Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
1.
J Clin Lab Anal ; : e23769, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33942367

RESUMO

OBJECTIVE: Denys-Drash syndrome (DDS) is defined by the triad of Wilms tumor, nephrotic syndrome, and/or ambiguous genitalia. Genetic testing may help identify new gene mutation sites and play an important role in clinical decision-making. METHODS: We present a patient with an XY karyotype and female appearance, nephropathy, and Wilms tumor in the right kidney. Genomic DNA was extracted from peripheral blood cells according to standard protocols. "Next-generation" sequencing (NGS) was performed to identify novel variants. The variant was analyzed with Mutation Taster, and its function was explored by a cell growth inhibition assay. RESULTS: We found the first case of Denys-Drash syndrome with the uncommon missense mutation (c.1420C>T, p.His474 Tyr) in the WT1 gene. In silico analysis, the variant was predicted "disease-causing" by Mutation Taster. The mutated variant showed a weaker effect in inhibiting tumor cells than wild-type WT1. CONCLUSIONS: The uncommon missense mutation (c.1420C>T, p.His474 Tyr) in the WT1 gene may be a crucial marker in DDS.

2.
Ecotoxicol Environ Saf ; 218: 112291, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33957420

RESUMO

Bacteria often respond to dynamic soil environment through the secretion of extracellular polymeric substances (EPS). The EPS modifies cell surface properties and soil pore-scale hydration status, which in turn, influences bacteria transport in soil. However, the effect of soil particle size and EPS-mediated surface properties on bacterial transport in the soil is not well understood. In this study, the simultaneous impacts of EPS and collector size on Escherichia coli (E. coli) transport and deposition in a sand column were investigated. E. coli transport experiments were carried out under steady-state flow in saturated columns packed with quartz sand with different size ranges, including 0.300-0.425 mm (sand-I), 0.212-0.300 mm (sand-II), 0.106-0.150 mm (sand-III) and 0.075-0.106 mm (sand-IV). Bacterial retention increased with decreasing sand collector size, suggesting that straining played an important role in fine-textured media. Both experiment and simulation results showed a clear drop in the retention rate of the bacterial population with the presence of additional EPS (200 mg L-1) (EPS+). The inhibited retention of cells in sand columns under EPS+ scenario was likely attributed to enhanced bacteria hydrophilicity and electrostatic repulsion between cells and sand particles as well as reduced straining. Calculations of the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) interactions energies revealed that high repulsive energy barrier existed between bacterial cells and sand particles in EPS+ environment, primarily due to high repulsive electrostatic force and Lewis acid-base force, as well as low attractive Lifshitz-van der Waals force, which retarded bacterial population deposition. Steric stabilization of EPS would also prevent the approaching of cells close to the quartz surface and thereby hinder cell attachment. This study was the first to show that EPS reduced bacterial straining in saturated porous media. These findings provide new insight into the functional effects of extrinsic EPS on bacterial transport behavior in the saturated soil environment, e.g., aquifers.

3.
Environ Pollut ; 284: 117158, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33895574

RESUMO

Chronic exposure to pyrethroid insecticides can result in strong selective pressures on non-target species in aquatic systems and drive the evolution of resistance and population-level changes. Characterizing the underlying mechanisms of resistance is essential to better understanding the potential consequences of contaminant-driven microevolution. The current study found that multiple mechanisms enhance the overall tolerance of Hyalella azteca to the pyrethroid permethrin. In H. azteca containing mutations in the voltage-gated sodium channel (VGSC), both adaptation and acclimation played a role in mitigating the adverse effects of pyrethroid exposures. Pyrethroid resistance is primarily attributed to the heritable mutation at a single locus of the VGSC, resulting in reduced target-site sensitivity. However, additional pyrethroid tolerance was conferred through enhanced enzyme-mediated detoxification. Cytochrome P450 monooxygenases (CYP450) and general esterases (GE) significantly contributed to the detoxification of permethrin in H. azteca. Over time, VGSC mutated H. azteca retained most of their pyrethroid resistance, though there was some increased sensitivity from parent to offspring when reared in the absence of pyrethroid exposure. Permethrin median lethal concentrations (LC50s) declined from 1809 ng/L in parent (P0) individuals to 1123 ng/L in the first filial (F1) generation, and this reduction in tolerance was likely related to alterations in acclimation mechanisms, rather than changes to target-site sensitivity. Enzyme bioassays indicated decreased CYP450 and GE activity from P0 to F1, whereas the VGSC mutation was retained. The permethrin LC50s in resistant H. azteca were still two orders-of-magnitude higher than non-resistant populations indicating that the largest proportion of resistance was maintained through the inherited VGSC mutation. Thus, the noted variation in tolerance in H. azteca is likely associated with inducible traits controlling enzyme pathways. A better understanding of the mechanistic and genomic basis of acclimation is necessary to more accurately predict the ecological and evolutionary consequences of contaminant-driven change in H. azteca.

4.
Arch Insect Biochem Physiol ; : e21787, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33871104

RESUMO

High specificity for silencing target genes and single-copy target genes that yield clear phenotypes are two important factors for the success of RNA interference (RNAi). The lethal giant larvae (Lgl) gene appears to be an ideal gene for RNAi because RNAi can effectively suppress its expression and results in molting defects and mortality in Tribolium castaneum. To investigate the suitability of this gene for RNAi in other insects, we identified and characterized DvLgl from the western corn rootworm, Diabrotica virgifera virgifera, a species exhibiting high RNAi efficiency. DvLgl was expressed in all developmental stages and tissues investigated. The deduced DvLgl protein showed high amino-acid sequence identities and similar domain architecture to Lgls from other insect species. Despite many similarities among insect Lgls, RNAi-mediated suppression of DvLgl failed to produce a phenotype in D. v. virgifera adults. The difference in developing phenotypes could be attributed greatly to the level of gene suppression and the insect developmental stages for RNAi. These results highlight the variability in RNAi response among insects and showcase the importance of screening multiple target genes when conducting RNAi studies. Our findings are expected to help the design of future RNAi studies and future investigations of Lgl in insects.

5.
ACS Synth Biol ; 10(4): 884-896, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33715363

RESUMO

Limonene is an important plant natural product widely used in food and cosmetics production as well as in the pharmaceutical and chemical industries. However, low efficiency of plant extraction and high energy consumption in chemical synthesis limit the sustainability of industrial limonene production. Recently, the advancement of metabolic engineering and synthetic biology has facilitated the engineering of microbes into microbial cell factories for producing limonene. However, the deleterious effects on cellular activity by the toxicity of limonene is the major obstacle in achieving high-titer production of limonene in engineered microbes. In this study, by using transcriptomics, we identified 82 genes from the nonconventional yeast Yarrowia lipolytica that were up-regulated when exposed to limonene. When overexpressed, 8 of the gene candidates improved tolerance of this yeast to exogenously added limonene. To determine whether overexpression of these genes could also improve limonene production, we individually coexpressed the tolerance-enhancing genes with a limonene synthase gene. Indeed, expression of 5 of the 8 candidate genes enhanced limonene production in Y. lipolytica. Particularly, overexpressing YALI0F19492p led to an 8-fold improvement in product titer. Furthermore, through short-term adaptive laboratory evolution strategy, in combination with morphological and cytoplasmic membrane integrity analysis, we shed light on the underlying mechanism of limonene cytotoxicity to Y. lipolytica. This study demonstrated an effective strategy for improving limonene tolerance of Y. lipolytica and limonene titer in the host strain through the combinatorial use of tolerance engineering and evolutionary engineering.

6.
Sci Rep ; 11(1): 6590, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758268

RESUMO

Soil O2 dynamics have significant influences on greenhouse gas emissions during soil management practice. In this study, we deployed O2-specific planar optodes to visualize spatiotemporal distribution of O2 in soils treated with biological soil disinfestation (BSD). This study aimed to reveal the role of anoxia development on emissions of N2O and CH4 from soil amended with crop residues during BSD period. The incorporation of crop residues includes wheat straw only, wheat straw with biochar and early straw incorporation. The anoxia in soil developed very fast within 3 days, while the O2 in headspace decreased much slower and it became anaerobic after 5 days, which was significantly affected by straw and biochar additions. The N2O emissions were positively correlated with soil hypoxic fraction. The CH4 emissions were not significant until the anoxia dominated in both soil and headspace. The co-application of biochar with straw delayed the anoxia development and extended the hypoxic area in soil, resulting in lower emissions of N2O and CH4. Those results highlight that the soil O2 dynamic was the key variable triggering the N2O and CH4 productions. Therefore, detailed information of soil O2 availability could be highly beneficial for optimizing the strategies of organic amendments incorporation in the BSD technique.

7.
Opt Express ; 29(3): 3269-3283, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770929

RESUMO

Distributed acoustic sensors (DASs) have the capability of registering faint vibrations with high spatial resolution along the sensing fiber. Advanced algorithms are important for DAS in many applications since they can help extract and classify the unique signatures of different types of vibration events. Deep convolutional neural networks (CNNs), which have powerful spectro-temporal feature learning capability, are well suited for event classification in DAS. Generally, these data-driven methods are highly dependent on the availability of large quantities of training data for learning a mapping from input to output. In this work, to fully utilize the collected information and maximize the power of CNNs, we propose a method to enlarge the useful dataset for CNNs from two aspects. First, we propose an intensity and phase stacked CNN (IP-CNN) to utilize both the intensity and phase information from a DAS with coherent detection. Second, we propose to use data augmentation to further increase the training dataset size. The influence of different data augmentation methods on the performance of the proposed CNN architecture is thoroughly investigated. The experimental results show that the proposed IP-CNN with data augmentation produces a classification accuracy of 88.2% on our DAS dataset with 1km sensing length. This indicates that the usage of both intensity and phase information together with the enlarged training dataset after data augmentation can greatly improve the classification accuracy, which is useful for DAS pattern recognition in real applications.

8.
ACS Appl Mater Interfaces ; 13(12): 14385-14393, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33736429

RESUMO

Herein, the second-order Jahn-Teller effect was applied to the design of the bismuth ferrite-based ceramics. A large distortion of an electron structure arranged along the z axis and an asymmetric distribution of charge density were calculated in 0.80(0.725BiFeO3-0.275BaTiO3)-0.20PT (0.20 PT) based on the density functional theory, indicating good ferro/piezoelectric properties. The top experimental polarization of 36.89 µC/cm2, optimal d33 value of 258 pC/N measured at room temperature, and ultrahigh d33 value of 303 pC/N measured at 370 °C were obtained at 0.20 PT, thereby further confirming the calculations. Furthermore, a high Curie point of 488 °C, as well as outstanding temperature stability ranging from room temperature to 430 °C of the 0.20 PT ceramic was observed. The domain of the 0.20 PT exhibited greater order and smaller size, resulting in easy switching when applying voltage. The distorted electron structure, plumb grains, ordered and easily switchable domains, and coexistences of tetragonal (T) and rhombohedral (R) phases contributed to the large piezoelectric constant of the 0.2 PT ceramic. BFBT-xPT ceramics are potentially promising for high-temperature piezoelectric field applications.

9.
Aust J Gen Pract ; 50(3): 165-170, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33634286

RESUMO

BACKGROUND AND OBJECTIVES: In patients without a prevalent fracture, guidelines recommend initiating therapy based on a calculation of absolute fracture risk. Two common calculators are used in Australia - FRAX (Australia) and Garvan Fracture Risk Calculator (Garvan). The aim of this article is to examine whether the decision to treat with bone-preserving medication would be different depending on which calculator was used. METHOD: Data were entered into each calculator for hypothetical male and female patients, aged 50-85 years, with femoral neck t-scores from +3.0 to -3.0. RESULTS: Garvan consistently predicted a higher absolute fracture risk than FRAX (Australia). The discrepancy increased with increasing age and decreasing bone mineral density, and was most pronounced in the prediction of any fracture, but less so for hip fracture. DISCUSSION: The decision to prescribe osteoporosis medications for a patient on the basis of fracture risk may depend on which risk calculator is used. Differences in the calculator methods contribute to the discrepancy between them.

10.
Microb Biotechnol ; 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33605546

RESUMO

The natural plant product bisabolene serves as a precursor for the production of a wide range of industrially relevant chemicals. However, the low abundance of bisabolene in plants renders its isolation from plant sources non-economically viable. Therefore, creation of microbial cell factories for bisabolene production supported by synthetic biology and metabolic engineering strategies presents a more competitive and environmentally sustainable method for industrial production of bisabolene. In this proof-of-principle study, for the first time, we engineered the oleaginous yeast Yarrowia lipolytica to produce α-bisabolene, ß-bisabolene and γ-bisabolene through heterologous expression of the α-bisabolene synthase from Abies grandis, the ß-bisabolene synthase gene from Zingiber officinale and the γ-bisabolene synthase gene from Helianthus annuus respectively. Subsequently, two metabolic engineering approaches, including overexpression of the endogenous mevalonate pathway genes and introduction of heterologous multidrug efflux transporters, were employed in order to improve bisabolene production. Furthermore, the fermentation conditions were optimized to maximize bisabolene production by the engineered Y. lipolytica strains from glucose. Finally, we explored the potential of the engineered Y. lipolytica strains for bisabolene production from the waste cooking oil. To our knowledge, this is the first report of bisabolene production in Y. lipolytica using metabolic engineering strategies. These findings provide valuable insights into the engineering of Y. lipolytica for a higher-level production of bisabolene and its utilization in converting waste cooking oil into various industrially valuable products.

11.
Pest Manag Sci ; 77(6): 2645-2658, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33440063

RESUMO

Low RNA interference (RNAi) efficiency in many insect pests has significantly prevented its widespread application for insect pest management. This article provides a comprehensive review of recent research in developing various strategies for enhancing RNAi efficiency. Our review focuses on the strategies in target gene selection and double-stranded RNA (dsRNA) delivery technologies. For target gene selection, genome-wide or large-scale screening strategies have been used to identify most susceptible target genes for RNAi. Other strategies include the design of dsRNA constructs and manipulate the structure of dsRNA to maximize the RNA efficiency for a target gene. For dsRNA delivery strategies, much recent research has focused on the applications of complexed or encapsulated dsRNA using various reagents, polymers, or peptides to enhance dsRNA stability and cellular uptake. Other dsRNA delivery strategies include genetic engineering of microbes (e.g. fungi, bacteria, and viruses) and plants to produce insect-specific dsRNA. The ingestion of the dsRNA-producing organisms or tissues will have lethal or detrimental effects on the target insect pests. This article also identifies obstacles to further developing RNAi for insect pest management and suggests future avenues of research that will maximize the potential for using RNAi for insect pest management. © 2021 Society of Chemical Industry.

12.
Medicine (Baltimore) ; 100(2): e23717, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33466124

RESUMO

ABSTRACT: Renal cell carcinoma (RCC) is infrequent in the pediatric population. In addition, till date, only a few reports have summarized the characteristics of pediatric RCC and differences between pediatric and adult RCC. Therefore, the current study aimed to investigate the clinical characteristics of RCC in children and adolescents, and identify the differences between children and adolescent patients and adult patients through literature retrieval.The data of 13 pediatric patients diagnosed with RCC at the Children's Hospital of Zhejiang University School of Medicine between 2005 and 2019 were retrospectively analyzed.Three patients were aged <5 years, 2 were aged 6 to 10 years, and 8 were aged 11 to 18 years. Among the 13 patients, common clinical manifestations included abdominal pain in 5 patients, gross hematuria in 4, and an abdominal mass in 1, while the other 3 patients were incidentally detected after an abdominal contusion. The pathological types were microphthalmia family translocation RCC in 9 patients, clear-cell RCC in 2, papillary RCC in 1, and unclassified in 1. All the children underwent radical nephrectomy, including 2 patients with advanced disease who underwent preoperative transcatheter arterial chemoembolization. The mean follow-up time was 58.6 months. Two patients died after 4 and 17 months of follow-up, respectively.In conclusion, microphthalmia family translocation renal cell carcinoma is the predominant type of pediatric RCC associated with advanced tumor stage. The early diagnosis and treatment of pediatric patients is important for improving prognosis. Nevertheless, future studies are urgently needed to determine the treatment for pediatric advanced RCC to increase the survival rate.


Assuntos
Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Adolescente , Carcinoma de Células Renais/cirurgia , Criança , Pré-Escolar , Feminino , Humanos , Neoplasias Renais/cirurgia , Masculino , Nefrectomia/métodos , Estudos Retrospectivos
13.
Acta Ophthalmol ; 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33423400

RESUMO

PURPOSE: To investigate the relationship between time spent outdoors, at particular ages in childhood and adolescence, and myopia status in young adulthood using serum 25-hydroxyvitamin D [25(OH)D] concentration as a biomarker of time spent outdoors. METHODS: Participants of the Raine Study Generation 2 cohort had 25(OH)D concentrations measured at the 6-, 14-, 17- and 20-year follow-ups. Participants underwent cycloplegic autorefraction at age 20 years, and myopia was defined as a mean spherical equivalent -0.50 dioptres or more myopic. Logistic regression was used to analyse the association between risk of myopia at age 20 years and age-specific 25(OH)D concentrations. Linear mixed-effects models were used to analyse trajectory of 25(OH)D concentrations from 6 to 20 years. RESULTS: After adjusting for sex, race, parental myopia, body mass index and studying status, myopia at 20 years was associated with lower 25(OH)D concentration at 20 years (per 10 nmol/L decrease, odds ratio (aOR)=1.10, 95% CI: 1.02, 1.18) and a low vitamin D status [25(OH)D < 50 nmol/L] at 17 years (aOR = 1.71, 95% CI: 1.06, 2.76) and 20 years (aOR = 1.71, 95% CI: 1.14, 2.56), compared to those without low vitamin D status. There were no associations between 25(OH)D at younger ages and myopia. Individuals who were myopic at 20 years had a 25(OH)D concentration trajectory that declined, relative to non-myopic peers, with increasing age. Differences in 25(OH)D trajectory between individuals with and without myopia were greater among non-Caucasians compared to Caucasians. CONCLUSIONS: Myopia in young adulthood was most strongly associated with recent 25(OH)D concentrations, a marker of time spent outdoors.

14.
J Environ Manage ; 277: 111437, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33031998

RESUMO

The promising application modes of organic fertilizer (OF) and chemical nitrogen (N) fertilizer (CF) could be the homogeneous granulation (HG: OF and CF are distributed spatially evenly) and spatial heterogeneous granulation (SG: OF and CF are distributed separately in space), where the N transformation processes, such as the nitrous oxide (N2O) emissions, are greatly influenced by the spatial distribution of the OF and CF, particularly. Currently, there is a lack of in-depth understanding about the microbial mechanisms of the SG and HG application on N2O emissions, and the related functional guilds (ammonia oxidizers and heterotrophic denitrifiers) respond to the granular fertilizer is yet not known. In the present study, we made CF (15N-(NH4)2SO4), cow compost and maize straw (2% or 8% based on the N proportion) into granular of 1 cm in diameter, in HG and SG forms, respectively, and then applied these granules in soils for 80 days incubation. Results showed that, compared with HG treatments, the SG treatment promoted the ammonium (NH4+), nitrate (NO3-) and microbial biomass carbon (MBC) intensities, and increased the N2O emissions possibly through ammonia oxidize bacteria dependent nitrification and fungal denitrification. In addition, the high maize residues proportion in organic fertilizer significantly mitigated N2O emissions by the coupled impacts of suppressed nitrification and enhanced denitrification enzyme activity with high C input. Overall, our results suggest that spatial heterogeneous granulation of and CF may induce higher risk of N2O emissions and the higher proportion of maize residues could potentially mitigate such increased emissions.


Assuntos
Fertilizantes , Solo , Agricultura , Animais , Bovinos , Feminino , Fertilizantes/análise , Nitrificação , Nitrogênio/análise , Óxido Nitroso/análise
15.
J Insect Physiol ; 129: 104181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33359365

RESUMO

RNA interference (RNAi) is commonly used in the laboratory to analyze gene function, and RNAi-based pest management strategies are now being employed. Unfortunately, RNAi is hindered by inefficient and highly-variable results when different insects are targeted, especially lepidopterans, such as the European corn borer (ECB), Ostrinia nubilalis (Lepidoptera: Crambidae). Previous efforts to achieve RNAi-mediated gene suppression in ECB revealed low RNAi efficiency with both double-stranded RNA (dsRNA) injection and ingestion. One mechanism that can affect RNAi efficiency in insects is the expression and function of core RNAi pathway genes, such as those encoding Argonaut 2 (Ago2), Dicer 2 (Dcr2), and a dsRNA binding protein (R2D2). To determine if deficiencies in these core RNAi pathway genes contribute to low RNAi efficiency in ECB, full-length complementary DNAs encoding OnAgo2, OnDcr2, and OnR2D2 were cloned, sequenced, and characterized. A comparison of domain architecture suggested that all three predicted proteins contained the necessary domains to function. However, a comparison of evolutionary distances revealed potentially important variations in the first RNase III domain of OnDcr2, the double-stranded RNA binding domains of OnR2D2, and both the PAZ and PIWI domains of OnAgo2, which may indicate functional differences in enzymatic activity between species. Expression analysis indicated that transcripts for all three genes were expressed in all developmental stages and tissues investigated. Interestingly, the introduction of non-target dsRNA into ECB second-instar larvae via microinjection did not affect OnAgo2, OnDcr2, or OnR2D2 expression. In contrast, ingestion of the same dsRNAs resulted in upregulation of OnDcr2 but downregulation of OnR2D2. The unexpected transcriptional responses of the core machinery and the divergence in amino-acid sequence between specific domains in each core RNAi protein may possibly contribute to low RNAi efficiency in ECB. Understanding the contributions of different RNAi pathway components is critical to adapting this technology for use in controlling lepidopteran pests that exhibit low RNAi efficiency.

16.
Int Immunopharmacol ; 91: 107262, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33338863

RESUMO

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic has spread globally. Therapeutic options including antivirals, anti-inflammatory compounds, and vaccines are still under study. Convalescent plasma(CP) immunotherapy was an effective method for fighting against similar viral infections such as SARS-CoV, and MERS-CoV. In the epidemic of COVID-19, a large number of literatures reported the application of CP. However, there is controversy over the efficacy of CP therapy for COVID-19. This systematic review was designed to evaluate the existing evidence and experience related to CP immunotherapy for COVID-19. METHODS: A literature search was conducted on Pubmed, Cochrane Library, Clinical Key, Wanfang Database; China National Knowledge Infrastructure(CNKI) were used to search for the proper keywords such as SARS-CoV-2, COVID-19, plasma, serum, immunoglobulins, blood transfusion, convalescent, novel coronavirus, immune and the related words for publications published until 15.10.2020. Other available resources were also used to identify relevant articles. The present systematic review was performed based on PRISMA protocol. Data extraction and risk of bias assessments were performed by two reviewers. RESULTS: Based on the inclusions and exclusions criteria, 45 articles were included in the final review. First, meta-analysis results of RCTs showed that, there were no statistically significant differences between CP transfusion and the control group in terms of reducing mortality(OR 0.79, 95% CI 0.52-1.19, I2 = 28%) and improving clinical symptoms(OR 1.21, 95%CI 0.68-2.16; I2 = 0%). The results of controlled NRSIs showed that CP therapy may reduce mortality in COVID-19 patients(RR 0.59, 95% CI 0.53-0.66, I2 = 0%). Second, limited safety data suggested that CP is a well-tolerated therapy with a low incidence of adverse events. But, due to lack of safety data for the control group, it is really not easy to determine whether CP transfusion has an impact on moderate to serious AEs. Thirdly, for children, pregnant, elderly, tumor and immunocompromised patients, CP may be a well-tolerated therapy, if the disease cannot be controlled and continues to progress. Studies were commonly of low or very low quality. CONCLUSIONS: Although the results of limited RCTs showed that CP cannot significantly reduce mortality, some non-RCTs and case report(series) have found that CP may help patients improve clinical symptoms, clear the virus, and reduce mortality, especially for patients with COVID-19 within ten days of illness. We speculate that CP may be a possible treatment option. High-quality studies are needed for establishing stronger quality of evidence and pharmacists should also be actively involved in the CP treatment process and provide close pharmaceutical care.


Assuntos
Antivirais/uso terapêutico , /terapia , Plasma/metabolismo , /virologia , Humanos , Imunização Passiva , Pandemias/prevenção & controle , /efeitos dos fármacos
17.
Onco Targets Ther ; 13: 12181-12193, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33268996

RESUMO

Background: Cisplatin resistance results in the failure of platinum-based chemotherapy and relapse of gastric cancer. We aimed to investigate the potential regulating role of SNHG6/miR-325-3p/GITR in reversing cisplatin resistance. Patients and Methods: A total of 137 gastric cancer patients were recruited. qRT-PCR and ELISA were used to test the expression of target genes. CCK-8 and caspase 3/7 kit were used to test the cell viability and apoptosis rate. Dual luciferase reporter gene and RNA-pull down assay were used to investigate the potential interaction between target genes. Results: SNHG6 and GITR were up regulated in gastric cancer; however, miR-325-3p was down-regulated. Besides, SNHG6, miR-325-3p and GITR expression were associated with gastric cancer prognosis. Then, we found that GITR and SNHG6 promoted proliferation and inhibited apoptosis of MKN45 and MKN45 cisplatin resistance cell line; however, miR-325-3p inhibited proliferation and promoted apoptosis of these cell lines. Furthermore, SNHG6 might bind to miR-325-3p to regulate its expression, and miR-325-3p directly interacted with the 3`UTR of GITR. Conclusion: SNHG6 binds to miR-325-3p, which directly interacted with GITR to regulate cisplatin resistance of gastric cancer.

18.
Nat Commun ; 11(1): 6223, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277493

RESUMO

For a given carbon budget over several decades, different transformation rates for the energy system yield starkly different results. Here we consider a budget of 33 GtCO2 for the cumulative carbon dioxide emissions from the European electricity, heating, and transport sectors between 2020 and 2050, which represents Europe's contribution to the Paris Agreement. We have found that following an early and steady path in which emissions are strongly reduced in the first decade is more cost-effective than following a late and rapid path in which low initial reduction targets quickly deplete the carbon budget and require a sharp reduction later. We show that solar photovoltaic, onshore and offshore wind can become the cornerstone of a fully decarbonised energy system and that installation rates similar to historical maxima are required to achieve timely decarbonisation. Key to those results is a proper representation of existing balancing strategies through an open, hourly-resolved, networked model of the sector-coupled European energy system.

19.
Chest ; 158(6): e317-e321, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33280776

RESUMO

CASE PRESENTATION: A 6-year-old boy was referred to our hospital with an anterior mediastinal mass. This was discovered by chest radiography performed when the boy was examined after being caught by an elevator door about 2 weeks earlier. The patient had been born full term without any complications during pregnancy or delivery. No clinical symptoms were observed during this presentation, and he had no history of previous infections.

20.
Cell Mol Gastroenterol Hepatol ; 12(1): 1-24, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33340715

RESUMO

BACKGROUND & AIMS: Defective rostrocaudal colonization of the gut by vagal neural crest cells (vNCCs) results in Hirschsprung's disease (HSCR), which is characterized by aganglionosis in variable lengths of the distal bowel. Skip segment Hirschsprung's disease (SSHD), referring to a ganglionated segment within an otherwise aganglionic intestine, contradicts HSCR pathogenesis and underscores a significant gap in our understanding of the development of the enteric nervous system. Here, we aimed to identify the embryonic origin of the ganglionic segments in SSHD. METHODS: Intestinal biopsy specimens from HSCR patients were prepared via the Swiss-roll technique to search for SSHD cases. NCC migration from the neural tube to the gut was spatiotemporally traced using targeted cell lineages and gene manipulation in mice. RESULTS: After invading the mesentery surrounding the foregut, vNCCs separated into 2 populations: mesenteric NCCs (mNCCs) proceeded to migrate along the mesentery, whereas enteric NCCs invaded the foregut to migrate along the gut. mNCCs not only produced neurons and glia within the gut mesentery, but also continuously complemented the enteric NCC pool. Two new cases of SSHD were identified from 183 HSCR patients, and Ednrb-mutant mice, but not Ret-/- mice, showed a high incidence rate of SSHD-like phenotypes. CONCLUSIONS: mNCCs, a subset of vNCCs that migrate into the gut via the gut mesentery to give rise to enteric neurons, could provide an embryologic explanation for SSHD. These findings lead to novel insights into the development of the enteric nervous system and the etiology of HSCR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...