Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 616
Filtrar
1.
Nat Commun ; 12(1): 2187, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846346

RESUMO

The RNA-sensing pathway contributes to type I interferon (IFN) production induced by DNA damaging agents. However, the potential involvement of RNA sensors in DNA repair is unknown. Here, we found that retinoic acid-inducible gene I (RIG-I), a key cytosolic RNA sensor that recognizes RNA virus and initiates the MAVS-IRF3-type I IFN signaling cascade, is recruited to double-stranded breaks (DSBs) and suppresses non-homologous end joining (NHEJ). Mechanistically, RIG-I interacts with XRCC4, and the RIG-I/XRCC4 interaction impedes the formation of XRCC4/LIG4/XLF complex at DSBs. High expression of RIG-I compromises DNA repair and sensitizes cancer cells to irradiation treatment. In contrast, depletion of RIG-I renders cells resistant to irradiation in vitro and in vivo. In addition, this mechanism suggests a protective role of RIG-I in hindering retrovirus integration into the host genome by suppressing the NHEJ pathway. Reciprocally, XRCC4, while suppressed for its DNA repair function, has a critical role in RIG-I immune signaling through RIG-I interaction. XRCC4 promotes RIG-I signaling by enhancing oligomerization and ubiquitination of RIG-I, thereby suppressing RNA virus replication in host cells. In vivo, silencing XRCC4 in mouse lung promotes influenza virus replication in mice and these mice display faster body weight loss, poorer survival, and a greater degree of lung injury caused by influenza virus infection. This reciprocal regulation of RIG-I and XRCC4 reveals a new function of RIG-I in suppressing DNA repair and virus integration into the host genome, and meanwhile endues XRCC4 with a crucial role in potentiating innate immune response, thereby helping host to prevail in the battle against virus.

2.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807984

RESUMO

Black root rot (BRR) is an economically important disease of cotton and other crops, especially in cooler regions with short growing seasons. Symptoms include black discoloration of the roots, reduced number of lateral roots and stunted or slow plant growth. The cultivated tetraploid Gossypium species are susceptible to BRR. Resistance to BRR was identified in G. arboreum accession BM13H and is associated with reduced and restricted hyphal growth and less sporulation. Transcriptome analysis indicates that BM13H responds to infection at early time points 2- and 3-days post-inoculation, but by day 5, few differentially expressed genes are observed between infected and uninfected roots. Inheritance of BM13H resistance to BRR was evaluated in an F6 recombinant inbred population and shows a single semi-dominant locus conferring resistance that was fine mapped to a region on chromosome 1, containing ten genes including five putative resistance-like genes.

3.
J Matern Fetal Neonatal Med ; : 1-9, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33792471

RESUMO

OBJECTIVES: To evaluate the performance of noninvasive prenatal screening (NIPS) for the fetal common aneuploidy screening in twin pregnancies. METHODS: The data of 5469 women with twin pregnancies were collected in this retrospective observational study between January 2017 and December 2018. Patients underwent NIPS as first-line screening or after standard serum screening for fetal aneuploidy. The performance of NIPS was examined, and a regression analysis was performed to investigate testing failure in cases of low fetal fraction. RESULTS: In this study, 2231 (40.8%) patients opted for NIPS as the primary prenatal screening test, and 3238 (59.2%) opted for serum screening, including 440 patients who opted for NIPS after serum screening. Among the 2671 pregnancies with available NIPS outcomes, 11 cases of aneuploidy were identified, seven of trisomy 21 and four of sex chromosome aneuploidy (SCA). The sensitivity and specificity for trisomy 21 were 100% (95% CI, 56.1-100.0%) and 100% (95% CI, 99.8-100.0%), respectively. The positive predictive value (PPV) for SCA was 40.0% (95% CI, 13.7-72.6%). No false negatives were found, with a negative predictive value (NPV) of 100% (95% CI, 99.8-100.0%) in total. In 32 pregnancies who failed NIPS test without available NIPS outcomes due to low fetal fraction, the regression analysis demonstrated that increasing BMI and assisted reproductive technology treatment were significant independent predictors. CONCLUSIONS: NIPS is a high-performing routine primary prenatal screening test in twin pregnancies, with a high PPV and low false positive rate for detecting trisomy 21. It is also useful to identify common sex chromosome aneuploidies in twin pregnancies, with similar performance to that reported in singleton pregnancy.

4.
Nucleic Acids Res ; 49(6): 3322-3337, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33704464

RESUMO

RPA is a critical factor for DNA replication and replication stress response. Surprisingly, we found that chromatin RPA stability is tightly regulated. We report that the GDP/GTP exchange factor DOCK7 acts as a critical replication stress regulator to promote RPA stability on chromatin. DOCK7 is phosphorylated by ATR and then recruited by MDC1 to the chromatin and replication fork during replication stress. DOCK7-mediated Rac1/Cdc42 activation leads to the activation of PAK1, which subsequently phosphorylates RPA1 at S135 and T180 to stabilize chromatin-loaded RPA1 and ensure proper replication stress response. Moreover, DOCK7 is overexpressed in ovarian cancer and depleting DOCK7 sensitizes cancer cells to camptothecin. Taken together, our results highlight a novel role for DOCK7 in regulation of the replication stress response and highlight potential therapeutic targets to overcome chemoresistance in cancer.

6.
Nat Commun ; 12(1): 1798, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741964

RESUMO

The challenges of developing neuromorphic vision systems inspired by the human eye come not only from how to recreate the flexibility, sophistication, and adaptability of animal systems, but also how to do so with computational efficiency and elegance. Similar to biological systems, these neuromorphic circuits integrate functions of image sensing, memory and processing into the device, and process continuous analog brightness signal in real-time. High-integration, flexibility and ultra-sensitivity are essential for practical artificial vision systems that attempt to emulate biological processing. Here, we present a flexible optoelectronic sensor array of 1024 pixels using a combination of carbon nanotubes and perovskite quantum dots as active materials for an efficient neuromorphic vision system. The device has an extraordinary sensitivity to light with a responsivity of 5.1 × 107 A/W and a specific detectivity of 2 × 1016 Jones, and demonstrates neuromorphic reinforcement learning by training the sensor array with a weak light pulse of 1 µW/cm2.

7.
Nat Genet ; 53(4): 511-520, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33649594

RESUMO

BCL11A, the major regulator of fetal hemoglobin (HbF, α2γ2) level, represses γ-globin expression through direct promoter binding in adult erythroid cells in a switch to adult hemoglobin (HbA, α2ß2). To uncover how BCL11A initiates repression, we used CRISPR-Cas9, dCas9, dCas9-KRAB and dCas9-VP64 screens to dissect the γ-globin promoters and identified an activator element near the BCL11A-binding site. Using CUT&RUN and base editing, we demonstrate that a proximal CCAAT box is occupied by the activator NF-Y. BCL11A competes with NF-Y binding through steric hindrance to initiate repression. Occupancy of NF-Y is rapidly established following BCL11A depletion, and precedes γ-globin derepression and locus control region (LCR)-globin loop formation. Our findings reveal that the switch from fetal to adult globin gene expression within the >50-kb ß-globin gene cluster is initiated by competition between a stage-selective repressor and a ubiquitous activating factor within a remarkably discrete region of the γ-globin promoters.

8.
Anal Chem ; 93(10): 4666-4675, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33667082

RESUMO

Carbohydrates, such as oligo- and polysaccharides, are highly abundant biopolymers that are involved in numerous processes. The study of their structure and functions is commonly based on a material that is isolated from complex natural sources. However, a more precise analysis requires pure compounds with well-defined structures that can be obtained from chemical or enzymatic syntheses. Novel synthetic strategies have increased the accessibility of larger monodisperse polysaccharides, posing a challenge to the analytical methods used for their molecular characterization. Here, we present wide mass range ultrahigh-resolution matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) as a powerful platform for the analysis of synthetic oligo- and polysaccharides. Synthetic carbohydrates 16-, 64-, 100-, and 151-mers were mass analyzed and characterized by MALDI in-source decay FT-ICR MS. Detection of fragment ions generated from glycosidic bond cleavage (or cross-ring cleavage) provided information of the monosaccharide content and the linkage type, allowing for the corroboration of the carbohydrate compositions and structures.

9.
G3 (Bethesda) ; 11(1): 1-14, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33704434

RESUMO

Fiber mutants are unique and valuable resources for understanding the genetic and molecular mechanisms controlling initiation and development of cotton fibers that are extremely elongated single epidermal cells protruding from the seed coat of cottonseeds. In this study, we reported a new fuzzless-tufted cotton mutant (Gossypium hirsutum) and showed that fuzzless-tufted near-isogenic lines (NILs) had similar agronomic traits and a higher ginning efficiency compared to their recurrent parents with normal fuzzy seeds. Genetic analysis revealed that the mutant phenotype is determined by a single incomplete dominant locus, designated N5. The mutation was fine mapped to an approximately 250-kb interval containing 33 annotated genes using a combination of bulked segregant sequencing, SNP chip genotyping, and fine mapping. Comparative transcriptomic analysis using 0-6 days post-anthesis (dpa) ovules from NILs segregating for the phenotypes of fuzzless-tufted (mutant) and normal fuzzy cottonseeds (wild-type) uncovered candidate genes responsible for the mutant phenotype. It also revealed that the flanking region of the N5 locus is enriched with differentially expressed genes (DEGs) between the mutant and wild-type. Several of those DEGs are members of the gene families with demonstrated roles in cell initiation and elongation, such as calcium-dependent protein kinase and expansin. The transcriptome landscape of the mutant was significantly reprogrammed in the 6 dpa ovules and, to a less extent, in the 0 dpa ovules, but not in the 2 and 4 dpa ovules. At both 0 and 6 dpa, the reprogrammed mutant transcriptome was mainly associated with cell wall modifications and transmembrane transportation, while transcription factor activity was significantly altered in the 6 dpa mutant ovules. These results imply a similar molecular basis for initiation of lint and fuzz fibers despite certain differences.

10.
FASEB J ; 35(4): e21326, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33710666

RESUMO

Histone modifications play critical roles in DNA damage repair to safeguard genome integrity. However, how different histone modifiers coordinate to build appropriate chromatin context for DNA damage repair is largely unknown. Here, we report a novel interplay between the histone methyltransferase KMT5A and two E3 ligases RNF8 and RNF168 in establishing the histone modification status for DNA damage repair. KMT5A is a newly identified substrate of RNF8 in vitro and in vivo. In response to DNA double-strand breaks (DSBs), RNF8 promotes KMT5A recruitment onto damaged chromatin in a ubiquitination-dependent manner. RNF8-induced KMT5A ubiquitination increases the binding capacity of KMT5A to RNF168. Interestingly, KMT5A not only drives a local increase in H4K20 monomethylation at DSBs, but also promotes RNF168's activity in catalyzing H2A ubiquitination. We proved that the interaction between the H2A acidic patch and KMT5A R188/R189 residues is critical for KMT5A-mediated regulation of H2A ubiquitination. Taken together, our results highlight a new role for KMT5A in linking H4K20 methylation and H2A ubiquitination and provide insight into the histone modification network during DNA damage repair.

11.
Genome Biol ; 22(1): 78, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33685491

RESUMO

Spatial transcriptomic and proteomic technologies have provided new opportunities to investigate cells in their native microenvironment. Here we present Giotto, a comprehensive and open-source toolbox for spatial data analysis and visualization. The analysis module provides end-to-end analysis by implementing a wide range of algorithms for characterizing tissue composition, spatial expression patterns, and cellular interactions. Furthermore, single-cell RNAseq data can be integrated for spatial cell-type enrichment analysis. The visualization module allows users to interactively visualize analysis outputs and imaging features. To demonstrate its general applicability, we apply Giotto to a wide range of datasets encompassing diverse technologies and platforms.

12.
Nano Lett ; 21(6): 2476-2486, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33683126

RESUMO

Epstein-Barr virus (EBV) infection is a global health concern infecting over 90% of the population. However, there is no currently available vaccine. EBV primarily infects B cells, where the major glycoprotein 350 (gp350) is the main target of neutralizing antibodies. Given the advancement of nanoparticle vaccines, we describe rationally designed vaccine modalities presenting 60 copies of gp350 on self-assembled nanoparticles in a repetitive array. In a mouse model, gp350s on lumazine synthase (LS) and I3-01 adjuvanted with MF59 or aluminum hydroxide (Alhydrogel) elicited over 65- to 133-fold higher neutralizing antibody titers than the corresponding gp350 monomer to EBV. Furthermore, immunization with gp350D123-LS and gp350D123-I3-01 vaccine induced a Th2-biased response. For the nonhuman primate model, gp350D123-LS in MF59 elicited higher titers of total IgG and neutralizing antibodies than the monomeric gp350D123. Overall, these results support gp350D123-based nanoparticle vaccine design as a promising vaccine candidate for potent protection against EBV infection.

13.
J Hazard Mater ; 405: 124072, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33535356

RESUMO

A hybrid sludge conditioning strategy with electrooxidation and Fe(II) addition was used for heavy metal removal from sewage sludge and industrial sludge, with simultaneous sludge dewatering and stabilization. With the addition of 82 mg/g DS Fe(II) and treatment time of 4.5 h, heavy metal removals of 72.95% and 78.49% for Cu, 66.29% and 84.26% for Zn, and 36.52% and 36.99% for Pb were achieved from sewage sludge and industrial sludge samples respectively. The system pH decreased to 2.33 and 2.98 and the oxidation-reduction potential (ORP) values increased to 435.90 mV and 480.60 mV in sewage sludge and industrial sludge samples, respectively, which was conducive to the desorption and dissolution of heavy metals from sludge structures and the degradation of the organic compounds that complexed with heavy metals. In addition, the hybrid conditioning process demonstrated excellent dewatering performance due to the efficient electrochemical disintegration of sludge flocs together with the coagulation of sludge particles by Fe(III) generated via electrooxidation. The strong acidic and oxidative environment produced by the enhanced electrooxidation process was also responsible for pathogen inactivation.

14.
EMBO Rep ; 22(4): e50128, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33605073

RESUMO

N6 -methyladenosine (m6 A) modification of mRNA mediates diverse cellular and viral functions. Infection with Epstein-Barr virus (EBV) is causally associated with nasopharyngeal carcinoma (NPC), 10% of gastric carcinoma, and various B-cell lymphomas, in which the viral latent and lytic phases both play vital roles. Here, we show that EBV transcripts exhibit differential m6 A modification in human NPC biopsies, patient-derived xenograft tissues, and cells at different EBV infection stages. m6 A-modified EBV transcripts are recognized and destabilized by the YTHDF1 protein, which leads to the m6 A-dependent suppression of EBV infection and replication. Mechanistically, YTHDF1 hastens viral RNA decapping and mediates RNA decay by recruiting RNA degradation complexes, including ZAP, DDX17, and DCP2, thereby post-transcriptionally downregulating the expression of EBV genes. Taken together, our results reveal the critical roles of m6 A modifications and their reader YTHDF1 in EBV replication. These findings contribute novel targets for the treatment of EBV-associated cancers.

15.
Life Sci ; : 119255, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33636173

RESUMO

OBJECTIVE: Numerous evidence indicates that hyperglycemia is a pivotal driver of the vascular complications of diabetes. However, the mechanisms of hyperglycemia-induced endothelial dysfunction in diabetes remain incompletely understood. This study aims to expound on the underlying mechanism of the endothelial dysfunction induced by hyperglycemia from the perspective of long non-coding RNAs (lncRNA). MATERIALS AND METHODS: Cell proliferation, migration, apoptosis, and tube formation were measured by cell counting kit-8 assay, transwell assay, flow cytometry, and tube formation assay, respectively. RNA pull-down and RNA-binding protein immunoprecipitation were used to detect the interaction between lncRNA SNHG15 and thioredoxin-interacting protein (TXNIP). Co-immunoprecipitation was used to detect the ubiquitination level of TXNIP and the interaction between TXNIP and E3 ubiquitin ligase ITCH. RESULTS: A downregulation of SNHG15 was observed in the ischemic hind limb of diabetic mice and high glucose (HG)-treated HUVECs. Functionally, the overexpression of SNHG15 promoted cell proliferation, migration, and tube formation, and suppressed cell apoptosis in HG-treated HUVECs. Mechanically, SNHG15 reduced TXNIP expression by enhancing ITCH-mediated ubiquitination of TXNIP. TXNIP overexpression abrogated the protective effect of LncRNA SNHG15 overexpression on HG-induced endothelial dysfunction. The following experiment further confirmed that SNHG15 overexpression promoted angiogenesis of the ischemic hind limb in diabetic mice. CONCLUSION: SNHG15 is a novel protector for hyperglycemia-induced endothelial dysfunction via decreasing TXNIP expression.

16.
Artigo em Inglês | MEDLINE | ID: mdl-33576715

RESUMO

Synaptic plasticity plays an important role in learning and memory in the developing hippocampus. However, the precise molecular mechanism in lead exposure models remains to be studied. UCP2, an inner mitochondrial anion carrier, regulates synaptic plasticity through uncoupling neurons. And hnRNP K, an RNA binding protein, plays a role in modulating the expression of transcripts coding synaptic plasticity. We aim to investigate whether lead exposure affects UCP2 and hnRNP K expression levels. The Sprague-Dawley rats were exposed to different lead acetate concentrations (0 g/l, 0.5 g/l, 2.0 g/l) during gestational and lactational periods. PC12 cells were also exposed to different lead acetate concentrations (0 µM, 1 µM and 100 µM). We found that the expression levels of UCP2 and hnRNP K had significant declines in the lead exposure rat hippocampus and PC12 cells. Furthermore, the up-regulation of hnRNP K expression level could reverse the expression level of UCP2 in lead exposure models. In conclusion, these results suggest that lead exposure can reduce the expression level of UCP2 which is mediated by decreasing the expression level of hnRNP K.

17.
Cerebellum ; 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33547587

RESUMO

Benign paroxysmal positional vertigo (BPPV) is one of the most common peripheral vestibular diseases. Since the peripheral vestibular system connects with the cerebellum via the brainstem, repeated episodic vertigo may result in progressive structural and functional changes in the cerebellum and brainstem. In the present work, voxel-based morphometry (VBM) of T1-weighted images and resting-state functional magnetic resonance imaging (fMRI) in 32 patients with BPPV and 32 matched healthy controls were used to assess cerebellar and brainstem anatomical and spontaneous resting-state brain activity alterations associated with BPPV. We used a spatially unbiased infratentorial template toolbox in combination with VBM to analyze cerebellar and brainstem gray matter volume (GMV), fractional amplitude of low-frequency fluctuations (fALFF), and regional homogeneity (ReHo). Patients with BPPV showed decreased GMV in the right cerebellum posterior lobe/cerebellar tonsil extending to the cerebellum anterior lobe and pons relative to healthy controls. BPPV patients also exhibited significantly higher fALFF values in the right pons and left pons and higher ReHo values in the left cerebellum posterior lobe/Crus2 than the controls. Furthermore, the fALFF z-scores in the pons were positively correlated with the duration of vertigo at baseline and dizziness visual analog scale scores 1 week after canalith repositioning procedures (CRPs). BPPV patients exhibited structural and functional changes in the cerebellum and pons, which may reflect the adaptation and plasticity of these anatomical structures after repeated attacks of episodic vertigo. These results indicate that the changes in pons function may be closely related to residual dizziness after CRPs.

18.
Artigo em Inglês | MEDLINE | ID: mdl-33577452

RESUMO

Customized static orthoses in rehabilitation clinics often cause side effects, such as discomfort and skin damage due to excessive local contact pressure. Currently, clinicians adjust orthoses to reduce high contact pressure based on subjective feedback from patients. However, the adjustment is inefficient and prone to variability due to the unknown contact pressure distribution as well as differences in discomfort due to pressure across patients. This paper proposed a new method to predict a threshold of contact pressure (pressure limit) associated with moderate discomfort at each critical spot under hand orthoses. A new pressure sensor skin with 13 sensing units was configured from FEA results of pressure distribution simulated with hand geometry data of six healthy participants. It was used to measure contact pressure under two types of customized orthoses for 40 patients with bone fractures. Their subjective perception of discomfort was also measured using a 6 scores discomfort scale. Based on these data, five critical spots were identified that correspond to high discomfort scores (>1) or high pressure magnitudes (>0.024 MPa). An artificial neural network was trained to predict contact pressure at each critical spot with orthosis type, gender, height, weight, discomfort scores and pressure measurements as input variables. The neural networks show satisfactory prediction accuracy with R2 values over 0.81 of regression between network outputs and measurements. This new method predicts a set of pressure limits at critical locations under the orthosis that the clinicians can use to make orthosis adjustment decisions.

19.
Cancer Res ; 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597272

RESUMO

Proton Bragg peak irradiation has a higher ionizing density than conventional photon irradiation or the entrance of the proton beam profile. Whether targeting the DNA damage response could enhance vulnerability to the distinct pattern of damage induced by proton Bragg peak irradiation is currently unknown. Here we performed genetic or pharmacologic manipulation of key DNA damage response elements and evaluated DNA damage signaling, DNA repair, and tumor control in cell lines and xenografts treated with the same physical dose across a radiotherapy linear energy transfer spectrum. Radiotherapy consisted of 6 MV photons and the entrance beam or Bragg peak of a 76.8 MeV spot scanning proton beam. More complex DNA double strand breaks induced by Bragg peak proton irradiation preferentially underwent resection and engaged homologous recombination (HR) machinery. Unexpectedly, the ATM inhibitor AZD0156 but not an inhibitor of ATR rendered cells hypersensitive to more densely ionizing proton Bragg peak irradiation. ATM inhibition blocked resection and shunted more double strand breaks to processing by toxic ligation through nonhomologous end-joining, whereas loss of DNA ligation via XRCC4 or Lig4 knockdown rescued resection and abolished the enhanced Bragg peak cell killing. Proton Bragg peak monotherapy selectively sensitized cell lines and tumor xenografts with inherent HR defects, and the repair defect induced by ATM inhibitor co-administration showed enhanced efficacy in HR proficient models. In summary, inherent defects in HR or administration of an ATM inhibitor in HR proficient tumors selectively enhance the relative biological effectiveness of proton Bragg peak irradiation.

20.
Mol Plant Microbe Interact ; 34(3): 240-254, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33507814

RESUMO

Verticillium wilt is a vascular disease causing tremendous damage to cotton production worldwide. However, our knowledge of the mechanisms of cotton resistance or susceptibility to this disease is very limited. In this study, we compared the defense transcriptomes of cotton (Gossypium hirsutum) cultivars Shidalukang 1 (Verticillium dahliae resistant, HR) and Junmian 1 (V. dahliae susceptible, HS) before and after V. dahliae infection, identified hub genes of the network associated with responses to V. dahliae infection, and functionally characterized one of the hub genes involved in biosynthesis of lignin and phenolics. We identified 6,831 differentially expressed genes (DEGs) between the basal transcriptomes of HR and HS; 3,685 and 3,239 of these DEGs were induced in HR and HS, respectively, at different time points after V. dahliae infection. KEGG pathway analysis indicated that DEGs were enriched for genes involved in lignin biosynthesis. In all, 23 hub genes were identified based on a weighted gene coexpression network analysis of the 6,831 DEGs and their expression profiles at different time points after V. dahliae infection. Knockdown of Gh4CL30, one of the hub genes related to the lignin biosynthesis pathway, by virus-induced gene silencing, led to a decreased content of flavonoids, lignin, and S monomer but an increased content of G monomer, G/S lignin monomer, caffeic acid, and ferulic acid, and enhanced cotton resistance to V. dahliae. These results suggest that Gh4CL30 is a key gene modulating the outputs of different branches of the lignin biosynthesis pathway, and provide new insights into cotton resistance to V. dahliae.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Resistência à Doença , Gossypium , Lignina , Fenóis , Proteínas de Plantas , Verticillium , Ascomicetos/fisiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Gossypium/química , Gossypium/genética , Gossypium/metabolismo , Gossypium/microbiologia , Lignina/genética , Fenóis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Verticillium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...