Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 425: 128007, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986569

RESUMO

Removal of radioactive 133Ba, 60Co and 63Ni and their nonradioactive isotopes through ion exchange method would be highly beneficial for the safe disposal of liquid industrial waste, and it also bears importance for the emergency response to nuclear accident. Herein, we report the employment of an indium sulfide [CH3CH2NH3]6In8S15 (InS-2) with exchangeable ethylammonium cations for efficient and selective uptake of Ba2+, Co2+ and Ni2+. The corner-sharing linkage of P1-{In8S17} clusters in InS-2 endow the layered structure with nanoscale windows, which facilitates both transfer and accommodation of the large hydrated divalent metal ions. This results in ultrafast exchange kinetics (10-20 min) and top-level exchange capacities of 211.73 mg g-1 for Ba2+, 103.57 mg g-1 for Co2+, and 111.78 mg g-1 for Ni2+. Particularly, InS-2 achieves ultrahigh Kd values of 2.3 × 105 mL g-1 for Ba2+, 2.0 × 105 mL g-1 for Co2+ and 1.6 × 105 mL g-1 for Ni2+, corresponding to remarkable removal efficiencies larger than 99.4% (C0 ~ 6 ppm). InS-2 shows high ß and γ irradiation resistance, wide pH durability (pH 3-13 for Ba2+, pH 3-11 for Co2+ and Ni2+), and outstanding selectivity against competitor ions (e.g. Na+, K+, Mg2+, Ca2+). The InS-2-filled ion exchange column exhibits a fantastic removal effect (R > 99%) for mixed Ba2+, Co2+, Ni2+, as well as Sr2+. The ultralong column-treatment on 20000 BVs of flow reveals an affinity order of Co2+ > Ni2+ > Ba2+ > Sr2+ for InS-2, which gives deep insights into the adsorption process and interaction between competitor ions. This excellent uptake of Ba2+ (Ra by analogy), Co2+ and Ni2+ ions by InS-2 highlights the great potential of metal chalcogenides as a type of promising materials for minimizing contamination in complex wastewater.

2.
Insects ; 12(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34821798

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda, is a serious pest of crucial crops causing great threats to the food security of the world. It has evolved resistance to various insecticides, while the underlying molecular mechanisms remain largely unknown. Cuticular proteins (CPs), as primary components in cuticle, play an important role in insects' protection against environmental stresses. Few of them have been documented as participating in insecticide resistance in several insect species. In order to explore whether CP genes of the FAW exhibit a functional role in responding to insecticides stress, a total of 206 CPs, classified into eight families, were identified from the genome of the FAW through a homology-based approach coupled with manual efforts. The temporal expression profiles of all identified CP genes across developmental stages and their responses to 23 different insecticides were analyzed using the RNA-seq data. Expression profiling indicated that most of the CP genes displayed stage-specific expression patterns. It was found that the expression of 51 CP genes significantly changed after 48 h exposure to 17 different insecticides. The expression of eight CP genes responding to four insecticides were confirmed by RT-PCR analysis. The results showed that their overall expression profiles were consistent with RNA-seq analysis. The findings provide a basis for further functional investigation of CPs implied in insecticide stress in FAW.

3.
Mol Ecol ; 30(17): 4204-4219, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34278603

RESUMO

Invasive species pose increasing threats to global biodiversity and ecosystems. While previous studies have characterized successful invaders based on ecological traits, characteristics related to evolutionary processes have rarely been investigated. Here we compared gene flow and local adaptation using demographic analyses and outlier tests in two co-occurring moth pests across their common native range of China, one of which (the peach fruit moth, Carposina sasakii) has maintained its native distribution, while the other (the oriental fruit moth, Grapholita molesta) has expanded its range globally during the past century. We found that both species showed a pattern of genetic differentiation and an evolutionary history consistent with a common southwestern origin and northward expansion in their native range. However, for the noninvasive species, genetic differentiation was closely aligned with the environment, and there was a relatively low level of gene flow, whereas in the invasive species, genetic differentiation was associated with geography. Genome scans indicated stronger patterns of climate-associated loci in the noninvasive species. While strong local adaptation and reduced gene flow across its native range may have decreased the invasiveness of C. sasakii, this requires further validation with additional comparisons of invasive and noninvasive species across their native range.


Assuntos
Mariposas , Animais , Ecossistema , Frutas , Fluxo Gênico , Geografia , Mariposas/genética
4.
Inorg Chem ; 60(10): 7115-7127, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33926189

RESUMO

Metal chalcogenide supertetrahedral Tn clusters are of current interest for their unique compositions and structures, which rely highly on the structure-directing agents. Herein, we report four novel Tn cluster-based indium and gallium sulfides, namely, [NH(CH3)3]4In4S10H4 (1), (NH3)4Ga4S6 (2), [NH3CH2CH3]5(NH2CH2CH3)2Ga11S19 (3), and [NH3CH2CH2OH]6Ga10S18·2NH2CH2CH2OH (4). All four compounds were solvothermally synthesized in mixed amine-ethanol solutions or deep eutectic solvent (DES), where ammonia/amine molecules play significant structure-directing roles in the speciation and crystal growth. (1) Being protonated, the trimethylamine and ethanolamine molecules surround the T2-[In4S10H4]4- clusters (for 1) and [Ga10S18]n6n- open framework (for 4), respectively, compensating for the negative charge of the inorganic moieties. (2) With the lone pair of electrons, the ammonia molecules in 2 coordinate directly to corner Ga3+ ions of the {Ga4S6} cage to give a neutral T2-(NH3)4Ga4S6 cluster. (3) For compound 3, part of the ethylamine molecules act as terminating ligands for the T1 and T3 units in the [Ga11S19(NH2CH2CH3)2]n5n- layer, while the rest act as interlamellar countercations upon protonation. Theoretical studies reveal the contributions of N, C, and H to the density of states (DOS) for 2 and 3 because of their hybrid structures that combine the ammonia/amine ligands with sulfide moieties together.

5.
Genomics ; 113(1 Pt 2): 601-612, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002624

RESUMO

Lepidoptera (moths and butterflies) and Trichoptera (caddisflies), belonging to the superorder Amphiesmenoptera, are the most diverse insect orders as representatives of the terrestrial and aquatic insects, respectively. The insects of the two orders possess different biological and behavioral characteristics, especially their larvae, presumably resulting in the differences of the ionotropic receptor (IR) genes in numbers, sequence characteristics or gene structure. Here, we employed genomics, transcriptomics, bioinformatics, phylogenetics and molecular biology strategies to characterize the IR gene repertoire in Lepidoptera and Trichoptera. Genome and transcriptome analyses with exhaustive homology-based searches and manual efforts, in 32 lepidopterans and five trichopterans, led to the identification of 1449 genes encoding IRs with 1170 full-length sequences, representing the most comprehensive set of chemoreceptor superfamilies across the Amphiesmenoptera. Analysis of gene gains and losses in orthologous groups implied that some IRs were lost in related species, and multiple gene copies occurred mainly in divergent IRs (D-IRs) by gene duplications. Phylogenetic analysis of 2442 IR proteins from 67 species revealed that Lepidoptera and Trichoptera IRs could be classified into three subfamilies, i.e., 14 antennal IRs (A-IRs), five Lepidoptera-specific IRs (LS-IRs) and four D-IRs. Of the three subfamilies, A-IRs and LS-IRs members within orthologous groups exhibited high conservation of gene structure, but D-IRs shared extremely low amino acid identities (below 30%). Expression profiles revealed functional diversities of IRs from Bombyx mori and Papilio xuthus involving smell, taste or reproduction, in which some genes displayed sex-biased expression in antennae associated with specific chemosensory behaviors of female or male adults. Our current study has provided insights into the evolution, conservation and divergence of IRs between/within Lepidoptera and Trichoptera, and allows for further experiments to investigate IR functions.


Assuntos
Bombyx/genética , Evolução Molecular , Proteínas de Insetos/genética , Receptores Ionotrópicos de Glutamato/genética , Animais , Bombyx/metabolismo , Proteínas de Insetos/metabolismo , Família Multigênica , Filogenia , Polimorfismo Genético , Receptores Ionotrópicos de Glutamato/metabolismo , Transcriptoma
6.
Pest Manag Sci ; 77(4): 1683-1693, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33200882

RESUMO

BACKGROUND: The diamondback moth (DBM), Plutella xylostella (Lepidoptera: Plutellidae), is a notorious pest of cruciferous plants. In temperate areas, annual populations of DBM originate from adult migrants. However, the source populations and migration trajectories of immigrants remain unclear. Here, we investigated migration trajectories of DBM in China using genome-wide single nucleotide polymorphisms (SNPs) genotyped using double-digest RAD (ddRAD) sequencing. We first analyzed patterns of spatial and temporal genetic structure among southern source and northern recipient populations, then inferred migration trajectories into northern regions using discriminant analysis of principal components (DAPC), assignment tests, and spatial kinship patterns. RESULTS: Temporal genetic differentiation among populations was low, indicating that sources of recipient populations and migration trajectories are stable. Spatial genetic structure indicated three genetic clusters in the southern source populations. Assignment tests linked northern populations to the Sichuan cluster, and central-eastern populations to the southern and Yunnan clusters, indicating that Sichuan populations are sources of northern immigrants and southern and Yunnan populations are sources of central-eastern populations. First-order (full-sib) and second-order (half-sib) kin pairs were always found within populations, but ~ 35-40% of third-order (cousin) pairs were found in different populations. Closely related individuals in different populations were found at distances of 900-1500 km in ~ 35-40% of cases, while some were separated by > 2000 km. CONCLUSION: This study unravels seasonal migration patterns in the DBM. We demonstrate how careful sampling and population genomic analyses can be combined to help understand cryptic migration patterns in insects. © 2020 Society of Chemical Industry.


Assuntos
Mariposas , Animais , China , Genômica , Larva , Metagenômica , Mariposas/genética
7.
Arch Virol ; 166(1): 295-297, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33067649

RESUMO

Here, we report a novel RNA virus from an encyrtid endoparasitoid wasp (Diversinervus elegans). This virus has a genome of 8845 nucleotides in length with a poly(A) tail. It contains one open reading frame (ORF) encoding a single polyprotein that shares the most significant similarity to the polyproteins of dicistroviruses. Phylogenetic analysis suggested that this virus belongs to the family Dicistroviridae from the order Picornavirales, but its genomic organization is distinct from that of the other known dicistroviruses, which have two ORFs. Consequently, we propose that this virus is a member of a new species in the order Picornavirales, and have named it "Diversinervus elegans virus" (DEV).


Assuntos
Dicistroviridae/genética , Genoma Viral/genética , Vírus de RNA/genética , Vespas/virologia , Animais , Fases de Leitura Aberta/genética , Filogenia , Poliproteínas/genética , RNA Viral/genética , Alinhamento de Sequência , Análise de Sequência de DNA/métodos , Proteínas Virais/genética
8.
Inorg Chem ; 59(19): 13822-13826, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32959655

RESUMO

An ethylammonium-templated indium sulfide, [CH3CH2NH3]6In8S15 (InS-2), featuring anionic layers perforated with large, 24-membered rings that facilitate the accommodation of hydrated Sr2+ ions is reported. InS-2 exhibits an excellent adsorption performance toward Sr2+ with a top-ranked capacity (qm = 143.29 mg g-1), rapid kinetics, wide pH durability (3-14), ß- and γ-radiation resistances, and a facile elution.

9.
Toxicon ; 183: 29-35, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32445842

RESUMO

The ant-like bethylid ectoparasitoid Scleroderma guani (Hymenoptera: Bethylidae) envenomates host to suppress immune response. Yet, the roles of its venom in inhibiting melanization of the host hemolymph have not been fully characterized. Here, we demonstrated that S. guani envenomation induced strong inhibition of melanization of the hemolymph from Tenebrio molitor (Coleoptera: Tenebrionidae), permitting the successful development of parasitoid offspring. To reveal venom component associated with such function, a serine proteinase homolog (SguaSPH) rich in the venom of S. guani was characterized. It was found that one of the catalytic triad residues for serine proteinase is absent in the amino acid sequence of SguaSPH. This venom component was abundantly expressed in venom apparatus and adult stages. By enzymatic assays, SguaSPH displayed low trypsin and no chymotrypsin activity, and was able to inhibit phenoloxidase activity in the hemolymph of Ostrinia furnacalis (Lepidoptera: Crambidae). The findings suggest that SguaSPH is essential for interfering with hemolymph melanization of S. guani envenomated host via phenoloxidase cascade disruption.


Assuntos
Monofenol Mono-Oxigenase/metabolismo , Serina Proteases/metabolismo , Animais , Hemolinfa/metabolismo , Proteínas de Insetos/metabolismo , Larva , Tenebrio/metabolismo
10.
Comp Biochem Physiol B Biochem Mol Biol ; 243-244: 110431, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32142896

RESUMO

The longhorned beetles, Rhaphuma horsfieldi and Xylotrechus quadripes, are two polyphagous insects with larvae feeding on different host plants. In this study, we identified and characterized three gene superfamilies of cytochrome P450s (CYPs), carboxylesterases (COEs) and glutathione-S-transferases (GSTs) involved in the detoxification of endobiotics (e.g., hormones and steroids) and xenobiotics (e.g., insecticides, sex pheromones and plant allelochemicals) through a combination approach of bioinformatics, phylogenetics, expression profiles and genomics. Transcriptome analyses led to the identification of 281 transcripts encoding 135 P450s, 108 COEs and 38 GSTs from the two beetles, coupled with comparative studies of detoxification genes among coleopteran species, suggesting a correlation between host range and the sizes of P450 or COE gene repertoires. The P450s of two beetles were phylogenetically classified into four clades, representing the majority of genes in the CYP3 clan. The COEs from R. horsfieldi and X. quadripes were separately grouped into 11 and 10 clades, and the GST superfamily was assigned into six clades. Expression profiles revealed that the detoxification genes were broadly expressed in various tissues as an implication of functional diversities. Ultimately and more importantly, five alternative splicing events in the Epsilon GSTs, including RhorGSTe7.1/GSTe7.2 and XquaGSTe3.1/GST3.2, were acquired in Coleoptera, in which these genes and their orthologs shared highly conserved gene structure. Our current study has complemented the resources for the detoxification genes in the family Cerambycidae, and allows for functional experiments to identify candidate molecular targets involved in pest resistance to insecticides like organophosphates, organochlorines and pyrethroids.


Assuntos
Hidrolases de Éster Carboxílico/genética , Besouros/genética , Sistema Enzimático do Citocromo P-450/genética , Glutationa Transferase/genética , Inseticidas/metabolismo , Processamento Alternativo , Animais , Hidrolases de Éster Carboxílico/metabolismo , Clonagem Molecular , Besouros/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hidrocarbonetos Clorados/metabolismo , Hidrocarbonetos Clorados/toxicidade , Inativação Metabólica , Filogenia , Piretrinas/metabolismo , Piretrinas/toxicidade
11.
Genomics ; 112(4): 2713-2728, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32145380

RESUMO

Through an exhaustive homology-based approach, coupled with manual efforts, we annotated and characterized 128 sensory neuron membrane proteins (SNMPs) from genomes and transcriptomes of 22 coleopteran species, with 107 novel candidates. Remarkably, we discovered, for the first time, a novel SNMP group, defined as Group 4 based on the phylogeny, sequence characteristics, gene structure and organization. The lineage-specific expansions in SNMPs occurred mainly in the family Scarabaeidae, harboring 12 representatives in Onthophagus taurus as a typical gene duplication and the most massive set of SNMPs in insects to date. Transcriptome sequencing of Rhaphuma horsfieldi resulted in the yields of approximately 611.9 million clean reads that were further assembled into 543,841 transcripts and 327,550 unigenes, respectively. From the transcriptome, 177 transcripts encoding 84 odorant (ORs), 62 gustatory (GRs), 20 ionotropic (IRs), and 11 ionotropic glutamate (iGluRs) receptors were identified. Phylogenetic analysis classified RhorORs into six groups, RhorGRs into four subfamilies, and RhorIRs into 10 conserved antennal IRs and one divergent IRs. Expression profiles revealed that over 80% of chemosensory genes were specifically or highly transcribed in antennae or tarsi, suggestive of their olfactory and/or gustatory roles. This study has greatly complemented the resources for chemosensory genes in the cerambycid beetles, and most importantly, identifies a novel group of SNMPs in Coleoptera.


Assuntos
Besouros/genética , Proteínas de Insetos/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Receptores de Superfície Celular/genética , Animais , Feminino , Genes de Insetos , Genoma de Inseto , Proteínas de Insetos/classificação , Masculino , Proteínas de Membrana/classificação , Família Multigênica , Proteínas do Tecido Nervoso/classificação , Filogenia , Receptores Odorantes/classificação , Receptores Odorantes/genética , Transcriptoma
12.
J Int Med Res ; 48(3): 300060519883554, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31709867

RESUMO

Hepatic artery aneurysm rupture is a rare cause of massive hemobilia, which is potentially life-threatening, cause of upper gastrointestinal hemorrhage. Cases of mycotic hepatic artery aneurysm associated with streptococcal endocarditis have rarely been reported. In the present study, we report a case of massive hemobilia that was caused by ruptured mycotic hepatic artery aneurysm in a patient who was infected with streptococcal endocarditis 3 months previously. Transarterial embolization in the patient failed, possibly due to vascular variations. However, surgical treatment was successfully performed, and the patient completely recovered. In conclusion, surgical treatment may be useful in treating massive hemobilia under life-threatening conditions, even in cases of vascular variations and failure of transarterial embolization.


Assuntos
Aneurisma Roto , Embolização Terapêutica , Endocardite , Hemobilia , Aneurisma Roto/complicações , Aneurisma Roto/diagnóstico por imagem , Aneurisma Roto/cirurgia , Endocardite/complicações , Endocardite/diagnóstico por imagem , Hemorragia Gastrointestinal , Hemobilia/diagnóstico por imagem , Hemobilia/etiologia , Hemobilia/terapia , Artéria Hepática/diagnóstico por imagem , Humanos
13.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 49(5): 743-748, 2018 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-30378337

RESUMO

OBJECTIVE: To determine the associations between hyperdense middle cerebral arteries sign (HMCAS) and large vessel occlusion (LVO) and clinical outcomes in patients with acute ischemic stoke. METHODS: Patients who were admitted to the Stroke Center of West China Hospital of Sichuan University within 6 h after onset of acute ischemic stroke from July 2015 to July 2017 were included in this study. Logistic regression models were established to determine the value of HMCAS in predicting LVO, hemorrhagic transformation and 90-d functional outcome using the receiver operating characteristic curve. RESULTS: A total of 292 stroke patients were recruited and 50 (17.1%) presented with HMCAS, including 41 (82.0%) with confirmed as LVO. HMCAS had a value of 0.682 in the area under the receiver operating characteristic curve for predicting LVO [odds ratio OR)=8.93, 95% confidence interval CI): 3.72-21.48, P<0.001), better than early CT infarct (0.682 vs. 0.602, P=0.038). HMCAS was also an independent predictor for hemorrhagic transformation OR=5.32, 95%CI: 2.16-13.11, P<0.001) and poor functional recovery OR=3.02, 95%CI: 1.19-7.62, P=0.019). CONCLUSION: HMCAS is a risk factor of large artery occlusion, hemorrhagic transformation, and poor functional recovery in patients with acute ischemic stroke.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Artéria Cerebral Média/patologia , Acidente Vascular Cerebral/diagnóstico por imagem , China , Estudos de Coortes , Humanos , Artéria Cerebral Média/diagnóstico por imagem , Tomografia Computadorizada por Raios X
14.
Arch Insect Biochem Physiol ; 99(3): e21503, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30120804

RESUMO

Superoxide dismutase (SOD) known as an important antioxidative stress protein has been recently found in venoms of several parasitoid wasps. However, its functions and characteristics as a virulent factor remain scarcely described. Here, we report the characterization of two venomous SOD genes (SguaSOD1 and SguaSOD3) from the ectoparasitoid, Scleroderma guani. The metal binding sites, cysteine amino acid positions and signature sequences of the SOD family were conserved within SguaSOD1 and SguaSOD3. Relatively high levels of their transcripts were observed in pupae followed a decrease in early adults, after which they had the highest transcriptions, indicating that their productions would be regulated in venom apparatus. Although the two genes showed lower expression in venom apparatus compared to head and thorax, the enzymatic assay revealed that SOD indeed had activity in venom. Further, we showed that recombinant SguaSOD3 suppressed melanization of host hemolymph, implying that this protein used as a virulent factor uniquely impacts the prophenoloxidase cascade.


Assuntos
Hemolinfa/metabolismo , Melaninas/metabolismo , Superóxido Dismutase-1/metabolismo , Venenos de Vespas/enzimologia , Vespas/enzimologia , Sequência de Aminoácidos , Animais , Feminino , Interações Hospedeiro-Parasita , Análise de Sequência de DNA , Superóxido Dismutase-1/genética , Vespas/genética
15.
Environ Entomol ; 47(4): 969-981, 2018 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-29850795

RESUMO

The coffee white stemborer, Xylotrechus quadripes Chevrolat (Coleoptera: Cerambycidae), feeds primarily on Coffea arabica L. (Gentianales: Rubiaceae) with its egg, larva, and pupa being developed within the trunk. The detection of chemosensory-related cues linked to adult mating, host seeking, and recognition is driven by three chemoreceptor gene repertoires of odorant (ORs), gustatory (GRs), and ionotropic (IRs) receptors as well as sensory neuron membrane proteins (SNMPs). Yet, information on these genes involved in chemoreception is unavailable in X. quadripes and relatively poor in the cerambycid beetles. Here, we presented the identification of four chemosensory transmembrane proteins from the antennal transcriptome of X. quadripes, including 33 ORs, five GRs, 18 IRs, and four SNMPs. Phylogenetic analysis classified the ORs into groups 1, 2, 3, 7, and olfactory coreceptor (Orco), showing three potential candidates (OR13, OR17, and OR21) for the sensing of male sex pheromones. The IRs were clustered into 10 orthologous groups, with additional copies for IR41a, IR64a, and IR75 clades. Four SNMPs were distributed in four independent clades, possibly representing a complete set in this species. Expression profiles revealed that all the genes were highly expressed in antennae, suggesting their olfactory roles. In addition, most of the genes showed the expression in nonantennal tissues including thoraxes, abdomens, wings, and legs, suggesting their involvement in nonchemosensory functions. Of notice, a highly conserved coreceptor IR25a displayed male-biased expression in the antennae, as the first presence in the cerambycid beetles. This study has established reference resources for understanding the mechanisms underlying the interactions between/within this beetle and its host plants.


Assuntos
Antenas de Artrópodes/metabolismo , Besouros/genética , Proteínas de Insetos/genética , Proteínas de Membrana/genética , Transcriptoma , Animais , Besouros/metabolismo , Feminino , Proteínas de Insetos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Filogenia , Análise de Sequência de DNA
16.
Insect Biochem Mol Biol ; 99: 37-53, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29800678

RESUMO

The functions of the Ionotropic Receptor (IR) family have been well studied in Drosophila melanogaster, but only limited information is available in Lepidoptera. Here, we conducted a large-scale genome-wide analysis of the IR gene repertoire in 13 moths and 16 butterflies. Combining a homology-based approach and manual efforts, totally 996 IR candidates are identified including 31 pseudogenes and 825 full-length sequences, representing the most current comprehensive annotation in lepidopteran species. The phylogeny, expression and sequence characteristics classify Lepidoptera IRs into three sub-families: antennal IRs (A-IRs), divergent IRs (D-IRs) and Lepidoptera-specific IRs (LS-IRs), which is distinct from the case of Drosophila IRs. In comparison to LS-IRs and D-IRs, A-IRs members share a higher degree of protein identity and are distinguished into 16 orthologous groups in the phylogeny, showing conservation of gene structure. Analysis of selective forces on 27 orthologous groups reveals that these lepidopteran IRs have evolved under strong purifying selection (dN/dS≪1). Most notably, lineage-specific gene duplications that contribute primarily to gene number variations across Lepidoptera not only exist in D-IRs, but are present in the two other sub-families including members of IR41a, 76b, 87a, 100a and 100b. Expression profiling analysis reveals that over 80% (21/26) of Helicoverpa armigera A-IRs are expressed more highly in antennae of adults or larvae than other tissues, consistent with its proposed function in olfaction. However, some are also detected in taste organs like proboscises and legs. These results suggest that some A-IRs in H. armigera likely bear a dual function with their involvement in olfaction and gustation. Results from mating experiments show that two HarmIRs (IR1.2 and IR75d) expression is significantly up-regulated in antennae of mated female moths. However, no expression difference is observed between unmated female and male adults, suggesting an association with female host-searching behaviors. Our current study has greatly extended the IR gene repertoire resource in Lepidoptera, and more importantly, identifies potential IR candidates for olfactory, gustatory and oviposition behaviors in the cotton bollworm.


Assuntos
Regulação da Expressão Gênica/fisiologia , Genoma de Inseto/fisiologia , Estudo de Associação Genômica Ampla , Proteínas de Insetos , Lepidópteros , Receptores Ionotrópicos de Glutamato , Animais , Drosophila melanogaster , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Lepidópteros/genética , Lepidópteros/metabolismo , Receptores Ionotrópicos de Glutamato/biossíntese , Receptores Ionotrópicos de Glutamato/genética
17.
Naturwissenschaften ; 105(5-6): 38, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789962

RESUMO

The ability to sense and recognize various classes of compounds is of particular importance for survival and reproduction of insects. Ionotropic receptor (IR), a sub-family of the ionotropic glutamate receptor family, has been identified as one of crucial chemoreceptor super-families, which mediates the sensing of odors and/or tastants, and serves as non-chemosensory functions. Yet, little is known about IR characteristics, evolution, and functions in Lepidoptera. Here, we identify the IR gene repertoire from a destructive polyphagous pest, Spodoptera litura. The exhaustive analyses with genome and transcriptome data lead to the identification of 45 IR genes, comprising 17 antennal IRs (A-IRs), 8 Lepidoptera-specific IRs (LS-IRs), and 20 divergent IRs (D-IRs). Phylogenetic analysis reveals that S. litura A-IRs generally retain a strict single copy within each orthologous group, and two lineage expansions are observed in the D-IR sub-family including IR100d-h and 100i-o, likely attributed to gene duplications. Results of gene structure analysis classify the SlitIRs into four types: I (intronless), II (1-3 introns), III (5-9 introns), and IV (10-18 introns). Extensive expression profiles demonstrate that the majority of SlitIRs (28/43) are enriched in adult antennae, and some are detected in gustatory-associated tissues like proboscises and legs as well as non-chemosensory organs like abdomens and reproductive tissues of both sexes. These results indicate that SlitIRs have diverse functional roles in olfaction, taste, and reproduction. Together, our study has complemented the information on chemoreceptor genes in S. litura, and meanwhile allows for target experiments to identify potential IR candidates for the control of this pest.


Assuntos
Genoma de Inseto/genética , Receptores Ionotrópicos de Glutamato/genética , Spodoptera/genética , Spodoptera/metabolismo , Animais , Antenas de Artrópodes/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Filogenia , Receptores Ionotrópicos de Glutamato/metabolismo , Reprodução/genética , Olfato/genética , Spodoptera/classificação , Paladar/genética
18.
Arch Insect Biochem Physiol ; 98(2): e21451, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29399896

RESUMO

Venom is a prominently maternal virulent factor utilized by parasitoids to overcome hosts immune defense. With respect to roles of this toxic mixture involved in manipulating hosts immunity, great interest has been mostly restricted to Ichneumonoidea parasitoids associated with polydnavirus (PDV), of which venom is usually considered as a helper component to enhance the role of PDV, and limited Chalcidoidea species. In contrast, little information is available in other parasitoids, especially ectoparasitic species not carrying PDV. The ectoparasitoid Scleroderma guani injects venom into its host, Tenebrio molitor, implying its venom was involved in suppression of hosts immune response for successful parasitism. Thus, we investigated the effects of parasitism and venom of this parasitoid on counteracting the cellular immunity of its host by examining changes of hemocyte counts, and hemocyte spreading and encapsulation ability. Total hemocyte counts were elevated in parasitized and venom-injected pupae. The spreading behavior of both granulocytes and plasmatocytes was impaired by parasitization and venom. High concentration of venom led to more severely increased hemocyte counts and suppression of hemocyte spreading. The ability of hemocyte encapsulation was inhibited by venom in vitro. In addition to immediate effects observed, venom showed persistent interference in hosts cellular immunity. These results indicate that venom alone from S. guani plays a pivotal role in blocking hosts cellular immune response, serving as a regulator that guarantees the successful development of its progenies. The findings provide a foundation for further investigation of the underlying mechanisms in immune inhibitory action of S. guani venom.


Assuntos
Hemócitos/fisiologia , Interações Hospedeiro-Parasita/imunologia , Imunidade Celular/efeitos dos fármacos , Tenebrio/parasitologia , Venenos de Vespas/toxicidade , Vespas/fisiologia , Animais , Feminino , Masculino , Pupa/efeitos dos fármacos , Tenebrio/efeitos dos fármacos , Tenebrio/imunologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-29175757

RESUMO

The bark beetle, Tomicus yunnanensis (Coleoptera: Scolytinae), is a seriously destructive pest of Yunnan pine (Pinus yunnanensis) and is distributed solely in Southwestern China. It has been a challenge to control this pest owing to its resistance to chemical pesticides, which have been used as the main control strategy of this species in recent years. Since this approach will continue until an alternative mitigation strategy is implemented, it is essential to develop novel or improved biocontrol approaches. In the current study, we aimed to identify most, if not all, of the bark beetle's chemosensory genes, and to address their respective phylogenetic relationships and expression characteristics. Digital gene expression (DGE) profiling and a comparison of the profiles at three developmental stages yielded 40,287,265 clean reads and a large number of differentially expressed genes (DEGs), with 21 up- and 20 down-regulated DEGs involved in chemoreception. Transcriptome of the three mixed stages revealed a total of 80 transcripts encoding chemosensory-related proteins comprising 45 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 20 receptor proteins [9 odorant receptors (ORs), 8 gustatory receptors (GRs) and 3 ionotropic receptors (IRs)] and 3 sensory neuron membrane proteins (SNMPs). As many as 38 full-length sequences were acquired with a combination of transcriptomic analysis and rapid amplification of cDNA ends (RACE) strategy. Phylogenetic analysis showed that T. yunnanensis OBPs were clustered into four sub-groups: 27 Minus-C OBPs, 5 antennal binding proteins (ABPIIs), 10 Classic OBPs and one Plus-C OBP; meanwhile, the ORs were grouped into four clades (1, 2, 7b and Orco). Expression profiles revealed that 66 of 80 genes were detected in the three DGE libraries, and 15 soluble olfactory proteins were antennae-predominant, possibly guiding olfactory-associated behaviors of this beetle. Taken together, our study has provided valuable data for further functional studies of this beetle and will facilitate the identification of potential molecular targets associated with chemosensory reception for use in biocontrol strategies.


Assuntos
Besouros/genética , Proteínas de Insetos/genética , Família Multigênica , Sequência de Aminoácidos , Animais , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Receptores Odorantes/química , Receptores Odorantes/genética , Homologia de Sequência de Aminoácidos , Transcriptoma , Regulação para Cima
20.
Toxicon ; 141: 88-93, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29197474

RESUMO

Despite substantial advances in uncovering constituents of parasitoid venoms due to their potential applications as insecticides and pharmaceuticals, most of these studies are primarily restricted to braconid and ichneumonid wasps. Little information is available regarding virulent factors from venom of Eulophidae. In order to provide insight into the venom components of this family and parasitoid venom evolution, a venom protein repertoire (venomics) of the endoparasitoid wasp, Tetrastichus brontispae was deciphered using a proteomic approach. A large number of diverse venom proteins/peptides were identified, including novel proteins and those proteins commonly found in the venoms of other parasitoids such as serine protease, esterase, dipeptidyl peptidase IV, acid phosphatase, major royal jelly protein, superoxide dismutase, and venom allergen 3/5. Three ion transport peptide-likes (ITPLs) were abundantly detected in T. brontispae venom. Of these, two of them are reported as a novel form for the first time, with the characteristics of lengthened amino acid sequences and additional cysteine residues. These venom ITPLs are obviously apart from other general members within the crustacean hyperglycemic hormone/ion transport peptide (CHH/ITP) family. It implies that they would evolve unique functions essential for parasitism success.


Assuntos
Transporte de Íons , Peptídeos/química , Venenos de Vespas/química , Vespas , Sequência de Aminoácidos , Animais , Proteínas de Insetos/química , Proteoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...