Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 32(1): 012001, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33043901

RESUMO

Since the launch of the Alliance for Nanotechnology in Cancer by the National Cancer Institute in late 2004, several similar initiatives have been promoted all over the globe with the intention of advancing the diagnosis, treatment and prevention of cancer in the wake of nanoscience and nanotechnology. All this has encouraged scientists with diverse backgrounds to team up with one another, learn from each other, and generate new knowledge at the interface between engineering, physics, chemistry and biomedical sciences. Importantly, this new knowledge has been wisely channeled towards the development of novel diagnostic, imaging and therapeutic nanosystems, many of which are currently at different stages of clinical development. This roadmap collects eight brief articles elaborating on the interaction of nanomedicines with human biology; the biomedical and clinical applications of nanomedicines; and the importance of patient stratification in the development of future nanomedicines. The first article reports on the role of geometry and mechanical properties in nanomedicine rational design; the second articulates on the interaction of nanomedicines with cells of the immune system; and the third deals with exploiting endogenous molecules, such as albumin, to carry therapeutic agents. The second group of articles highlights the successful application of nanomedicines in the treatment of cancer with the optimal delivery of nucleic acids, diabetes with the sustained and controlled release of insulin, stroke by using thrombolytic particles, and atherosclerosis with the development of targeted nanoparticles. Finally, the last contribution comments on how nanomedicine and theranostics could play a pivotal role in the development of personalized medicines. As this roadmap cannot cover the massive extent of development of nanomedicine over the past 15 years, only a few major achievements are highlighted as the field progressively matures from the initial hype to the consolidation phase.

2.
Nanoscale ; 12(38): 19597-19603, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32996986

RESUMO

One-layer multi-arm junction (mAJ) motifs have been investigated extensively for many kinds of planar 2D (two-dimension) lattices, surface-curved 3D (three-dimension) polyhedra, and complex 3D wireframe and tensegrity structures. Herein, we report the weaving strategy to achieve two-layer stacked multi-arm junction tiles (abbreviated as mAJ2) of 3AJ2 and 4AJ2, and several primary tessellation nanostructures of nanocages and 2D rhombus lattices carrying beautifully embossed 4-point stars. Challenges for perfect tessellation are also raised regarding the increase of motif complexity from 2D to 3D.

3.
Anal Chem ; 92(17): 11795-11801, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32786465

RESUMO

Upconversion nanoparticles (UCNPs) have potential applications in biosensing and bioimaging. However, the UCNPs-based sensors constructed by luminescence resonance energy transfer (LRET) always suffer from low quenching efficiency, hindering their application. Therefore, exploring a new strategy to resolve this issue is highly desirable. Herein, a strategy based on the surface plasmon resonance (SPR) effect of gold nanorods (AuNRs) is presented. The luminescence of UCNPs was modulated by adjusting the SiO2 thickness of AuNRs@SiO2 and the structure of UCNPs; an enhancement factor of ≈50 times was obtained. Based on the results of the SPR effect of AuNRs, we designed two kinds of potential upconversion microRNA sensors using microRNA-21 as a model to resolve the problem of the lower quenching efficiency resulting from a dye as a quencher. Studies revealed that the proposed strategy could be successfully used to construct upconversion microRNA sensors for avoiding the limitation of the low quenching efficiency. The sensitivity was ≈10 000 times higher than that of the upconversion sensor using dyes as quenchers. Importantly, the assay of microRNA-21 was successfully achieved using this sensor in human serum samples and human breast cancer cell (MCF-7) lysates. It provides a new method for designing upconversion microRNA sensors and may have potential for use in biosensing and bioimaging.

4.
ACS Appl Mater Interfaces ; 12(37): 41429-41436, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32813493

RESUMO

The enzymatic biofuel cell (EBFC) has been considered as a promising implantable energy generator because it can extract energy from a living body without any harm to the host. However, an unprotected enzyme will be destabilized and even eventually be deactivated in human blood. Thus, the performance of implantable EBFC has received barely any improvement. It is therefore a breakthrough in realizing a superior efficient EBFC that can work stably in human blood which relies in protecting the enzyme to defend it from the attack of biological molecules in human blood. Herein, we innovatively created a single-walled carbon nanotube (SWCNT) and cascaded enzyme-glucose oxidase (GOx)/horseradish peroxidase (HRP) coembedded hydrophilic MAF-7 biocatalyst (SWCNT-MAF-7-GOx/HRP). The SWCNT-MAF-7-GOx/HRP is highly stable in electrocatalytic activity even when it is exposed to high temperature and some molecular inhibitors. In addition, we were pleasantly surprised to find that the electrocatalytic activity of GOx/HRP in hydrophilic SWCNT-MAF-7 far surpasses that of the GOx/HRP in hydrophobic SWCNT-ZIF-8. In human whole blood, the SWCNT-MAF-7-GOx/HRP catalytic EBFC exhibits an eightfold increase in power density (119 µW cm-2 vs 14 µW cm-2) and 13-fold increase in stability in comparison with the EBFC based on an unprotected enzyme. In this study, the application of metal-organic framework-based encapsulation techniques in the field of biofuel cells is successfully realized, breaking a new path for creating implantable bioelectrical-generating devices.

5.
Anal Chem ; 92(14): 9940-9947, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32567299

RESUMO

Hydroxyl radicals (•OH) are a type of short-lived radical which is the most aggressive reactive oxygen species due to its high reactivity to biomolecules. Dynamic measurement of •OH level in living cells is critical for understanding cell physiology and pathology. In this manuscript, we prepare individual Ag-Au@PEG/RGD nanocages for in situ determination of endogenous •OH at single-cell level, whose spectral shift rate correlate to the •OH concentration. The high-selective response to •OH relies on the specific oxidization of the conjugated PEG/RGD outside and the silver etching inside the nanocages that resulted in a significant LSPR signal and scattered color changes. The spectral red-shift rate of LSPR has a linear relationship with the logarithm of •OH concentration in range of 100 pM to 1 µM, suitable for the measurement of endogenous •OH. Thus, the individual nanocages were successfully used to monitor the dynamic intracellular •OH level of single tumor cells under oxidative stress. This strategy has great potential in promoting •OH mediated cell homeostasis and injury research.

6.
Ultrason Sonochem ; 67: 105178, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32464503

RESUMO

In this study, we proposed 'switching ultrasonic amplitude' as a new strategy of applying ultrasonic energy to prepare a hybrid of buckminsterfullerene (C60) and gallium oxide (Ga2O3), C60/Ga2O3. In the proposed method, we switched the ultrasonic amplitude from 25% to 50% (by 5% amplitude per 10 min, within 1 h of ultrasonic irradiation) for the sonochemical treatment of a heterogeneous aqueous mixture of C60 and Ga2O3 by a probe-type ultrasonic horn operating at 20 kHz. We found that compared to the conventional techniques associated with high amplitude oriented ultrasonic preparation of functional materials, switching ultrasonic amplitude can better perform in preparing C60/Ga2O3 with respect to avoiding titanium (Ti) as an impurity generating from the tip erosion of a probe-type ultrasonic horn during high amplitude ultrasonic irradiation in an aqueous medium. Based on SEM/EDX analysis, the quantity of Ti (wt.%) in C60/Ga2O3 prepared by the proposed technique of switching ultrasonic amplitude was found to be 1.7% less than that prepared at 50% amplitude of ultrasonic irradiation. The particles of C60/Ga2O3 prepared by different modes of amplitude formed large (2-12 µm) aggregates in their solid phase.Whereas, in the aqueous medium, they were found to disperse in their nano sizes. The minimum particle size of the as-synthesized C60/Ga2O3 in an aqueous medium prepared by the proposed method of switching ultrasonic amplitude reached to approximately 467 nm. Comparatively, the minimum particle sizes were approximately 658 nm and 144 nm, using 25% and 50% amplitude, respectively. Additionally, Ga2O3 went under hydration during ultrasonic irradiation. Moreover, due to the electron cloud interference from C60 in the hybrid structure of C60/Ga2O3, the vibrational modes of Ga2O3 were Raman inactive in C60/Ga2O3.

7.
Nanoscale ; 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32202287

RESUMO

In this work, CsPbBr3 perovskite nanocrystals (NCs) synthesized via a ligand-assisted reprecipitation method (LCPB) were discovered to emit self-enhanced electrochemiluminescence (ECL) with the surface oleylamine as both a coreactant and a stabilizer. Solvent regulation and tri-n-octylphosphine post-treatment were manipulated for size-selected and surface-passivated LCPBs, which showed remarkable aqueous ECL performance with respect to efficiency and stability. Furthermore, thanks to the self-enhancement mode with a shorter charge transfer pathway and less energy loss, the ECL efficiency obtained for these as-synthesized LCPBs in aqueous solution without any additional coreactant was up to 57.08% using the Ru(bpy)32+-tripropylamine system as the standard. As a proof-of-concept, the products were successfully employed for the bioanalyses of hydrogen peroxide, ascorbic acid, and cancer cells based on inhibition, coreaction, and impedance detection principles, respectively. More importantly, the basic properties of LCPBs in aqueous media including surface chemistry, charge transfer process, and ECL mechanism were studied systematically. Such efforts are aimed at perfecting the fundamental research of all-inorganic perovskite NCs and opening an avenue for the design of highly crystalline and luminescent perovskites as advanced ECL emitters for applications in the ECL domain.

8.
ACS Sens ; 5(4): 1149-1157, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32164417

RESUMO

Because of insufficient information, a single biomarker is not sufficient for early diagnosis of cancer, whereas sensitive and selective detection of multiple biomolecules can significantly reduce analysis time, sample size, and accurately perform cell screening in early cancer. Therefore, the development of a noninvasive strategy that can simultaneously quantify multiple biomarkers (i.e., nucleic acids, proteins, and small molecules) in a single cell is particularly important. Herein, a universal sensing system (functional DNA@mesoporous silica nanoparticles (MSN)-Black Hole Quencher-rhodamine 6G (RhB), FDSBR), which is based on the combination of functionalized DNA and smart responsive nanomaterial, was successfully constructed. After incubation with the cells, different types of targets trigger the strand displacement reaction to release the fluorophore-labeled nucleic acids as the output signals to reflect the intracellular level of the telomerase and adenosine triphosphate (ATP), respectively. Simultaneously, intracellular miR-21 can be clearly indicated by the restored fluorescence of RhB when the caged double-stranded DNA was substituted into single-stranded DNA to open the pore. The concentrations of intracellular telomerase, miR-21, and ATP were identified successfully in three cell lines at the single-cell level. The results show that the contents of three biomolecules have significant differences in the three model cell lines and provide a promising route for developing innovative early disease diagnosis and cell screening assay.

9.
Nat Chem ; 12(4): 381-390, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32152477

RESUMO

Stimuli-responsive biomaterials that contain logic gates hold great potential for detecting and responding to pathological markers as part of clinical therapies. However, a major barrier is the lack of a generalized system that can be used to easily assemble different ligand-responsive units to form programmable nanodevices for advanced biocomputation. Here we develop a programmable polymer library by including responsive units in building blocks with similar structure and reactivity. Using these polymers, we have developed a series of smart nanocarriers with hierarchical structures containing logic gates linked to self-immolative motifs. Designed with disease biomarkers as inputs, our logic devices showed site-specific release of multiple therapeutics (including kinase inhibitors, drugs and short interfering RNA) in vitro and in vivo. We expect that this 'plug and play' platform will be expanded towards smart biomaterial engineering for therapeutic delivery, precision medicine, tissue engineering and stem cell therapy.

10.
Anal Chem ; 92(5): 4123-4130, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32046479

RESUMO

Lead halide perovskites have been promising electrochemiluminescence (ECL) candidates because of their excellent photophysical attributes, but their poor stability has severely restricted ECL applications. Herein, the in situ assembly of all-inorganic perovskite CsPbBr3 nanocrystals (CPB) into hollow graphitic carbon nitride nanospheres (HCNS) were described as a novel ECL emitter. The architecture guaranteed not only improved stability because of the peripheral HCNS protecting shell but also high-performance ECL of CPB because of a matching band-edge arrangement. Dual-ECL readouts were obtained from the nanocomposite including an anodic ECL from CPB and a cathodic ECL from HCNS. The former displayed prominent color purity to construct an efficient ECL resonance energy transfer system, and the latter served as an internal standard for a ratiometric analysis. A well-designed DNA probe was further utilized for the targeting of CD44 receptors on the MCF-7 cell surface and the double signal amplification. The sensing strategy exhibited good analytical performance for MCF-7 cells, ranging from 1.0 × 103 to 3.2 × 105 cells mL-1 with a detection limit of 320 cells mL-1. Sensitive and accurate evaluation of CD44 expression was finally achieved at 0.22 pM. This work is the first attempt to use halide perovskite for reliable ECL bioanalysis and provides a perspective to design a perovskite-based nanocomposite as a high-performance ECL emitter for its exclusive ECL system.

11.
J Mater Chem B ; 8(22): 4836-4840, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32073101

RESUMO

As nonspecific adsorption or biofouling has obvious side effects on the selectivity, it is a great challenge for cytosensors to detect target cells in practical biological samples. In this study, we first propose the design and synthesis of an antifouling photoelectrode. The antifouling photoelectrode not only has the desired photocurrent response, but also possesses an unexpected antifouling capability of resisting nonspecific adsorption of biomolecules. Herein, the PEDOT-HPG/SnS/ZnO-NT antifouling photoelectrode was formed and a robust photoelectrochemical cytosensor with enhanced sensitivity and selectivity has been demonstrated.

12.
Ultrason Sonochem ; 63: 104956, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31978710

RESUMO

Semiconductor photocatalytic technology is a sustainable and less energy consuming one for nitrogen (N2) reduction to produce ammonia (NH3). In this study, flower-like hierarchical N doped MoS2 (N-MoS2) microsphere was synthesized as a photocatalyst by one-step solvothermal method, which was assembled by numerous interleaving nanosheets petals with thin thickness. Besides, Pt nanoparticles were loaded on the surface of N-MoS2 via photo-ultrasonic reduction method. The as-prepared Pt/N-MoS2 photocatalyst exhibited higher N2 fixation ability than that over pure MoS2 and N-MoS2, which can be attributed to that the N doping narrows the band gap, and the Schottky barrier due to the existence of Pt nanoparticles improves the charge transfer and carrier separation. The reduction of N2 with ultrasonic irradiation was also investigated under visible light irradiation to evaluate the sonophotocatalytic activity of the Pt/N-MoS2 microsphere. The results showed that the N2 reduction rate of sonophotocatalysis (133.8 µmol/g(cat)h) was higher than that of sonocatalysis and photocatalysis, which can be ascribed to the synergistic effect of ultrasound and visible light irradiation. The effects of catalyst dosage, ultrasonic power and ultrasonic pulse on the photocatalytic efficiency were also studied. Meanwhile, a possible mechanism for improved sonophotocatalytic performance was also proposed.

13.
J Mater Chem B ; 8(7): 1338-1349, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31999289

RESUMO

Following the efficient performance of metal-organic frameworks (MOFs) as recognition elements in gas sensors, biosensors based on MOFs are now being investigated to capture and quantify potential cancer biomarkers, such as circulating tumor cells (CTCs), nucleic acids and proteins. The current status of MOF-based biosensors in the detection of early stages of cancer is in its infancy, although it has significantly emerged since the beginning of this decade. That said, salient research has been conducted in the past five years to utilize the distinctive porous crystalline structure of MOFs for highly sensitive and selective detection of cancer biomarkers. In this pursual, MOFs designed with bimetallic assembly, doped with magnetic nanoparticles, coated with polymers, and even conjugated with peptides or oligonucleotides have shown promising outcomes in detecting CTCs, nucleic acids and proteins. In particular, aptamer-conjugated MOFs are able to perform at a lower limit of detection down to the femtomolar, implying their efficacy for the point of care testing in clinical trials. In this way, aptasensors based on aptamer-conjugated MOFs present a newer sub-branch, to be coined as a MOFTA sensor in the current review. Considering the emerging progress and promising outcomes of MOFTA sensors as well as a variety of MOF-based techniques of detecting cancer biomarkers, this review will highlight their significant advances and related aspects in the recent five years on the context of detecting CTCs, nucleic acids and proteins for the early-stage detection of cancer.

14.
Anal Chem ; 92(1): 578-582, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31808682

RESUMO

Inspired by the mechanism in stimulated emission depletion fluorescence microscopy, we established for the first time electrogenerated chemiluminescence (ECL) generated from indium tin oxide (ITO) submicrometer electrodes in submicrometer wells with aluminum walls. Aluminum is observed to have the ability to absorb ECL from luminol and, thus, removes the ECL from the diffused species away from the electrode surfaces. Accordingly, the size of the individual ECL spots is restricted to 4 µm in diameter, enabling the density of the ECL based array to be over 3 × 104/mm2. The conceptual detection of hydrogen peroxide and glucose exhibits the feasibility in the application of luminol ECL for very high-density biosensing. The realization of this ECL in submicrometer wells and the resultant biosensing offer a new strategy for high-density ECL analysis and might initiate the thought for super-resolution ECL microscopy.

15.
Bioconjug Chem ; 31(2): 332-339, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31613602

RESUMO

Over the past two decades, amorphous nanoscale coordination polymers (NCPs) and crystalline nanoscale metal-organic frameworks (NMOFs) have emerged as attractive nanomaterials in biomedical applications, especially in drug delivery, biomedical imaging, and biosensing. The biodegradability, tunable composition, and feasible functionality of NCPs/NMOFs make them excellent contrast agents or nanocarriers for biomedical imaging, including magnetic resonance (MR) imaging, positron emission tomography (PET), computed tomography (CT), optical imaging, and photoacoustic (PA) imaging. In this Topical Review, we will summarize the recent advances of NCPs/NMOFs in biomedical imaging with emphasis on research over the past three years. A variety of imaging technologies based on NCPs/NMOFs will be discussed, followed by the introduction of the application of NCPs/NMOFs in multimodal imaging where optical/MR imaging is highlighted. In the final part, we will make concluding remarks and point out the challenges and prospects for the further development in this area of research.

16.
Anal Chem ; 92(1): 431-454, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31679341
17.
ACS Appl Mater Interfaces ; 11(50): 46666-46670, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31744294

RESUMO

Here, the fluctuation of charge-transfer resistance in individual reduced graphene oxide (rGO) microsheets with more redox-induced defects is unprecedentedly visualized using a perturbation electrochemiluminescence (ECL) imaging. This perturbation uses a short and low potential to recover defect-covered rGO microsheets slightly and then introduces a high potential to form more redox-induced defects resulting in an increase of charge-transfer resistance. Also, these defects at rGO microsheets enhance their catalytic feature and the resultant ECL intensity so that the temporal resolution in ECL imaging is improved to 30 ms. Aided by this fast imaging approach, the exponential decrease of ECL intensity at individual graphene microsheets after the oxidation is observed, which reflects the increase of their charge-transfer resistances. Since the charge-transfer resistance at electrode surfaces is mainly affected by the conductivity of electrode materials, the result provides the dynamic information to support the reduction of the electrical conductivity in graphene with more defects.

18.
Adv Mater ; : e1903796, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31573709

RESUMO

Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2 -caused climate hazards and ever-increasing energy demands, as it can utilize CO2 in the atmosphere to provide the required feedstocks for industrial production and daily life. In recent years, substantial progress in ECR systems has been achieved by the exploitation of various novel electrode materials. The anodic materials and cathodic catalysts that have, respectively, led to high-efficiency energy input and effective heterogenous catalytic conversion in ECR systems are comprehensively reviewed. Based on the differences in the nature of energy sources and the role of materials used at the anode, the fundamentals of ECR systems, including photo-anode-assisted ECR systems and bio-anode-assisted ECR systems, are explained in detail. Additionally, the cathodic reaction mechanisms and pathways of ECR are described along with a discussion of different design strategies for cathode catalysts to enhance conversion efficiency and selectivity. The emerging challenges and some perspective on both anode materials and cathodic catalysts are also outlined for better development of ECR systems.

19.
ACS Appl Mater Interfaces ; 11(42): 38459-38466, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31593426

RESUMO

Upconversion nanoparticles (UCNPs) have become competitive materials for bioanalysis, bioimaging, and early diagnosis of diseases, especially cancers. However, traditional upconversion luminescence (UCL) nanosensors are often challenged with complicated covalent modification and relatively poor stability. As efficient energy acceptors in the luminescence resonance energy-transfer (LRET) process, organic dyes exhibit unique advantages such as easy modification and stable property. Herein, a simple and universal bioplatform is constructed for in situ imaging and quantitation of intracellular microRNA-21 (miR-21) using dual-acceptor-based upconversion nanoprobes with enhanced quenching efficiency. In this assay, UCNPs with core-shell structures are synthesized, in which the emitting ions are confined in the shell to take the energy donors and acceptors in close proximity. The complementary DNA (cDNA) that can specifically recognize target miR-21 is labeled with organic dyes TAMRA and black hole quencher as dual acceptors and easily assembled on UCNPs via electrostatic adsorption. Compared with only one acceptor for LRET, two dyes quench more luminescence of UCNPs (>60%), which thus reduce the background and improve the sensitivity. With the enhanced quenching efficiency and simple assembly process, the proposed system is readily applied to in situ imaging of miR-21 in different cancer cells, which further achieves quantification of miR-21 in MCF-7 cells. Therefore, our proposed dual-acceptor-based upconversion nanoplatform opens up new opportunities for sensitive analysis of miRNA and provides potential applications in biomedical and clinical research.


Assuntos
MicroRNAs/metabolismo , Nanopartículas/química , Animais , DNA Complementar/metabolismo , Transferência Ressonante de Energia de Fluorescência , Fluoretos/química , Células HeLa , Humanos , Células MCF-7 , Camundongos , MicroRNAs/química , Microscopia Confocal , Células NIH 3T3 , Ítrio/química
20.
ACS Appl Mater Interfaces ; 11(45): 41979-41987, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31621282

RESUMO

Nanomaterials with intrinsic enzyme-mimicking properties (nanozymes) have been widely considered as artificial enzymes in biomedicine. However, manipulating inorganic nanozymes for multivariant targeted bioanalysis is still challenging because of the insufficient catalytic efficiency and biological blocking effect. Here, we rationally designed a spatially engineered hollow Janus hybrid nanozyme vector (h-JHNzyme) based on the bifacial modulation of Ag-Au nanocages. The silver face inside the h-JHNzyme served as an interior gate to promote the enzymatic activity of the Ag-Au nanozyme, whereas two-dimensional DNAzyme-motif nanobrushes deposited on the exterior surface of the h-JHNzyme endowed it with the targeting function and tremendously enhanced the peroxidase-mimicking activity. We demonstrated that the spatially separated modulation of the h-JHNzyme propelled it as a powerful "all-in-one" enzymatic vector with excellent biocompatibility, specific vectorization, remarkable enzymatic performance, and clinical practicability. Further, we programmed it into a stringent catalytic surface-enhanced Raman scattering (SERS) liquid biopsy platform to trace multidimensional tumor-related biomarkers, such as microRNAs and circulating tumor cells, with a limit of detection of fM and single cell level, respectively. The developed enzymatic platform showed great potential in facilitating reliable quantitative SERS liquid biopsy for on-demand clinical diagnosis.


Assuntos
Enzimas/química , Biópsia Líquida/métodos , Nanoestruturas/química , Peroxidase/química , Análise Espectral Raman/métodos , Catálise , Ouro/química , Humanos , Biópsia Líquida/instrumentação , Prata/química , Análise Espectral Raman/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA