Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; PP2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34343098

RESUMO

The new generation of the industrial cyber-physical system (ICPS) supported by the edge computing technology facilitates the deep integration of sensing and control. System observability is the key factor to characterize the internal relationship of them. In most existing works, the observability is regarded as the assumption for subsequent sensing and control. But, in fact, with the gradually expanded network scale, this assumption is more difficult to directly satisfy sensing design. For this problem, we propose the observability guaranteed method (OGM) for edge sensing and control co-design. Specifically, the nonconvex observability condition is transformed into the convex range of key parameters of the sensing strategy based on the graph signal processing (GSP) technology. Then, we establish the relationship between these parameters and control performance. In OGM, except the previous design from sensing to control, we reversely adjust the sensing design for control demands to satisfy observability. Finally, our algorithm is applied into the hot rolling laminar cooling process based on the semiphysical evaluation. The effectiveness is verified by the results.

2.
IEEE Trans Cybern ; PP2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34260365

RESUMO

In this article, we consider the power scheduling problem of the multihop transmission with limited power resources. For a discrete-time linear time-invariant process, we consider a more practical scenario where the forward-error-correcting (FEC) coding scheme is utilized. An approximate communication model is introduced to formulate the nonanalytical relationship between the consumption of power and the successful-decoding-probability. For the single-hop transmission, we propose an analytical method to figure out the optimal offline scheduling for the finite-time case and the optimal periodic schedule for the infinite-time case. We consider the process and terminal errors simultaneously, and explicitly discuss how different values of parameters affect the optimality. Moreover, we extend our conclusions to the multihop case. In order to deal with the difficulty and complexity brought by the multihop scenario, a novel method based on the equivalent-scheduling matrix (ESM) is proposed to describe the accumulated effects through the multihop transmission. Meanwhile, explicit solutions of the multihop case are provided for finite- and infinite-time cases, respectively. Numerical examples are provided to demonstrate the effectiveness of the proposed methods.

3.
Plant Dis ; : PDIS02210308RE, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33881917

RESUMO

Wheat powdery mildew is a devastating disease that seriously threatens yield worldwide. Utilization of host resistance is considered an effective strategy to minimize powdery mildew damage. Pm21, PmV, and Pm12 confer broad-spectrum resistance to wheat powdery mildew in China, of which Pm21 and PmV are allelic genes derived from the 6VS chromosome of Dasypyrum villosum, and Pm12 is derived from the 6SS chromosome of Aegilops speltoides and most likely orthologous to the former two genes. To accurately and efficiently transfer and pyramid these genes using marker-assisted selection (MAS), distinctive single-nucleotide polymorphisms (SNPs) among the exon sequences of Pm21, PmV, and Pm12 and their homologous sequences in the common wheat genome were identified and then used for developing diagnostic Kompetitive Allele-Specific PCR (KASP) markers. The markers were validated in different genotypes including transgenic vectors, transgenic lines, translocation lines, resistance stocks with documented Pm genes, and in multiple susceptible cultivars without Pm genes. As a result, we initially developed a KASP marker that can simultaneously diagnose Pm21, Pm12, and PmV. Subsequently, we obtained a highly diagnostic KASP marker for each of the three genes that could distinguish among the three genes and also accurately distinguish them from other resistant stocks with documented Pm genes and from multiple susceptible genotypes. Compared with previously reported markers, the highly diagnostic KASP markers developed in this study have the advantages of low cost, easy assay, accuracy, and potentially high throughput for MAS.

4.
Theor Appl Genet ; 134(3): 887-896, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33388886

RESUMO

KEY MESSAGE: PmSESY, a new wheat powdery mildew resistance gene was characterized and genetically mapped to the terminal region of chromosome 1RL of wild rye Secale sylvestre. The genus Secale is an important resource for wheat improvement. The Secale species are usually considered as non-adapted hosts of Blumeria graminis f. sp. tritici (Bgt) that causes wheat powdery mildew. However, as a wild species of cultivated rye, S. sylvestre is rarely studied. Here, we reported that 25 S. sylvestre accessions were susceptible to isolate BgtYZ01, whereas the other five confer effective resistance to all the tested isolates of Bgt. A population was then constructed by crossing the resistant accession SESY-01 with the susceptible accession SESY-11. Genetic analysis showed that the resistance in SESY-01 was controlled by a single dominant gene, temporarily designated as PmSESY. Subsequently, combining bulked segregant RNA-Seq (BSR-Seq) analysis with molecular analysis, PmSESY was mapped into a 1.88 cM genetic interval in the terminus of the long arm of 1R, which was closely flanked by markers Xss06 and Xss09 with genetic distances of 0.87 cM and 1.01 cM, respectively. Comparative mapping demonstrated that the corresponding physical region of the PmSESY locus was about 3.81 Mb in rye cv. Lo7 genome, where 30 disease resistance-related genes were annotated, including five NLR-type disease resistance genes, three kinase family protein genes, three leucine-rich repeat receptor-like protein kinase genes and so on. This study gives a new insight into S. sylvestre that shows divergence in response to Bgt and reports a new powdery mildew resistance gene that has potential to be used for resistance improvement in wheat.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Secale/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Ligação Genética , Marcadores Genéticos , Doenças das Plantas/microbiologia , Secale/imunologia , Secale/microbiologia
5.
Theor Appl Genet ; 134(1): 53-62, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32915283

RESUMO

KEY MESSAGE: New powdery mildew resistance gene Pm68 was found in the terminal region of chromosome 2BS of Greek durum wheat TRI 1796. The co-segregated molecular markers could be used for MAS. Durum wheat (Triticum turgidum L. var. durum Desf.) is not only an important cereal crop for pasta making, but also a genetic resource for common wheat improvement. In the present study, a Greek durum wheat TRI 1796 was found to confer high resistance to all 22 tested isolates of Blumeria graminis f. sp. tritici (Bgt). Inheritance study on the F1 plants and the F2 population derived from the cross TRI 1796/PI 584832 revealed that the resistance in TRI 1796 was controlled by a single dominant gene, herein designated Pm68. Using the bulked segregant RNA-Seq (BSR-Seq) analysis combined with molecular analysis, Pm68 was mapped to the terminal part of the short arm of chromosome 2B and flanked by markers Xdw04 and Xdw12/Xdw13 with genetic distances of 0.22 cM each. According to the reference genome of durum wheat cv. Svevo, the corresponding physical region spanned the Pm68 locus was about 1.78-Mb, in which a number of disease resistance-related genes were annotated. This study reports the new powdery mildew resistance gene Pm68 that would be a valuable resource for improvement of both common wheat and durum wheat. The co-segregated markers (Xdw05-Xdw11) developed here would be useful tools for marker-assisted selection (MAS) in breeding.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Hibridização Genômica Comparativa , Cruzamentos Genéticos , Genes Dominantes , Genes de Plantas , Marcadores Genéticos , Grécia , Doenças das Plantas/microbiologia , RNA-Seq , Triticum/genética , Triticum/microbiologia
6.
J Hazard Mater ; 410: 124579, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33339699

RESUMO

The Yellow River Estuary (YRE) and adjacent Laizhou Bay (LB) encounter eco-environmental risks caused by heavy metals (HMs) pollution. Here magnetic measurements were performed on 239 surface sediment samples from the YRE and LB to establish a rapid and effective method for detecting HMs. Magnetite, maghemite, and hematite coexist in the sediments. The distributions of magnetic minerals are dominated by sediment sources (Yellow River in northern and western LB, and rivers in southern and eastern coastal LB), and the anticlockwise water current. Compared to the background values, Cd content is enriched for all samples, while Co, Cr, Ni, Cu, Zn, and Pb contents are lower for most samples. The low pollution load indexes (PLI) of HMs (< 1-1.56) indicate the unpolluted to moderately polluted status, while the muddy area is the most polluted. The principal component analysis indicates that Co, Cr, Ni, Cu, and Zn are mainly from natural weathering substances, while Cd and Pb are anthropogenic. Contents of fine-grained sediments and magnetic particles are positively correlated to Co, Ni, Cu, Zn, and PLI. The high-risk Co, Ni, Cu, and Zn regions can be quickly delineated with the frequency-dependent susceptibility.

7.
Front Genet ; 11: 489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477413

RESUMO

Wheat powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a devastating disease that threatens wheat production and yield worldwide. The powdery mildew resistance gene Pm21, originating from wheat wild relative Dasypyrum villosum, encodes a coiled-coil, nucleotide-binding site, leucine-rich repeat (CC-NBS-LRR) protein and confers broad-spectrum resistance to wheat powdery mildew. In the present study, we isolated 73 Pm21 alleles from different powdery mildew-resistant D. villosum accessions, among which, 38 alleles were non-redundant. Sequence analysis identified seven minor insertion-deletion (InDel) polymorphisms and 400 single nucleotide polymorphisms (SNPs) among the 38 non-redundant Pm21 alleles. The nucleotide diversity of the LRR domain was significantly higher than those of the CC and NB-ARC domains. Further evolutionary analysis indicated that the solvent-exposed LRR residues of Pm21 alleles had undergone diversifying selection (dN/dS = 3.19734). In addition, eight LRR motifs and four amino acid sites in the LRR domain were also experienced positive selection, indicating that these motifs and sites play critical roles in resistance specificity. The phylogenetic tree showed that 38 Pm21 alleles were divided into seven classes. Classes A (including original Pm21), B and C were the major classes, including 26 alleles (68.4%). We also identified three non-functional Pm21 alleles from four susceptible homozygous D. villosum lines (DvSus-1 to DvSus-4) and two susceptible wheat-D. villosum chromosome addition lines (DA6V#1 and DA6V#3). The genetic variations of non-functional Pm21 alleles involved point mutation, deletion and insertion, respectively. The results also showed that the non-functional Pm21 alleles in the two chromosome addition lines both came from the susceptible donors of D. villosum. This study gives a new insight into the evolutionary characteristics of Pm21 alleles and discusses how to sustainably utilize Pm21 in wheat production. This study also reveals the sequence variants and origins of non-functional Pm21 alleles in D. villosum populations.

8.
Mol Plant Pathol ; 21(7): 975-984, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32421925

RESUMO

Nucleotide-binding (NB) leucine-rich repeat (LRR) receptors (NLRs) provide resistance against several plant pathogens. We previously cloned the wheat powdery mildew resistance gene Pm21, which encodes a coiled-coil (CC) NLR that confers broad-spectrum resistance against Blumeria graminis f. sp. tritici. Here, we report comprehensive biochemical and functional analyses of Pm21 CC domain in Nicotiana benthamiana. Transient overexpression assay suggested that only the extended CC (eCC, amino acid residues 1-159) domain has cell-death-inducing activity, whereas the CC-containing truncations, including CC-NB and CC-NB-LRR, do not induce cell-death responses. Coimmunoprecipitation (Co-IP) assay showed that the eCC domain self-associates and interacts with the NB and LRR domains in planta. These results imply that the activity of the eCC domain is inhibited by the intramolecular interactions of different domains in the absence of pathogens. We found that the LRR domain plays a crucial role in D491V-mediated full-length (FL) Pm21 autoactivation. Some mutations in the CC domain leading to the loss of Pm21 resistance to powdery mildew impaired the CC activity of cell-death induction. Two mutations (R73Q and E80K) interfered with D491V-mediated Pm21 autoactivation without affecting the cell-death-inducing activity of the eCC domain. Notably, some susceptible mutants harbouring mutations in the CC domain still exhibited cell-death-inducing activity. Taken together, these results implicate the CC domain of Pm21 in cell-death signalling and disease-resistance signalling, which are potentially independent of each other.


Assuntos
Morte Celular , Resistência à Doença/genética , Proteínas NLR/fisiologia , Doenças das Plantas/genética , Domínios Proteicos/fisiologia , Triticum/imunologia , Triticum/microbiologia , Mutação , Proteínas NLR/química , Proteínas NLR/genética , Células Vegetais/patologia , Transdução de Sinais , Tabaco
9.
ISA Trans ; 88: 246-257, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30579556

RESUMO

In this paper, we investigate the transmission scheduling problem for wireless control systems (WCSs) with limited power resources. Different from the existing works, for a discrete-time linear process, we consider a more practical WCS, where a relay is introduced into the framework for remote transmission and control. To achieve the best control performance of the system, we propose a global optimal offline scheduling algorithm. Then, based on ACK-feedback framework, two different online scheduling schemes are further designed respectively under the given power resources. Theoretically, we prove the superiority of online schedule to the offline one under the same energy budget. Simulations are conducted to demonstrate and verify the effectiveness of the proposed algorithms.

11.
Int J Mol Sci ; 19(2)2018 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-29495297

RESUMO

Pm21, derived from wheat wild relative Dasypyrum villosum, is one of the most effective powdery mildew resistance genes and has been widely applied in wheat breeding in China. Mapping and cloning Pm21 are of importance for understanding its resistance mechanism. In the present study, physical mapping was performed using different genetic stocks involving in structural variations of chromosome 6VS carrying Pm21. The data showed that 6VS could be divided into eight distinguishable chromosomal bins, and Pm21 was mapped to the bin FLb4-b5/b6 closely flanked by the markers 6VS-08.6 and 6VS-10.2. Comparative genomic mapping indicated that the orthologous regions of FLb4-b5/b6 carrying Pm21 were narrowed to a 117.7 kb genomic region harboring 19 genes in Brachypodium and a 37.7 kb region harboring 5 genes in rice, respectively. The result was consistent with that given by recent genetic mapping in diploid D. villosum. In conclusion, this study demonstrated that physical mapping based on chromosomal structural variations is an efficient method for locating alien genes in wheat background.


Assuntos
Cromossomos de Plantas , Resistência à Doença/genética , Genes de Plantas , Variação Genética , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Doenças das Plantas/genética , Triticum/genética , Triticum/microbiologia , Mapeamento Cromossômico , Biologia Computacional/métodos , Evolução Molecular , Marcadores Genéticos , Genoma de Planta , Genômica/métodos , Doenças das Plantas/microbiologia , Polimorfismo Genético
12.
Front Plant Sci ; 8: 1914, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163626

RESUMO

Pm21, originating from wheat wild relative Dasypyrum villosum, confers immunity to all known races of Blumeria graminis f. sp. tritici (Bgt) and has been widely utilized in wheat breeding. However, little is known on the genetic basis of the Pm21 locus. In the present study, four seedling-susceptible D. villosum lines (DvSus-1 ∼ DvSus-4) were identified from different natural populations. Based on the collinearity among genomes of Brachypodium distachyon, Oryza, and Triticeae, a set of 25 gene-derived markers were developed declaring the polymorphisms between DvRes-1 carrying Pm21 and DvSus-1. Fine genetic mapping of Pm21 was conducted by using an extremely large F2 segregation population derived from the cross DvSus-1/DvRes-1. Then Pm21 was narrowed to a 0.01-cM genetic interval defined by the markers 6VS-08.4b and 6VS-10b. Three DNA markers, including a resistance gene analog marker, were confirmed to co-segregate with Pm21. Moreover, based on the susceptible deletion line Y18-S6 induced by ethyl methanesulfonate treatment conducted on Yangmai 18, Pm21 was physically mapped into a similar interval. Comparative analysis revealed that the orthologous regions of the interval carrying Pm21 were narrowed to a 112.5 kb genomic region harboring 18 genes in Brachypodium, and a 23.2 kb region harboring two genes in rice, respectively. This study provides a high-density integrated map of the Pm21 locus, which will contribute to map-based cloning of Pm21.

13.
J Invertebr Pathol ; 149: 82-86, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28797905

RESUMO

It is unclear how, or to what extent, baculovirus DNA that has been damaged by ultraviolet (UV) light is repaired during infection and replication. In our previous study, expression of Bombyx mori nucleopolyhedrovirus (BmNPV) ORF Bm65, a homolog of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac79, correlated with decreased inactivation of virus by UV irradiation. In the current study, we accumulated more evidence pointing to a role for Bm65 in repair of UV-induced DNA damage. The localization of Bm65 was studied using enhanced green fluorescent protein (EGFP) fusion constructs expressed in BmN cells transfected with a Bm65 expression plasmid. The results indicate that Bm65-EGFP accumulates in the nucleus. A host cell reactivation assay showed that Bm65 significantly increased the expression of UV-damaged mCherry reporter gene. An assay measuring cyclobutane pyrimidine dimers (CPDs) in UV-irradiated BmN cells found that CPD quantity was decreased in cells transfected with a Bm65 expression plasmid. We also showed that after UVC treatment, the viability of Bm65-transfected cells was higher than that of egfp-transfected cells. These results suggest that Bm65 may be involved in the repair of baculovirus DNA that has been damaged by UV light.


Assuntos
Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Proteínas de Insetos/genética , Nucleopoliedrovírus/genética , Raios Ultravioleta , Proteínas Virais/genética , Animais , Bombyx/virologia , Proteínas de Insetos/metabolismo , Nucleopoliedrovírus/metabolismo , Proteínas Virais/metabolismo
14.
Theor Appl Genet ; 129(4): 819-829, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26791837

RESUMO

KEY MESSAGE: The powdery mildew resistance gene Pm21 was physically and comparatively mapped by newly developed markers. Seven candidate genes were verified to be required for Pm21 -mediated resistance to wheat powdery mildew. Pm21, a gene derived from wheat wild relative Dasypyrum villosum, has been transferred into common wheat and widely utilized in wheat resistance breeding for powdery mildew. Previously, Pm21 has been located to the bin FL0.45-0.58 of 6VS by using deletion stocks. However, its fine mapping is still a hard work. In the present study, 30 gene-derived 6VS-specific markers were obtained based on the collinearity among genomes of Brachypodium distachyon, Oryza and Triticeae, and then physically and comparatively mapped in the bin FL0.45-0.58 and its nearby chromosome region. According to the maps, the bin FL0.45-0.58 carrying Pm21 was closely flanked by the markers 6VS-03 and 6VS-23, which further narrowed the orthologous regions to 1.06 Mb in Brachypodium and 1.38 Mb in rice, respectively. Among the conserved genes shared by Brachypodium and rice, four serine/threonine protein kinase genes (DvMPK1, DvMLPK, DvUPK and DvPSYR1), one protein phosphatase gene (DvPP2C) and two transcription factor genes (DvGATA and DvWHY) were confirmed to be required for Pm21-mediated resistance to wheat powdery mildew by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) and transcriptional pattern analyses. In summary, this study gives new insights into the genetic basis of the Pm21 locus and the disease resistance pathways mediated by Pm21.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Mapeamento Físico do Cromossomo , Doenças das Plantas/genética , Triticum/genética , Ascomicetos , Brachypodium/genética , DNA de Plantas/genética , Marcadores Genéticos , Oryza/genética , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Triticum/microbiologia
15.
IEEE Trans Cybern ; 43(6): 1963-76, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23757586

RESUMO

This paper is concerned with the problem of filter design for target tracking over sensor networks. Different from most existing works on sensor networks, we consider the heterogeneous sensor networks with two types of sensors different on processing abilities (denoted as type-I and type-II sensors, respectively). However, questions of how to deal with the heterogeneity of sensors and how to design a filter for target tracking over such kind of networks remain largely unexplored.We propose in this paper a novel distributed consensus filter to solve the target tracking problem. Two criteria, namely, unbiasedness and optimality, are imposed for the filter design. The so-called sequential design scheme is then presented to tackle the heterogeneity of sensors. The minimum principle of Pontryagin is adopted for type-I sensors to optimize the estimation errors. As for type-II sensors, the Lagrange multiplier method coupled with the generalized inverse of matrices is then used for filter optimization. Furthermore, it is proven that convergence property is guaranteed for the proposed consensus filter in the presence of process and measurement noise. Simulation results have validated the performance of the proposed filter. It is also demonstrated that the heterogeneous sensor networks with the proposed filter outperform the homogenous counterparts in light of reduction in the network cost, with slight degradation of estimation performance.


Assuntos
Algoritmos , Inteligência Artificial , Redes de Comunicação de Computadores , Técnicas de Apoio para a Decisão , Reconhecimento Automatizado de Padrão/métodos , Processamento de Sinais Assistido por Computador , Transdutores
16.
BMC Genomics ; 14: 115, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23425301

RESUMO

BACKGROUND: Two species of wild silkworms, the Chinese oak silkworm (Antheraea pernyi) and the castor silkworm Philosamia cynthia ricini, can acquire a serious disease caused by Nucleopolyhedrin Viruses (NPVs) (known as AnpeNPV and PhcyNPV, respectively). The two viruses have similar polyhedral morphologies and their viral fragments share high sequence similarity. However, the physical maps of the viral genomes and cross-infectivity of the viruses are different. The genome sequences of two AnpeNPV isolates have been published. RESULTS: We sequenced and analyzed the full-length genome of PhcyNPV to compare the gene contents of the two viruses. The genome of PhcyNPV is 125, 376 bp, with a G + C content of 53.65%, and encodes 138 open reading frames (ORFs) of at least 50 amino acids (aa) (GenBank accession number: JX404026). Between PhcyNPV and AnpeMNPV-L and -Z isolates, 126 ORFs are identical, including 30 baculovirus core genes. Nine ORFs were only found in PhcyNPV. Four genes, cath, v-chi, lef 10 and lef 11, were not found in PhcyNPV. However, most of the six genes required for infectivity via the oral route were found in PhcyNPV and in the two AnpeNPV isolates, with high sequence similarities. The pif-3 gene of PhcyNPV contained 59 aa extra amino acids at the N-terminus compared with AnpeNPV. CONCLUSIONS: Most of the genes in PhcyNPV are similar to the two AnpeNPV isolates, including the direction of expression of the ORFs. Only a few genes were missing from PhcyNPV. These data suggest that PhcyNPV and AnpeNPV might be variants of each other, and that the differences in cross-infection might be caused by gene mutations.


Assuntos
Genômica , Mariposas/virologia , Nucleopoliedrovírus/genética , Animais , Genoma Viral/genética , Boca/virologia , Nucleopoliedrovírus/metabolismo , Nucleopoliedrovírus/fisiologia , Transporte Proteico , Análise de Sequência de DNA , Especificidade da Espécie , Proteínas Virais/genética , Proteínas Virais/metabolismo
17.
Pol J Microbiol ; 61(3): 183-189, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-29334052

RESUMO

The conotoxin-like (ctx) gene encodes a small cysteine-rich polypeptide in various baculoviruses. Previous research has demonstrated that the product of the ctx gene could be purified from insect cells infected by Autographa californica nuclear polyhedrosis virus (AcMNPV), but its function was unknown. In this paper, we compared the conserved cysteine motif structure (CX3GX2CX5CCX3CX6C) of the ctx gene in baculoviruses and generated recombinant Bombyx mori nuclear polyhedrosis virus (BmNPV) with the BmNPV bacmid system. The recombinant BmNPV contained the ctx gene from AcMNPV or a fusion gene of ctx with eGFP, respectively. Fluorescence in CTX-eGFP-positive cells was mainly observed on the cell membrane. To gain insight into CTX function, two methods were used to elucidate the affect CTX had on hemolymph melanization in vivo and in vitro in insect larvae and pupae. The results indicated that CTX abrogates hemolymph melanization; however, the mechanisms require further evaluation.

18.
BMC Genomics ; 10: 91, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19243590

RESUMO

BACKGROUND: Baculoviruses are well known for their potential as biological agents for controlling agricultural and forest pests. They are also widely used as expression vectors in molecular cloning studies. The genome sequences of 48 baculoviruses are currently available in NCBI databases. As the number of sequenced viral genomes increases, it is important for the authors to present sufficiently detailed analyses and annotations to advance understanding of them. In this study, the complete genome of Clanis bilineata nucleopolyhedrovirus (ClbiNPV) has been sequenced and analyzed in order to understand this virus better. RESULTS: The genome of ClbiNPV contains 135,454 base pairs (bp) with a G+C content of 37%, and 139 putative open reading frames (ORFs) of at least 150 nucleotides. One hundred and twenty-six of these ORFs have homologues with other baculovirus genes while the other 13 are unique to ClbiNPV. The 30 baculovirus core genes are all present in ClbiNPV. Phylogenetic analysis based on the combined pif-2 and lef-8 sequences places ClbiNPV in the Group II Alphabaculoviruses. This result is consistent with the absence of gp64 from the ClbiNPV genome and the presence instead of a fusion protein gene, characteristic of Group II. Blast searches revealed that ClbiNPV encodes a photolyase-like gene sequence, which has a 1-bp deletion when compared with photolyases of other baculoviruses. This deletion disrupts the sequence into two small photolyase ORFs, designated Clbiphr-1 and Clbiphr-2, which correspond to the CPD-DNA photolyase and FAD-binding domains of photolyases, respectively. CONCLUSION: ClbiNPV belongs to the Group II Alphabaculoviruses and is most closely related to OrleNPV, LdMNPV, TnSNPV, EcobNPV and ChchNPV. It contains a variant DNA photolyase gene, which only exists in ChchNPV, TnSNPV and SpltGV among the baculoviruses.


Assuntos
Genoma Viral , Lepidópteros/virologia , Nucleopoliedrovírus/genética , Animais , Composição de Bases , Sequência de Bases , DNA Viral/genética , Desoxirribodipirimidina Fotoliase/genética , Genes Virais , Larva/virologia , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA , Deleção de Sequência
19.
Arch Virol ; 153(8): 1557-61, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18584114

RESUMO

A nucleopolyhedrovirus isolated from infected larvae of Clanis bilineata tsingtauica was characterized. Electron microscopical studies on the ultrastructure of C. bilineata nucleopolyhedrovirus (ClbiSNPV) occlusion bodies (OBs) showed several virions (up to 16) with a single nucleocapsid packaged within a single viral envelope. The diameter of the OBs was 0.77-1.7 mum with a mean of 1.13 +/- 0.19 mum. The complete sequence of the ClbiSNPV polyhedrin (polh) gene contained 741 nucleotides, predicting a protein of 246 amino acids. Phylogenetic analyses using the complete sequence of the polh genes indicated that ClbiSNPV clusters with Group II NPVs. This is the first record of a baculovirus from C. bilineata.


Assuntos
Lepidópteros/virologia , Nucleocapsídeo/genética , Nucleopoliedrovírus/isolamento & purificação , Proteínas Virais/genética , Animais , DNA Viral/química , DNA Viral/genética , Genes Virais , Larva/virologia , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/genética , Proteínas Virais/química
20.
Pol J Microbiol ; 57(4): 271-4, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19275039

RESUMO

Open reading frame 76 of Bombyx mori nucleopolyhedrovirus (BmNPV), designated as Bm76, is a gene whose function is completely unknown. With EGFP fused to the 3' terminal of Bm76 as the reporter gene and BmNPV bacmid as the expression vector, a recombinant bacmid was successfully constructed expressing Bm76-EGFP fusion protein under the control of polyhedrin promoter in Bombyx mori cells (Bm cells), BmNPV's permissive cell line, laying the foundation for rescue experiment of Bm76 deletion mutant. Moreover, the supernatant from Bm cells transfected with the recombinant bacmid was used to infect Trichoplusia Ni cells (Tn cells), BmNPV's non-permissive cell line. Unexpectedly, the expression of Bm76-EGFP fusion protein in some Tn cells was detected, implying that viral DNA was replicated in these cells. The causes are being studied for the inability of BmNPV to produce enough viable budded viruses in Tn cells despite of viral DNA replication.


Assuntos
Bombyx/virologia , DNA Viral/genética , DNA Viral/metabolismo , Vetores Genéticos , Nucleopoliedrovírus/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Replicação Viral , Animais , Bombyx/genética , Bombyx/metabolismo , Linhagem Celular , Cromossomos Artificiais Bacterianos , DNA Recombinante/genética , DNA Recombinante/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde , Proteínas de Matriz de Corpos de Inclusão , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Proteínas Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...