the fish with natural aging and poly I:C-injected 6-month-old fish. Metformin also exhibited antioxidant effects, as it reduced ROS production which is associated with the upregulation of FoxO3a and PGC-1α in gut of 6-month-old fish with poly I:C-injection. Expression of AMPK and SIRT1 was reduced in gut of 6-month-old fish with poly I:C-treatment, and feeding metformin reversed these declines. Taken together, the present study suggested that poly I:C-injection led to aging-like phenomena in gut and metformin activated AMPK and SIRT1 to reduce NF-κB mediated inflammation and resist oxidative stress via enhanced expression of FoxO3a and PGC-1α, and finally delayed gut aging in vertebrates.

4.
Fitoterapia ; 155: 105038, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34600094

RESUMO

Phenolic bisabolane-type sesquiterpenoids (PBS) represent a rare class of natural products with diverse biological activities. In this study, chemical investigations of the fungus Aspergillus flavipes 297 resulted in the isolation and identification of seven PBS, including a pair of new enantiomers (+)-1a and (-)-1b, a new derivative 2, and five previously reported ones 3-7. The chemical structures of the isolated PBS were determined by extensive NMR and HRESIMS spectroscopic analysis. The absolute configurations of the separated enantiomers (+)-1a and (-)-1b were solved by comparison of the experimental ECD spectra with those of the TDDFT-ECD calculated spectra. The new compounds 1 and 2 represent rare cases of PBS bearing a methylsulfinyl group, which was distinct from the commonly-observed PBS structurally. All the isolated compounds 1-7 were evaluated their antimicrobial and cytotoxic activities. As a result, the tested compounds showed selective antimicrobial activity against several pathogenic bacteria and fungi with the MIC (minimum inhibiting concentrations) values ranging from 2 to 64 µg/mL. Moreover, enantiomers (+)-1a and (-)-1b, together with compound 2, exhibited promising cytotoxicity against MKN-45 and HepG2 cell lines, respectively, indicating that the methylsulfinyl substituent enhanced cytotoxicity to a certain degree.

5.
Brain Res ; 1772: 147663, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555415

RESUMO

Neuropathic pain is a common complication of diabetes mellitus with poorly relieved by conventional analgesics. Metformin, a first-line drug for type 2 diabetes, reduces blood glucose by activating adenosine monophosphate protein kinase (AMPK) signalling system. However, the effect of Metformin on diabetic neuropathic pain is still unknown. In the present study, we showed that Metformin was capable of attenuating diabetes induced mechanical allodynia, and the analgesia effect could be blocked by Compound C (an AMPK inhibitor). Importantly, Metformin enhanced the phosphorylation level of AMPK in L4-6 DRGs of diabetic rats but not affect the expression of total AMPK. Intrathecal injection of AICAR (an AMPK agonist) could activate AMPK and alleviate the mechanical allodynia of diabetic rats. Additionally, phosphorylated AMPK and NF-κB was co-localized in small and medium neurons of L4-6 DRGs. Interestingly, the regulation of NF-κB in diabetic rats was obviously reduced when AMPK was activated by AICAR. Notably, Metformin could decrease NF-κB expression in L4-6 DRGs of diabetic rats, but the decrease was blocked by Compound C. In conclusion, Metformin alleviates diabetic mechanical allodynia via activation of AMPK signaling pathway in L4-6 DRGs of diabetic rats, which might be mediated by the downregulation of NF-κB, and this providing certain basis for Metformin to become a potential drug in the clinical treatment of diabetic neuropathic pain.

6.
Nat Commun ; 12(1): 5682, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584088

RESUMO

Controlled self-assembly of colloidal particles into predetermined organization facilitates the bottom-up manufacture of artificial materials with designated hierarchies and synergistically integrated functionalities. However, it remains a major challenge to assemble individual nanoparticles with minimal building instructions in a programmable fashion due to the lack of directional interactions. Here, we develop a general paradigm for controlled co-assembly of soft block copolymer micelles and simple unvarnished hard nanoparticles through variable noncovalent interactions, including hydrogen bonding and coordination interactions. Upon association, the hairy micelle corona binds with the hard nanoparticles with a specific valence depending exactly on their relative size and feeding ratio. This permits the integration of block copolymer micelles with a diverse array of hard nanoparticles with tunable chemistry into multidimensional colloidal molecules and polymers. Secondary co-assembly of the resulting colloidal molecules further leads to the formation of more complex hierarchical colloidal superstructures. Notably, such colloidal assembly is processible on surface either through initiating the alternating co-assembly from a micelle immobilized on a substrate or directly grafting a colloidal oligomer onto the micellar anchor.

7.
Pharmaceutics ; 13(9)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34575569

RESUMO

Pancreatic cancer is a malignant disease with high mortality and poor prognosis due to lack of early diagnosis and low treatment efficiency after diagnosis. Although Gemcitabine (GEM) is used as the first-line chemotherapeutic drug, chemoresistance is still the major problem that limits its therapeutic efficacy. Here in this study, we developed a specific M1 macrophage-derived exosome (M1Exo)-based drug delivery system against GEM resistance in pancreatic cancer. In addition to GEM, Deferasirox (DFX) was also loaded into drug carrier, M1Exo, in order to inhibit ribonucleotide reductase regulatory subunit M2 (RRM2) expression via depleting iron, and thus increase chemosensitivity of GEM. The M1Exo nanoformulations combining both GEM and DFX significantly enhanced the therapeutic efficacy on the GEM-resistant PANC-1/GEM cells and 3D tumor spheroids by inhibiting cancer cell proliferation, cell attachment and migration, and chemoresistance to GEM. These data demonstrated that M1Exo loaded with GEM and DFX offered an efficient therapeutic strategy for drug-resistant pancreatic cancer.

8.
Nanoscale ; 13(32): 13681-13692, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34477643

RESUMO

A hypoxic environment in tumors hampers the therapeutic efficacy of radiotherapy. Moreover, radiotherapy, a localized treatment technique, can barely control tumor metastases. Herein, poly(lactic-co-glycolic acid) was used to encapsulate perfluorocarbon (PFC) for increasing the oxygen level and a lignan-derived compound (Q1) for enhancing IL-25 secretion from fibroblasts, thereby boosting the radiotherapeutic effect on local and distant tumors. The prepared co-delivery nanoplatform, PFC-Q1@PLGA, has a nano-scale size of around 160 nm and a negative zeta potential (about -13 mV). PFC-Q1@PLGA treatment leads to an arrest of the G2 phase (4n) in the cell cycle and reduces the mitochondria membrane potential. A high expression level of IL-25 in fibroblasts is detected after the cells are treated with PFC-Q1@PLGA, which increases the late apoptosis percentage of 4T1 cells after treatment with IL-25-containing conditional medium from fibroblasts. The oxygen level in tumors is significantly promoted to about 52.3% after injection of oxygen-saturated PFC-Q1@PLGA (O2), which is confirmed from the functional magnetic resonance images of the tumor site in mice. The in vivo study demonstrates that the injection of PFC-Q1@PLGA (O2) into local tumors significantly enhances the radiotherapeutic effect on local tumors and also inhibits the growth of remote tumors by an enhanced abscopal effect. This study presents a novel radiotherapy strategy to enable synergistic whole-body therapeutic responses after localized treatment with PFC-Q1@PLGA (O2).


Assuntos
Fluorcarbonetos , Lignanas , Nanopartículas , Neoplasias , Animais , Camundongos , Oxigênio , Microambiente Tumoral
9.
Sci Rep ; 11(1): 18423, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531448

RESUMO

The austral spring climate of 2020 was characterised by the occurrence of La Niña, which is the most predictable climate driver of Australian springtime rainfall. Consistent with this La Niña, the Bureau of Meteorology's dynamical sub-seasonal to seasonal forecast system, ACCESS-S1, made highly confident predictions of wetter-than-normal conditions over central and eastern Australia for spring when initialised in July 2020 and thereafter. However, many areas of Australia received near average to severely below average rainfall, particularly during November. Possible causes of the deviation of rainfall from its historical response to La Niña and causes of the forecast error are explored with observational and reanalysis data for the period 1979-2020 and real-time forecasts of ACCESS-S1 initialised in July to November 2020. Several compounding factors were identified as key contributors to the drier-than-anticipated spring conditions. Although the ocean surface to the north of Australia was warmer than normal, which would have acted to promote rainfall over northern Australia, it was not as warm as expected from its historical relationship with La Niña and its long-term warming trend. Moreover, a negative phase of the Indian Ocean Dipole mode, which typically acts to increase spring rainfall in southern Australia, decayed earlier than normal in October. Finally, the Madden-Julian Oscillation activity over the equatorial Indian Ocean acted to suppress rainfall across northern and eastern Australia during November. While ACCESS-S1 accurately predicted the strength of La Niña over the Niño3.4 region, it over-predicted the ocean warming to the north of Australia and under-predicted the strength of the November MJO event, leading to an over-prediction of the Australian spring rainfall and especially the November-mean rainfall.

10.
Adv Mater ; 33(45): e2104594, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34554623

RESUMO

Inspired by natural saccharide-protein complexes, a stimuli-responsive biodegradable and branched glycopolymer-pyropheophorbide-a (Ppa) conjugate (BSP) with saccharide units for cancer therapy is constructed. A linear glycopolymeric conjugate (LSP), a branched glycopolymeric conjugate (BShP) from Ppa with long carbon chains, and a branched conjugate (BHSP) based on poly[N-(2-hydroxypropyl) methacrylamide] (polyHPMA) without saccharide units are prepared as controls. Through structure-activity relationship studies, BSP with a 3D network structure forms stable nanostructures via weak intermolecular interactions, regulating the stacking state of Ppa to improve the singlet oxygen quantum yield and the corresponding photodynamic therapy (PDT) effect. BSP shows high loading of olaparib, and are further coated with tumor cell membranes, resulting in a biomimetic nanomedicine (CM-BSPO). CM-BSPO shows highly efficient tumor targeting and cellular internalization properties. The engulfment of CM-BSPO accompanied with laser irradiation results in a prominent antitumor effect, evidenced by disruption of cell cycles in tumor cells, increased apoptosis and DNA damage, and subsequent inhibition of repair for damaged DNA. The mechanism for the synergistic effect from PDT and olaparib is unveiled at the genetic and protein level through transcriptome analysis. Overall, this biodegradable and branched glycopolymer-drug conjugate could be effectively optimized as a biomimetic nanomedicine for cancer therapy.

11.
Signal Transduct Target Ther ; 6(1): 309, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413288

RESUMO

Glioblastoma (GBM), one of the most common primary intracranial malignant tumours, is very difficult to be completely excised by surgery due to its irregular shape. Here, we use an MRI/NIR fluorescence dual-modal imaging nanoprobe that includes superparamagnetic iron oxide nanoparticles (SPIONs) modified with indocyanine (Cy7) molecules and peptides (ANG or DANG) to locate malignant gliomas and guide accurate excision. Both peptides/Cy7-SPIONs probes displayed excellent tumour-homing properties and barrier penetrating abilities in vitro, and both could mediate precise aggregation of the nanoprobes at gliomas sites in in vivo magnetic resonance imaging (MRI) and ex vivo near-infrared (NIR) fluorescence imaging. However, compared with ANG/Cy7-SPIONs probes, DANG/Cy7-SPIONs probes exhibited better enhanced MR imaging effects. Combining all these features together, this MRI/NIR fluorescence imaging dual-modal nanoprobes modified with retro-enantio isomers of the peptide have the potential to accurately display GBMs preoperatively for precise imaging and intraoperatively for real-time imaging.

13.
Carbohydr Polym ; 267: 118160, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119134

RESUMO

To achieve target delivery of anti-tumor drugs with great biocompatibility into tumor tissues, a stimuli-responsive dendronized hyaluronic acid (HA)-docetaxel conjugate (HA-DTX-Dendron, HADD) was designed and prepared. The incorporation of HA in HADD improved the delivery of DTX to tumor cells with rich CD44 receptors. Enhanced biocompatibility and therapeutic outcomes were achieved using glyodendrons-modified HA and tumor microenvironment-responsive linkers in HADD. The glycodendron was connected with HA via GSH-responsive disulfide bonds, and the drug DTX was linked to the carrier via a cathepsin B-responsive tetrapeptide GFLG. This design resulted in self-assembly nanostructures for facilitating uptake of HADD by tumor cells and rapid release of DTX to exert its therapeutic effect. Compared to free DTX, HADD showed much higher tumor growth inhibition in the MDA-MB-231 tumor-bearing mice model (up to 99.71%), and no toxicity was observed. Therefore, HADD could be employed as an efficacious nano-agent for treating triple negative breast cancer (TNBC).


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Docetaxel/análogos & derivados , Docetaxel/uso terapêutico , Portadores de Fármacos/química , Ácido Hialurônico/análogos & derivados , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Dendrímeros/síntese química , Dendrímeros/química , Dendrímeros/metabolismo , Docetaxel/metabolismo , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/síntese química , Ácido Hialurônico/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanoestruturas/química , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Pathol Res Pract ; 224: 153529, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34174549

RESUMO

The poor outcomes in ovarian cancer necessitate new treatments. Strategies to interfere with oxidative phosphorylation have been recently highlighted for the treatment of ovarian tumors. Atovaquone, an approved antimicrobial drug, has demonstrated anti-cancer potential and ability in disrupting mitochondrial function. Here, we investigated the efficacy of atovaquone as single drug and its combination with cisplatin in ovarian cancer. We show that atovaquone at clinically achievable concentrations is active against ovarian cancer bulky and stem-cell like cells via inhibiting growth and colony formation, and inducing caspase-dependent apoptosis. In contrast, atovaquone either does not or inhibits normal cells in a less extent than in ovarian cancer cells. Mechanism studies using multiple independent approaches demonstrate that atovaquone acts on ovarian cancer cells via decreasing mitochondrial complex III which results in mitochondrial respiration inhibition, energy reduction and oxidative stress. In line with in vitro findings, atovaquone alone at non-toxic dose is effective in inhibiting ovarian cancer growth in vivo, and its combination with cisplatin is synergistic. Our study suggests that atovaquone is a promising candidate to the treatment of ovarian cancer. Our work also supports the notion that mitochondrial respiration is a therapeutic target in ovarian cancer.

15.
Cancer Med ; 10(15): 5246-5255, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34121352

RESUMO

BACKGROUND: Recent studies highlight the regulatory role of arachidonate lipoxygenase5 (Alox5) and its metabolite 5-hydroxyeicosatetraenoic acid (5-HETE) in cancer tumorigenesis and progression. In this study, we analyzed the expression, biological function and the downstream signaling of Alox5 in gastric cancer. METHODS: Alox5 protein levels were measured using IHC and ELISA. Growth, migration and survival assays were performed. Phosphorylation of molecules involved in growth and survival signaling were analyzed by WB. Analysis of variance and t-test were used for statistic analysis. RESULTS: Alox5 and 5-HETE levels were upregulated in gastric cancer patients. ALOX5 overexpression or 5-HETE addition activates gastric cancer cells and reduces chemotherapy's efficacy. In contrast, ALOX5 inhibition via genetic and pharmacological approaches suppresses gastric cancer cells and enhances chemotherapy's efficacy. In addition, Alox5 inhibition led to suppression of ERK-mediated signaling pathways whereas ALOX5-5-HETE activates ERK-mediated signaling in gastric cancer cells. CONCLUSIONS: Our work demonstrates the critical role of ALOX5-5-HETE in gastric cancer and provides pre-clinical evidence to initialize clinical trial using zileuton in combination with chemotherapy for treating gastric cancer.

16.
J Dermatolog Treat ; : 1-8, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34060412

RESUMO

BACKGROUND: Psoriasis is chronic incurable skin inflammation. The anti-inflammatory properties of mesenchymal stem cells (MSCs) have been put forward to be involved in several inflammatory diseases. However, little was known about the role of human adipose tissue-derived stem cells (hAD-MSCs) in psoriasis. OBJECTIVE: We sought to explore the feasibility of using hAD-MSCs infusion as a therapeutic approach in psoriatic mice. METHODS: We constructed the psoriasis-like model by IMQ implication, treated with hAD-MSCs by subcutaneous injection. To evaluate the efficacy, we examined the histology, CD45 and ROS positive cells by HE and flow cytometry respectively. We also tested the key cytokines with PCR. Moreover, to achieve a better therapeutic effect, we treated the model by combing with vitamin E application. RESULTS: We found that the classic histological symptoms of psoriasis were relieved after treatment with hAD-MSCs, also, the splenic index, the infiltration of immune cells and several pro-inflammatory cytokines were decreased. Interestingly, we also found that hAD-MSCs could inhibit ROS generation. Moreover, the combination therapy of hAD-MSCs and vitamin E could promote the curative effect with greater ROS inhibition. CONCLUSION: These results suggested that hAD-MSCs could be useful for treating psoriasis by negatively regulating ROS.

17.
Hum Exp Toxicol ; 40(11): 1921-1937, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33942666

RESUMO

Oxidative hair dyes consist of two components (I and II) that are mixed before use. Aromatic amines in component I and their reaction with hydrogen peroxide after mixing them with component II have been of primary concern. In addition, two in vitro genotoxicity assays are still required for the approval of the final products of oxidative hair dyes in China, and the substance in the oxidative hair dye that causes the high rate of positive results in genotoxicity tests, especially the Ames test, has not been fully elucidated. In this study, we analyzed the formulation of 55 different oxidative hair dyes from 7 color series and performed Ames tests in the strain TA98 with the S9 mix (oxidative hair dyes No. 1-30) and in strain TA97a without the S9 mix (oxidative hair dyes No. 31-55). We found that toluene-2,5-diamine sulfate (2,5-diaminotoluene sulfate, DATS) in component I may be the cause of mutagenicity in TA98, and hydrogen peroxide in component II may be the cause of mutagenicity in TA97a, and their positive concentrations were consistent with those that we calculated from Ames tests. The results suggest that the positive results for the oxidative hair dye in the Ames test were inevitable because of the existence of DATS in component I and of hydrogen peroxide in component II. Therefore, we should carry out safety assessments on each raw material and carry out risk assessments on the final products of oxidative hair dyes instead of genotoxicity tests in China.

18.
Behav Brain Res ; 409: 113314, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33894299

RESUMO

Cognitive decline is a common clinical symptom in Parkinson's disease (PD) patients. Fluoxetine (FLU), a selective serotonin reuptake inhibitor, can improve cognitive deficits in demented patients. The present study investigated the effects of FLU on spatial learning and memory cognitions in 6-OHDA lesioned rats. Morris water maze (MWM) test showed that FLU significantly improved spatial cognitive deficits in rats with unilateral 6-OHDA injection at 4 and 7 weeks after 6-OHDA injection. Electrophysiological recordings demonstrated that the number and duration of high voltage spindles(HVSs)in the ipsilateral hippocampus of 6-OHDA lesioned rats were decreased by the administration of FLU. Furthermore, the spectral analysis of per frequency revealed increases in δ and θ rhythm power and decreases in α, ß and γ rhythm power in the ipsilateral hippocampus of 6-OHDA lesioned rats in contrast to the saline-treated rats. Acute FLU treatment can reduce δ and θ rhythm power, and enhance α, ß and γ rhythm power in the ipsilateral hippocampus of 6-OHDA lesioned rats. These findings suggest that FLU improves impaired cognition by tuning oscillatory activities in the hippocampus of 6-OHDA lesioned rats.

19.
Transl Oncol ; 14(7): 101088, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33882369

RESUMO

BACKGROUND: The lncRNA colorectal neoplasia differentially expressed (lncRNA CRNDE) has been reported to play a pivotal role in various cancers. However, the expression and function of CRNDE in pancreatic cancer remain unclear. The objective of this study was to investigate the effects of CRNDE on pancreatic cancer and the underlying mechanisms. METHODS: The expression of CRNDE in pancreatic cancer tissues and cell lines was determined by RT-qPCR. Proliferation and angiogenesis were detected by MTT, colony formation, transwell and tube formation assays in vitro and in vivo. ELISA assay was used to detect the secretion of VEGFA. IHC was performed to test the expression levels of Ki67 and CD31. The binding sites between CRNDE, CDKN2D and miR-451a were predicted by bioinformatics analysis. Dual luciferase reporter and RNA immunoprecipitation assays were conducted to confirm the interaction with each other. RESULTS: The results showed that CRNDE was significantly up-regulated in pancreatic cancer tissues as well as cell lines. CRNDE overexpression promoted the progression and angiogenesis of pancreatic cancer cells in vitro and in vivo. Moreover, we identified that CRNDE functioned as a sponge for miR-451a and CRNDE overexpression inhibited the expression of miR-451a. Furthermore, we confirmed that miR-451a directly interacted with CDKN2D and negatively regulated CDKN2D expression. In addition, CRNDE was found to positively regulate CDKN2D expression and mediate pancreatic cancer cell proliferation and angiogenesis through miR-451a/CDKN2D axis. CONCLUSION: CRNDE modulates cell proliferation and angiogenesis via miR-451a/CDKN2D axis in pancreatic cancer, which provides a potential therapeutic target for pancreatic cancer treatment.

20.
Macromol Rapid Commun ; 42(9): e2100013, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33759304

RESUMO

Photodynamic therapy (PDT) has shown its promise in the treatment of cancer. Herein, a dendron-functionalized polyglutamic acid (PGA) polymer (PG-L8G-Ppa-Dendron, PGPD) is synthesized and it is conjugated with pyropheophorbide-a (Ppa) for the first time to treat triple negative breast cancer (TNBC), whereas a linear polyglutamate-Ppa conjugate (PGP) is synthesized as a control. Compared to the linear counterpart, the glycosylated polymer-based PGPD with a dendritic structure has excellent solubility and it self-assembles to form uniform-sized nanoparticles. PGPD displays a highly effective PDT effect in the animal model, evidenced with effective induction of reactive oxygen species (ROS) production and cell apoptosis. This may be due to an enhanced efficiency in delivery and accumulation of Ppa by this glycosylated dendritic polymer at tumor sites. Therefore, PGPD can be a highly effective and biosafe nanoagent for PDT of TNBC.


Assuntos
Neoplasias da Mama , Dendrímeros , Fotoquimioterapia , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Nanomedicina , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Ácido Poliglutâmico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...