Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 14(27): e1800078, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29750439

RESUMO

Rechargeable aprotic lithium (Li)-O2 batteries with high theoretical energy densities are regarded as promising next-generation energy storage devices and have attracted considerable interest recently. However, these batteries still suffer from many critical issues, such as low capacity, poor cycle life, and low round-trip efficiency, rendering the practical application of these batteries rather sluggish. Cathode catalysts with high oxygen reduction reaction (ORR) and evolution reaction activities are of particular importance for addressing these issues and consequently promoting the application of Li-O2 batteries. Thus, the rational design and preparation of the catalysts with high ORR activity, good electronic conductivity, and decent chemical/electrochemical stability are still challenging. In this Review, the strategies are outlined including the rational selection of catalytic species, the introduction of a 3D porous structure, the formation of functional composites, and the heteroatom doping which succeeded in the design of high-performance cathode catalysts for stable Li-O2 batteries. Perspectives on enhancing the overall electrochemical performance of Li-O2 batteries based on the optimization of the properties and reliability of each part of the battery are also made. This Review sheds some new light on the design of highly active cathode catalysts and the development of high-performance lithium-O2 batteries.

2.
Dalton Trans ; 46(15): 5025-5032, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28350408

RESUMO

Sodium-ion batteries have attracted considerable attention in recent years. In order to promote the practical application of sodium-ion batteries, the electrochemical performances, such as specific capacity, reversibility, and rate capability of the anode materials, should be further improved. In this work, a Fe2O3/C composite with a well-ordered mesoporous structure is prepared via a facile co-impregnation method by using mesoporous silica SBA-15 as a hard template. When used as an anode material for sodium-ion batteries, the well-ordered mesoporous structure ensures fast mass transport kinetics. The presence of nano-sized Fe2O3 particles confined within the carbon walls significantly enhances the specific capacity of the composite. The carbon walls in the composite act not only as an active material contributing to the specific capacity, but also as a conductive matrix improving the cycling stability of Fe2O3 nanoparticles. As a result, the well-ordered mesoporous Fe2O3/C composite exhibits high specific capacity, excellent cycleability, and high rate capability. It is proposed that this simple co-impregnation method is applicable for the preparation of well-ordered mesoporous transition oxide/carbon composite electrode materials for high performance sodium-ion and lithium-ion batteries.

3.
Nano Lett ; 16(9): 5902-8, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27504675

RESUMO

To lower the overpotential of a lithium-oxygen battery, electron transport at the solid-to-solid interface between the discharge product Li2O2 and the cathode catalyst is of great significance. Here we propose a strategy to enhance electron transport property of the cathode catalyst by the replace of oxygen atoms in the generally used metal oxide-based catalysts with nitrogen atoms to improve electron density at Fermi energy after nitridation. Hierarchically porous CoN nanorods were obtained by thermal treatment of Co3O4 nanorods under ammonia atmosphere at 350 °C. Compared with that of the pristine Co3O4 precursor before nitridation, the overpotential of the obtained CoN cathode was significantly decreased. Moreover, specific capacity and cycling stability of the CoN nanorods were enhanced. It is assumed that the discharged products with different morphologies for Co3O4 and CoN cathodes might be closely associated with the variation in the electronic density induced by occupancy of nitrogen atoms into interstitial sites of metal lattice after nitridation. The nitridation strategy for improved electron density proposed in this work is proved to be a simple but efficient way to improve the electrochemical performance of metal oxide based cathodes for lithium-oxygen batteries.

4.
ACS Appl Mater Interfaces ; 8(6): 3868-73, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26720145

RESUMO

In this work, hydroquinone resin was used to grow carbon nanotubes directly on Ni foam. The composites were obtained via a simple carbonization method, which avoids using the explosive gaseous carbon precursors that are usually applied in the chemical vapor deposition method. When evaluated as cathode for Li-O2 batteries, the binder-free structure showed enhanced ORR/OER activities, thus giving a high rate capability (12690 mAh g(-1) at 200 mA g(-1) and 3999 mAh g(-1) at 2000 mA g(-1)) and outstanding long-term cycling stability (capacity limited 2000 mAh g(-1), 110 cycles at 200 mA g(-1)). The excellent battery performance provides new insights into designing a low-cost and high-efficiency cathode for Li-O2 batteries.

5.
Dalton Trans ; 44(18): 8678-84, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25854214

RESUMO

A novel binder-free electrode for lithium-oxygen batteries has been prepared by electrodepositing a Co3O4 layer onto a pretreated TiO2 fiber mesh, formed on nickel foam by an electrospinning method. The Co3O4 depositing layer is composed of Co3O4 nanoflakes, forming a uniform flower-like porous structure. The Co3O4 nanoflakes within the depositing layer provide a large amount of catalytic active sites for oxygen evolution and reduction reactions. The three-dimensional porous network of the Co3O4 depositing layer can not only facilitate the transportation of ions and electrolyte within the electrode, but also provide plenty of space to accommodate Li2O2 species formed during the discharge process. The Co3O4 spheres embedded in the TiO2 fiber mesh, formed by the treatment of a suspension of cobaltammine precipitate, function as anchors to prevent the detachment of the Co3O4 layer from the current collector, resulting in excellent structural and cycling stability. Only a slight specific capacity decay is observed at full discharge/charge after 80 cycles. This work demonstrates the important factors in the preparation of binder-free cathodes for high performance lithium-oxygen batteries.

6.
Chem Commun (Camb) ; 50(69): 9961-4, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25034037

RESUMO

Sn/SnO nanoparticles are incorporated in crumpled nitrogen-doped graphene nanosheets by a simple melting diffusion method. The resulting composite exhibits large specific capacity, excellent cycling stability and high rate capability as an anode for lithium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA